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ABSTRACT. In this paper we use integral calculus, complex variable techniques and some clas-
sical inequalities to establish rational identities and inequalities involving Fibonacci and Lucas
numbers.
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1. I NTRODUCTION

The Fibonacci sequence is a source of many nice and interesting identities and inequalities. A
similar interpretation exists for Lucas numbers. Many of these identities have been documented
in an extensive list that appears in the work of Vajda [1], where they are proved by algebraic
means, even though combinatorial proofs of many of these interesting algebraic identities are
also given (see [2]). However, rational identities and inequalities involving Fibonacci and Lucas
numbers seldom have appeared (see [3]). In this paper, integral calculus, complex variable
techniques and some classical inequalities are used to obtain several rational Fibonacci and
Lucas identities and inequalities.

2. RATIONAL I DENTITIES

In what follows several rational identities are considered and proved by using results on
contour integrals. We begin with:
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2 JOSÉLUIS DÍAZ -BARRERO

Theorem 2.1.LetFn denote thenth Fibonacci number. That is,F0 = 0, F1 = 1 and forn ≥ 2,
Fn = Fn−1 + Fn−2. Then, for all positive integersr,

(2.1)
n∑

k=1

1 + F `
r+k

Fr+k


n∏

j=1
j 6=k

1

Fr+k − Fr+j

 =
(−1)n+1

Fr+1Fr+2 · · ·Fr+n

holds, with0 ≤ ` ≤ n− 1.

Proof. To prove the preceding identity we consider the integral

(2.2) I =
1

2πi

∮
γ

1 + z`

An(z)

dz

z
,

whereAn(z) =
∏n

j=1(z − Fr+j).

Let γ be the curve defined byγ = {z ∈ C : |z| < Fr+1}. Evaluating the preceding integral
in the exterior of theγ contour, we obtain

I1 =
1

2πi

∮
γ

{
1 + z`

z

n∏
j=1

1

(z − Fr+j)

}
dz =

n∑
k=1

Rk,

where

Rk = lim
z→Fr+k

1 + z`

z

n∏
j=1
j 6=k

1

(z − Fr+j)

 =
1 + F `

r+k

Fr+k

n∏
j=1
j 6=k

1

(Fr+k − Fr+j)
.

Then,I1 becomes

I1 =
n∑

k=1

1 + F `
r+k

Fr+k

n∏
j=1
j 6=k

1

(Fr+k − Fr+j)

 .

Evaluating (2.2) in the interior of theγ contour, we get

I2 =
1

2πi

∮
γ

{
1 + z`

z

n∏
j=1

1

(z − Fr+j)

}
dz

= lim
z→0

{
1 + z`

An(z)

}
=

1

An(0)
=

(−1)n

Fr+1Fr+2 · · ·Fr+n

.

By Cauchy’s theorem on contour integrals we have thatI1+I2 = 0 and the proof is complete.
�

A similar identity also holds for Lucas numbers. It can be stated as:

Corollary 2.2. Let Ln denote thenth Lucas number. That is,L0 = 2, L1 = 1 and forn ≥ 2,
Ln = Ln−1 + Ln−2. Then, for all positive integersr,

(2.3)
n∑

k=1

1 + L`
r+k

Lr+k


∏
j=1
j 6=k

1

Lr+k − Lr+j

 =
(−1)n+1

Lr+1Lr+2 · · ·+ Lr+n

holds, with0 ≤ ` ≤ n− 1.
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RATIONAL IDENTITIES AND INEQUALITIES 3

In particular (2.1) and (2.3) can be used (see [3]) to obtain

Corollary 2.3. For n ≥ 2,

(F 2
n + 1)Fn+1Fn+2

(Fn+1 − Fn)(Fn+2 − Fn)
+

Fn(F 2
n+1 + 1)Fn+2

(Fn − Fn+1)(Fn+2 − Fn+1)

+
FnFn+1(F

2
n+2 + 1)

(Fn − Fn+2)(Fn+1 − Fn+2)
= 1.

Corollary 2.4. For n ≥ 2,

Ln+1Ln+2

(Ln+1 − Ln)(Ln+2 − Ln)
+

Ln+2Ln

(Ln − Ln+1)(Ln+2 − Ln+1)

+
LnLn+1

(Ln − Ln+2)(Ln+1 − Ln+2)
= 1.

In the sequelFn andLn denote thenth Fibonacci and Lucas numbers, respectively.

Theorem 2.5. If n ≥ 3, then we have

n∑
i=1

1

Ln−2
i

 n∏
j=1
j 6=i

(
1− Lj

Li

)−1

+ Ln−1
i

 = Ln+2 − 3.

Proof. First, we observe that the given statement can be written as

n∑
i=1

 1

Ln−2
i

n∏
j=1
j 6=i

(
1− Lj

Li

)−1

+
n∑

i=1

Li = Ln+2 − 3.

Since
∑n

i=1 Li = Ln+2 − 3, as can be easily established by mathematical induction, then it will
suffice to prove

(2.4)
n∑

i=1

 1

Ln−2
i

n∏
j=1
j 6=i

(
1− Lj

Li

)−1

 = 0.

We will argue by using residue techniques. We consider the monic complex polynomialA(z) =∏n
k=1(z − Lk) and we evaluate the integral

I =
1

2πi

∮
γ

z

A(z)
dz

over the interior and exterior domains limited byγ, a circle centered at the origin and radius
Ln+1, i.e.,γ = {z ∈ C : |z| < Ln+1} .
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4 JOSÉLUIS DÍAZ -BARRERO

Integrating in the region inside theγ contour we have

I1 =
1

2πi

∮
γ

z

A(z)
dz

=
n∑

i=1

Res

{
z

A(z)
, z = Li

}

=
n∑

i=1

 n∏
j=1
j 6=i

Li

Li − Lj


=

n∑
i=1

 1

Ln−2
i

n∏
j=1
j 6=i

(
1− Lj

Li

)−1

 .

Integrating in the region outside of theγ contour we get

I2 =
1

2πi

∮
γ

z

A(z)
dz = 0.

Again, by Cauchy’s theorem on contour integrals we haveI1 +I2 = 0. This completes the proof
of (2.4). �

Note that (2.4) can also be established by using routine algebra.

3. I NEQUALITIES

Next, several inequalities are considered and proved with the aid of integral calculus and the
use of classical inequalities. First, we state and prove some nice inequalities involving circular
powers of Lucas numbers similar to those obtained for Fibonacci numbers in [4].

Theorem 3.1.Letn be a positive integer, then the following inequalities hold

LLn+1
n + LLn

n+1 < LLn
n + L

Ln+1

n+1 ,(a)

L
Ln+2

n+1 − LLn
n+1 < L

Ln+2

n+2 − LLn
n+2.(b)

Proof. To prove part (a) we consider the integral

I1 =

∫ Ln+1

Ln

(
Lx

n+1 log Ln+1 − Lx
n log Ln

)
dx.

SinceLn < Ln+1 if n ≥ 1, then forLn ≤ x ≤ Ln+1 we have

Lx
n log Ln < Lx

n+1 log Ln < Lx
n+1 log Ln+1

andI1 > 0. On the other hand, evaluating the integral, we obtain

I1 =

∫ Ln+1

Ln

(
Lx

n+1 log Ln+1 − Lx
n log Ln

)
dx

=
[
Lx

n+1 − Lx
n

]Ln+1

Ln

=
(
LLn

n + L
Ln+1

n+1

)
−
(
LLn+1

n + LLn
n+1

)
and (a) is proved. To prove (b), we consider the integral

I2 =

∫ Ln+2

Ln

(
Lx

n+2 log Ln+2 − Lx
n+1 log Ln+1

)
dx.
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RATIONAL IDENTITIES AND INEQUALITIES 5

SinceLn+1 < Ln+2, then forLn ≤ x ≤ Ln+2 we have

Lx
n+1 log Ln+1 < Lx

n+2 log Ln+2

andI2 > 0. On the other hand, evaluatingI2, we get

I2 =

∫ Ln+2

Ln

(
Lx

n+2 log Ln+2 − Lx
n+1 log Ln+1

)
dx

=
[
Lx

n+2 − Lx
n+1

]Ln+2

Ln

=
(
L

Ln+2

n+2 − LLn
n+2

)
−
(
L

Ln+2

n+1 − LLn
n+1

)
.

This completes the proof. �

Corollary 3.2. For n ≥ 1, we have

LLn+1
n + L

Ln+2

n+1 + LLn
n+2 < LLn

n + L
Ln+1

n+1 + L
Ln+2

n+2 .

Proof. The statement immediately follows from the fact that(
LLn

n + L
Ln+1

n+1 + L
Ln+2

n+2

)
−
(
LLn+1

n + L
Ln+2

n+1 + LLn
n+2

)
=
[(

LLn
n + L

Ln+1

n+1

)
−
(
LLn+1

n + LLn
n+1

)]
+
[(

L
Ln+2

n+2 − LLn
n+2

)
−
(
L

Ln+2

n+1 − LLn
n+1

)]
and Theorem 3.1. �

Theorem 3.3.Letn be a positive integer, then the following inequality

LLn+1
n L

Ln+2

n+1 LLn
n+2 < LLn

n L
Ln+1

n+1 L
Ln+2

n+2

holds.

Proof. We will argue by using the weighted AM-GM-HM inequality (see [5]). The proof will
be done in two steps. First, we will prove

(3.1) LLn+1
n L

Ln+2

n+1 LLn
n+2 <

(
Ln + Ln+1 + Ln+2

3

)Ln+Ln+1+Ln+2

.

In fact, settingx1 = Ln, x2 = Ln+1, x3 = Ln+2 and

w1 =
Ln+1

Ln + Ln+1 + Ln+2

,

w2 =
Ln+2

Ln + Ln+1 + Ln+2

,

w3 =
Ln

Ln + Ln+1 + Ln+2

and applying the AM-GM inequality, we have

LLn+1/(Ln+Ln+1+Ln+2)
n L

Ln+2/(Ln+Ln+1+Ln+2)
n+1 L

Ln/(Ln+Ln+1+Ln+2)
n+2

<
LnLn+1

Ln + Ln+1 + Ln+2

+
Ln+1Ln+2

Ln + Ln+1 + Ln+2

+
Ln+2Ln

Ln + Ln+1 + Ln+2

or

LLn+1
n L

Ln+2

n+1 LLn
n+2 <

(
LnLn+1 + Ln+1Ln+2 + Ln+2Ln

Ln + Ln+1 + Ln+2

)Ln+Ln+1+Ln+2

.
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6 JOSÉLUIS DÍAZ -BARRERO

Inequality (3.1) will be established if we prove that(
LnLn+1 + Ln+1Ln+2 + Ln+2Ln

Ln + Ln+1 + Ln+2

)Ln+Ln+1+Ln+2

<

(
Ln + Ln+1 + Ln+2

3

)Ln+Ln+1+Ln+2

or, equivalently,

LnLn+1 + Ln+1Ln+2 + Ln+2Ln

Ln + Ln+1 + Ln+2

<
Ln + Ln+1 + Ln+2

3
.

That is,
L2

n + L2
n+1 + L2

n+2 > LnLn+1 + Ln+1Ln+2 + Ln+2Ln.

The last inequality immediately follows by adding up the inequalities

L2
n + L2

n+1 ≥ 2LnLn+1,

L2
n+1 + L2

n+2 > 2Ln+1Ln+2,

L2
n+2 + L2

n > 2Ln+2Ln

and the result is proved.
Finally, we will prove

(3.2)

(
Ln + Ln+1 + Ln+2

3

)Ln+Ln+1+Ln+2

< LLn
n L

Ln+1

n+1 L
Ln+2

n+2 .

In fact, setting

x1 = Ln, x2 = Ln+1, x3 = Ln+2,

w1 = Ln/(Ln + Ln+1 + Ln+2),

w2 = Ln+1/(Ln + Ln+1 + Ln+2), and

w3 = Ln+2/(Ln + Ln+1 + Ln+2)

and using the GM-HM inequality, we have

Ln + Ln+1 + Ln+2

3
=

(
3

Ln + Ln+1 + Ln+2

)−1

=
1

1
Ln+Ln+1+Ln+2

+ 1
Ln+Ln+1+Ln+2

+ 1
Ln+Ln+1+Ln+2

< LLn/(Ln+Ln+1+Ln+2)
n L

Ln+1/(Ln+Ln+1+Ln+2)
n+1 L

Ln+2/(Ln+Ln+1+Ln+2)
n+2 .

Hence, (
Ln + Ln+1 + Ln+2

3

)Ln+Ln+1+Ln+2

< LLn
n L

Ln+1

n+1 L
Ln+2

n+2

and (3.2) is proved. This completes the proof of the theorem. �

Stronger inequalities for second order recurrence sequences, generalizing the ones given in
[4] have been obtained by Stanica in [6].

Finally, we state and prove an inequality involving Fibonacci and Lucas numbers.

Theorem 3.4.Letn be a positive integer, then the following inequality

n∑
k=1

Fk+2

F2k+2

≥ nn+1

(n + 1)n

n∏
k=1

F
−n+1

n
k+1 − L

−n+1
n

k+1

F−1
k+1 − L−1

k+1


holds.
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Proof. From the AM-GM inequality, namely,

1

n

n∑
k=1

xk ≥
n∏

k=1

x
1
n
k , where xk > 0, k = 1, 2, . . . , n,

and taking into account that for allj ≥ 2, 0 < L−1
j < F−1

j , we get

(3.3)
∫ F−1

2

L−1
2

∫ F−1
3

L−1
3

. . .

∫ F−1
n+1

L−1
n+1

(
1

n

n+1∑
`=2

x`

)
dx2dx3 . . . dxn+1

≥
∫ F−1

2

L−1
2

∫ F−1
3

L−1
3

. . .

∫ F−1
n+1

L−1
n+1

(
n+1∏
`=1

x
1
n
`

)
dx2dx3 . . . dxn+1.

Evaluating the preceding integrals (3.3) becomes

(3.4)
n+1∑
`=2

(F−1
2 − L−1

2 ) · · · (F−1
`−1 − L−1

`−1)(F
−2
` − L−2

` )(F−1
`+1 − L−1

`+1) · · · (F
−1
n+1 − L−1

n+1)

≥ 2nn+1

(n + 1)n

n+1∏
`=2

(
F
−n+1

n
` − L

−n+1
n

`

)
or, equivalently,

n+1∏
`=2

(F−1
` − L−1

` )
n+1∑
`=2

(F−1
` + L−1

` ) ≥ 2nn+1

(n + 1)n

n+1∏
`=2

(
F
−n+1

n
` − L

−n+1
n

`

)
.

Settingk = ` − 1 in the preceding inequality, taking into account thatFk + Lk = 2Fk+1,
FkLk = F2k and after simplification, we obtain

n∑
k=1

Fk+2

F2k+2

≥ nn+1

(n + 1)n

n∏
k=1

F
−n+1

n
k+1 − L

−n+1
n

k+1

F−1
k+1 − L−1

k+1


and the proof is completed. �
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