Journal of Inequalities in Pure and Applied Mathematics

RATIONAL IDENTITIES AND INEQUALITIES INVOLVING FIBONACCI AND LUCAS NUMBERS

JOSÉ LUIS DÍAZ-BARRERO

Applied Mathematics III
Universitat Politècnica de Catalunya
Jordi Girona 1-3, C2,
08034 Barcelona, Spain.
EMail: jose.luis.diaz@upc.es
volume 4, issue 5, article 83, 2003.

Received 21 May, 2003;
accepted 21 August, 2003
Communicated by: J. Sándor
Abstract

Abstract

In this paper we use integral calculus, complex variable techniques and some classical inequalities to establish rational identities and inequalities involving Fibonacci and Lucas numbers.

2000 Mathematics Subject Classification: 05A19, 11B39
Key words: Rational Identities and Inequalities, Sequences of Integers, Fibonacci and Lucas numbers.

The author would like to thank the anonymous referee for the suggestions and comments that have improved the final version of the paper.

Contents

1 Introduction 3
2 Rational Identities 4
3 Inequalities 9
References

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 2 of 16	

[^0] http://jipam.vu.edu.au

1. Introduction

The Fibonacci sequence is a source of many nice and interesting identities and inequalities. A similar interpretation exists for Lucas numbers. Many of these identities have been documented in an extensive list that appears in the work of Vajda [1], where they are proved by algebraic means, even though combinatorial proofs of many of these interesting algebraic identities are also given (see [2]). However, rational identities and inequalities involving Fibonacci and Lucas numbers seldom have appeared (see [3]). In this paper, integral calculus, complex variable techniques and some classical inequalities are used to obtain several rational Fibonacci and Lucas identities and inequalities.

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 3 of 16
J. Ineq. Pure and Appl. Math. 4(5) Art. 83, 2003
http://jipam.vu.edu.au

2. Rational Identities

In what follows several rational identities are considered and proved by using results on contour integrals. We begin with:
Theorem 2.1. Let F_{n} denote the $n^{\text {th }}$ Fibonacci number. That is, $F_{0}=0, F_{1}=1$ and for $n \geq 2, F_{n}=F_{n-1}+F_{n-2}$. Then, for all positive integers r,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1+F_{r+k}^{\ell}}{F_{r+k}}\left\{\prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{1}{F_{r+k}-F_{r+j}}\right\}=\frac{(-1)^{n+1}}{F_{r+1} F_{r+2} \cdots F_{r+n}} \tag{2.1}
\end{equation*}
$$

holds, with $0 \leq \ell \leq n-1$.
Proof. To prove the preceding identity we consider the integral

$$
\begin{equation*}
I=\frac{1}{2 \pi i} \oint_{\gamma} \frac{1+z^{\ell}}{A_{n}(z)} \frac{d z}{z} \tag{2.2}
\end{equation*}
$$

where $A_{n}(z)=\prod_{j=1}^{n}\left(z-F_{r+j}\right)$.
Let γ be the curve defined by $\gamma=\left\{z \in \mathbb{C}:|z|<F_{r+1}\right\}$. Evaluating the preceding integral in the exterior of the γ contour, we obtain

$$
I_{1}=\frac{1}{2 \pi i} \oint_{\gamma}\left\{\frac{1+z^{\ell}}{z} \prod_{j=1}^{n} \frac{1}{\left(z-F_{r+j}\right)}\right\} d z=\sum_{k=1}^{n} R_{k}
$$

where

$$
R_{k}=\lim _{z \rightarrow F_{r+k}}\left\{\frac{1+z^{\ell}}{z} \prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{1}{\left(z-F_{r+j}\right)}\right\}=\frac{1+F_{r+k}^{\ell}}{F_{r+k}} \prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{1}{\left(F_{r+k}-F_{r+j}\right)}
$$

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

$\mathbf{~ G ~}$	
Go Back	
Close	
Quit	
Page 4 of 16	

Then, I_{1} becomes

$$
I_{1}=\sum_{k=1}^{n}\left\{\frac{1+F_{r+k}^{\ell}}{F_{r+k}} \prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{1}{\left(F_{r+k}-F_{r+j}\right)}\right\}
$$

Evaluating (2.2) in the interior of the γ contour, we get

$$
\begin{aligned}
I_{2} & =\frac{1}{2 \pi i} \oint_{\gamma}\left\{\frac{1+z^{\ell}}{z} \prod_{j=1}^{n} \frac{1}{\left(z-F_{r+j}\right)}\right\} d z \\
& =\lim _{z \rightarrow 0}\left\{\frac{1+z^{\ell}}{A_{n}(z)}\right\} \\
& =\frac{1}{A_{n}(0)}=\frac{(-1)^{n}}{F_{r+1} F_{r+2} \cdots F_{r+n}}
\end{aligned}
$$

By Cauchy's theorem on contour integrals we have that $I_{1}+I_{2}=0$ and the proof is complete.

A similar identity also holds for Lucas numbers. It can be stated as:
Corollary 2.2. Let L_{n} denote the $n^{\text {th }}$ Lucas number. That is, $L_{0}=2, L_{1}=1$ and for $n \geq 2, L_{n}=L_{n-1}+L_{n-2}$. Then, for all positive integers r,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1+L_{r+k}^{\ell}}{L_{r+k}}\left\{\prod_{\substack{j=1 \\ j \neq k}} \frac{1}{L_{r+k}-L_{r+j}}\right\}=\frac{(-1)^{n+1}}{L_{r+1} L_{r+2} \cdots+L_{r+n}} \tag{2.3}
\end{equation*}
$$

Title Page
Contents

holds, with $0 \leq \ell \leq n-1$.

In particular (2.1) and (2.3) can be used (see [3]) to obtain
Corollary 2.3. For $n \geq 2$,

$$
\begin{aligned}
& \frac{\left(F_{n}^{2}+1\right) F_{n+1} F_{n+2}}{\left(F_{n+1}-F_{n}\right)\left(F_{n+2}-F_{n}\right)}+\frac{F_{n}\left(F_{n+1}^{2}+1\right) F_{n+2}}{\left(F_{n}-F_{n+1}\right)\left(F_{n+2}-F_{n+1}\right)} \\
& \quad+\frac{F_{n} F_{n+1}\left(F_{n+2}^{2}+1\right)}{\left(F_{n}-F_{n+2}\right)\left(F_{n+1}-F_{n+2}\right)}=1
\end{aligned}
$$

Corollary 2.4. For $n \geq 2$,

$$
\begin{aligned}
& \frac{L_{n+1} L_{n+2}}{\left(L_{n+1}-L_{n}\right)\left(L_{n+2}-L_{n}\right)}+\frac{L_{n+2} L_{n}}{\left(L_{n}-L_{n+1}\right)\left(L_{n+2}-L_{n+1}\right)} \\
&+\frac{L_{n} L_{n+1}}{\left(L_{n}-L_{n+2}\right)\left(L_{n+1}-L_{n+2}\right)}=1
\end{aligned}
$$

In the sequel F_{n} and L_{n} denote the $n^{t h}$ Fibonacci and Lucas numbers, respectively.
Theorem 2.5. If $n \geq 3$, then we have

$$
\sum_{i=1}^{n} \frac{1}{L_{i}^{n-2}}\left[\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(1-\frac{L_{j}}{L_{i}}\right)^{-1}+L_{i}^{n-1}\right]=L_{n+2}-3
$$

Proof. First, we observe that the given statement can be written as

$$
\sum_{i=1}^{n}\left[\frac{1}{L_{i}^{n-2}} \prod_{\substack{j=1 \\ j \neq i}}^{n}\left(1-\frac{L_{j}}{L_{i}}\right)^{-1}\right]+\sum_{i=1}^{n} L_{i}=L_{n+2}-3
$$

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 6 of 16

Since $\sum_{i=1}^{n} L_{i}=L_{n+2}-3$, as can be easily established by mathematical induction, then it will suffice to prove

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\frac{1}{L_{i}^{n-2}} \prod_{\substack{j=1 \\ j \neq i}}^{n}\left(1-\frac{L_{j}}{L_{i}}\right)^{-1}\right]=0 \tag{2.4}
\end{equation*}
$$

We will argue by using residue techniques. We consider the monic complex polynomial $A(z)=\prod_{k=1}^{n}\left(z-L_{k}\right)$ and we evaluate the integral

$$
I=\frac{1}{2 \pi i} \oint_{\gamma} \frac{z}{A(z)} d z
$$

over the interior and exterior domains limited by γ, a circle centered at the origin and radius L_{n+1}, i.e., $\gamma=\left\{z \in \mathbb{C}:|z|<L_{n+1}\right\}$.

Integrating in the region inside the γ contour we have

$$
\begin{aligned}
I_{1} & =\frac{1}{2 \pi i} \oint_{\gamma} \frac{z}{A(z)} d z \\
& =\sum_{i=1}^{n} \operatorname{Res}\left\{\frac{z}{A(z)}, z=L_{i}\right\} \\
& =\sum_{i=1}^{n}\left(\prod_{\substack{j=1 \\
j \neq i}}^{n} \frac{L_{i}}{L_{i}-L_{j}}\right)
\end{aligned}
$$

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 7 of 16

$$
=\sum_{i=1}^{n}\left[\frac{1}{L_{i}^{n-2}} \prod_{\substack{j=1 \\ j \neq i}}^{n}\left(1-\frac{L_{j}}{L_{i}}\right)^{-1}\right] .
$$

Integrating in the region outside of the γ contour we get

$$
I_{2}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{z}{A(z)} d z=0
$$

Again, by Cauchy's theorem on contour integrals we have $I_{1}+I_{2}=0$. This completes the proof of (2.4).

Note that (2.4) can also be established by using routine algebra.

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 8 of 16
J. Ineq. Pure and Appl. Math. 4(5) Art. 83, 2003 http://jipam.vu.edu.au

3. Inequalities

Next, several inequalities are considered and proved with the aid of integral calculus and the use of classical inequalities. First, we state and prove some nice inequalities involving circular powers of Lucas numbers similar to those obtained for Fibonacci numbers in [4].

Theorem 3.1. Let n be a positive integer, then the following inequalities hold

$$
\begin{align*}
& L_{n}^{L_{n+1}}+L_{n+1}^{L_{n}}<L_{n}^{L_{n}}+L_{n+1}^{L_{n+1}} \tag{a}\\
& L_{n+1}^{L_{n+2}}-L_{n+1}^{L_{n}}<L_{n+2}^{L_{n+2}}-L_{n+2}^{L_{n}} . \tag{b}
\end{align*}
$$

Proof. To prove part (a) we consider the integral

$$
I_{1}=\int_{L_{n}}^{L_{n+1}}\left(L_{n+1}^{x} \log L_{n+1}-L_{n}^{x} \log L_{n}\right) d x
$$

Since $L_{n}<L_{n+1}$ if $n \geq 1$, then for $L_{n} \leq x \leq L_{n+1}$ we have

$$
L_{n}^{x} \log L_{n}<L_{n+1}^{x} \log L_{n}<L_{n+1}^{x} \log L_{n+1}
$$

and $I_{1}>0$. On the other hand, evaluating the integral, we obtain

$$
\begin{aligned}
I_{1} & =\int_{L_{n}}^{L_{n+1}}\left(L_{n+1}^{x} \log L_{n+1}-L_{n}^{x} \log L_{n}\right) d x \\
& =\left[L_{n+1}^{x}-L_{n}^{x}\right]_{L_{n}}^{L_{n+1}} \\
& =\left(L_{n}^{L_{n}}+L_{n+1}^{L_{n+1}}\right)-\left(L_{n}^{L_{n+1}}+L_{n+1}^{L_{n}}\right)
\end{aligned}
$$

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 9 of 16

and (a) is proved. To prove (b), we consider the integral

$$
I_{2}=\int_{L_{n}}^{L_{n+2}}\left(L_{n+2}^{x} \log L_{n+2}-L_{n+1}^{x} \log L_{n+1}\right) d x
$$

Since $L_{n+1}<L_{n+2}$, then for $L_{n} \leq x \leq L_{n+2}$ we have

$$
L_{n+1}^{x} \log L_{n+1}<L_{n+2}^{x} \log L_{n+2}
$$

and $I_{2}>0$. On the other hand, evaluating I_{2}, we get

$$
\begin{aligned}
I_{2} & =\int_{L_{n}}^{L_{n+2}}\left(L_{n+2}^{x} \log L_{n+2}-L_{n+1}^{x} \log L_{n+1}\right) d x \\
& =\left[L_{n+2}^{x}-L_{n+1}^{x}\right]_{L_{n}}^{L_{n+2}} \\
& =\left(L_{n+2}^{L_{n+2}}-L_{n+2}^{L_{n}}\right)-\left(L_{n+1}^{L_{n+2}}-L_{n+1}^{L_{n}}\right)
\end{aligned}
$$

This completes the proof.
Corollary 3.2. For $n \geq 1$, we have

$$
L_{n}^{L_{n+1}}+L_{n+1}^{L_{n+2}}+L_{n+2}^{L_{n}}<L_{n}^{L_{n}}+L_{n+1}^{L_{n+1}}+L_{n+2}^{L_{n+2}} .
$$

Proof. The statement immediately follows from the fact that

$$
\begin{aligned}
&\left(L_{n}^{L_{n}}+L_{n+1}^{L_{n+1}}+\right.\left.L_{n+2}^{L_{n+2}}\right)-\left(L_{n}^{L_{n+1}}+L_{n+1}^{L_{n+2}}+L_{n+2}^{L_{n}}\right) \\
&=\left[\left(L_{n}^{L_{n}}+L_{n+1}^{L_{n+1}}\right)-\left(L_{n}^{L_{n+1}}+L_{n+1}^{L_{n}}\right)\right] \\
&+\left[\left(L_{n+2}^{L_{n+2}}-L_{n+2}^{L_{n}}\right)-\left(L_{n+1}^{L_{n+2}}-L_{n+1}^{L_{n}}\right)\right]
\end{aligned}
$$

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back	
Close	
Quit	
Q	

Page 10 of 16
and Theorem 3.1.

Theorem 3.3. Let n be a positive integer, then the following inequality

$$
L_{n}^{L_{n+1}} L_{n+1}^{L_{n+2}} L_{n+2}^{L_{n}}<L_{n}^{L_{n}} L_{n+1}^{L_{n+1}} L_{n+2}^{L_{n+2}}
$$

holds.
Proof. We will argue by using the weighted AM-GM-HM inequality (see [5]).
The proof will be done in two steps. First, we will prove

$$
\begin{equation*}
L_{n}^{L_{n+1}} L_{n+1}^{L_{n+2}} L_{n+2}^{L_{n}}<\left(\frac{L_{n}+L_{n+1}+L_{n+2}}{3}\right)^{L_{n}+L_{n+1}+L_{n+2}} \tag{3.1}
\end{equation*}
$$

In fact, setting $x_{1}=L_{n}, x_{2}=L_{n+1}, x_{3}=L_{n+2}$ and

$$
\begin{aligned}
w_{1} & =\frac{L_{n+1}}{L_{n}+L_{n+1}+L_{n+2}} \\
w_{2} & =\frac{L_{n+2}}{L_{n}+L_{n+1}+L_{n+2}} \\
w_{3} & =\frac{L_{n}}{L_{n}+L_{n+1}+L_{n+2}}
\end{aligned}
$$

and applying the AM-GM inequality, we have

$$
\begin{aligned}
& L_{n}^{L_{n+1} /\left(L_{n}+L_{n+1}+L_{n+2}\right)} L_{n+1}^{L_{n+2} /\left(L_{n}+L_{n+1}+L_{n+2}\right)} L_{n+2}^{L_{n} /\left(L_{n}+L_{n+1}+L_{n+2}\right)} \\
& \quad<\frac{L_{n} L_{n+1}}{L_{n}+L_{n+1}+L_{n+2}}+\frac{L_{n+1} L_{n+2}}{L_{n}+L_{n+1}+L_{n+2}}+\frac{L_{n+2} L_{n}}{L_{n}+L_{n+1}+L_{n+2}}
\end{aligned}
$$

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Page 11 of 16

$$
L_{n}^{L_{n+1}} L_{n+1}^{L_{n+2}} L_{n+2}^{L_{n}}<\left(\frac{L_{n} L_{n+1}+L_{n+1} L_{n+2}+L_{n+2} L_{n}}{L_{n}+L_{n+1}+L_{n+2}}\right)^{L_{n}+L_{n+1}+L_{n+2}}
$$

Inequality (3.1) will be established if we prove that

$$
\begin{aligned}
&\left(\frac{L_{n} L_{n+1}+L_{n+1} L_{n+2}+L_{n+2} L_{n}}{L_{n}+L_{n+1}+L_{n+2}}\right)^{L_{n}+L_{n+1}+L_{n+2}} \\
&<\left(\frac{L_{n}+L_{n+1}+L_{n+2}}{3}\right)^{L_{n}+L_{n+1}+L_{n+2}}
\end{aligned}
$$

or, equivalently,

$$
\frac{L_{n} L_{n+1}+L_{n+1} L_{n+2}+L_{n+2} L_{n}}{L_{n}+L_{n+1}+L_{n+2}}<\frac{L_{n}+L_{n+1}+L_{n+2}}{3}
$$

That is,

$$
L_{n}^{2}+L_{n+1}^{2}+L_{n+2}^{2}>L_{n} L_{n+1}+L_{n+1} L_{n+2}+L_{n+2} L_{n}
$$

The last inequality immediately follows by adding up the inequalities

$$
\begin{aligned}
L_{n}^{2}+L_{n+1}^{2} & \geq 2 L_{n} L_{n+1} \\
L_{n+1}^{2}+L_{n+2}^{2} & >2 L_{n+1} L_{n+2} \\
L_{n+2}^{2}+L_{n}^{2} & >2 L_{n+2} L_{n}
\end{aligned}
$$

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 12 of 16
and the result is proved.

Finally, we will prove

$$
\begin{equation*}
\left(\frac{L_{n}+L_{n+1}+L_{n+2}}{3}\right)^{L_{n}+L_{n+1}+L_{n+2}}<L_{n}^{L_{n}} L_{n+1}^{L_{n+1}} L_{n+2}^{L_{n+2}} \tag{3.2}
\end{equation*}
$$

In fact, setting

$$
\begin{aligned}
& x_{1}=L_{n}, \quad x_{2}=L_{n+1}, \quad x_{3}=L_{n+2}, \\
& w_{1}=L_{n} /\left(L_{n}+L_{n+1}+L_{n+2}\right), \\
& w_{2}=L_{n+1} /\left(L_{n}+L_{n+1}+L_{n+2}\right), \quad \text { and } \\
& w_{3}=L_{n+2} /\left(L_{n}+L_{n+1}+L_{n+2}\right)
\end{aligned}
$$

and using the GM-HM inequality, we have

$$
\begin{aligned}
& \frac{L_{n}+L_{n+1}}{3}+L_{n+2} \\
& \quad=\left(\frac{3}{L_{n}+L_{n+1}+L_{n+2}}\right)^{-1} \\
& \quad=\frac{1}{\frac{1}{L_{n}+L_{n+1}+L_{n+2}}+\frac{1}{L_{n}+L_{n+1}+L_{n+2}}+\frac{1}{L_{n}+L_{n+1}+L_{n+2}}} \\
& \quad<L_{n}^{L_{n} /\left(L_{n}+L_{n+1}+L_{n+2}\right) L_{n+1}^{L_{n+1} /\left(L_{n}+L_{n+1}+L_{n+2}\right)} L_{n+2}^{L_{n+2} /\left(L_{n}+L_{n+1}+L_{n+2}\right)}} .
\end{aligned}
$$

Hence,

$$
\left(\frac{L_{n}+L_{n+1}+L_{n+2}}{3}\right)^{L_{n}+L_{n+1}+L_{n+2}}<L_{n}^{L_{n}} L_{n+1}^{L_{n+1}} L_{n+2}^{L_{n+2}}
$$

and (3.2) is proved. This completes the proof of the theorem.

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 13 of 16

Stronger inequalities for second order recurrence sequences, generalizing the ones given in [4] have been obtained by Stanica in [6].

Finally, we state and prove an inequality involving Fibonacci and Lucas numbers.

Theorem 3.4. Let n be a positive integer, then the following inequality

$$
\sum_{k=1}^{n} \frac{F_{k+2}}{F_{2 k+2}} \geq \frac{n^{n+1}}{(n+1)^{n}} \prod_{k=1}^{n}\left\{\frac{F_{k+1}^{-\frac{n+1}{n}}-L_{k+1}^{-\frac{n+1}{n}}}{F_{k+1}^{-1}-L_{k+1}^{-1}}\right\}
$$

holds.
Proof. From the AM-GM inequality, namely,

$$
\frac{1}{n} \sum_{k=1}^{n} x_{k} \geq \prod_{k=1}^{n} x_{k}^{\frac{1}{n}}, \quad \text { where } \quad x_{k}>0, k=1,2, \ldots, n
$$

and taking into account that for all $j \geq 2,0<L_{j}^{-1}<F_{j}^{-1}$, we get

$$
\begin{align*}
\int_{L_{2}^{-1}}^{F_{2}^{-1}} \int_{L_{3}^{-1}}^{F_{3}^{-1}} & \cdots \int_{L_{n+1}^{-1}}^{F_{n+1}^{-1}}\left(\frac{1}{n} \sum_{\ell=2}^{n+1} x_{\ell}\right) d x_{2} d x_{3} \ldots d x_{n+1} \tag{3.3}\\
& \geq \int_{L_{2}^{-1}}^{F_{2}^{-1}} \int_{L_{3}^{-1}}^{F_{3}^{-1}} \cdots \int_{L_{n+1}^{-1}}^{F_{n+1}^{-1}}\left(\prod_{\ell=1}^{n+1} x_{\ell}^{\frac{1}{n}}\right) d x_{2} d x_{3} \ldots d x_{n+1}
\end{align*}
$$

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 14 of 16
J. Ineq. Pure and Appl. Math. 4(5) Art. 83, 2003
http://jipam.vu.edu.au

Evaluating the preceding integrals (3.3) becomes

$$
\begin{align*}
& \sum_{\ell=2}^{n+1}\left(F_{2}^{-1}-L_{2}^{-1}\right) \cdots\left(F_{\ell-1}^{-1}-L_{\ell-1}^{-1}\right) \tag{3.4}\\
& \cdot\left(F_{\ell}^{-2}-L_{\ell}^{-2}\right)\left(F_{\ell+1}^{-1}-L_{\ell+1}^{-1}\right) \cdots\left(F_{n+1}^{-1}-L_{n+1}^{-1}\right) \\
& \\
& \geq \frac{2 n^{n+1}}{(n+1)^{n}} \prod_{\ell=2}^{n+1}\left(F_{\ell}^{-\frac{n+1}{n}}-L_{\ell}^{-\frac{n+1}{n}}\right)
\end{align*}
$$

or, equivalently,

$$
\prod_{\ell=2}^{n+1}\left(F_{\ell}^{-1}-L_{\ell}^{-1}\right) \sum_{\ell=2}^{n+1}\left(F_{\ell}^{-1}+L_{\ell}^{-1}\right) \geq \frac{2 n^{n+1}}{(n+1)^{n}} \prod_{\ell=2}^{n+1}\left(F_{\ell}^{-\frac{n+1}{n}}-L_{\ell}^{-\frac{n+1}{n}}\right)
$$

Setting $k=\ell-1$ in the preceding inequality, taking into account that $F_{k}+L_{k}=$ $2 F_{k+1}, F_{k} L_{k}=F_{2 k}$ and after simplification, we obtain

$$
\sum_{k=1}^{n} \frac{F_{k+2}}{F_{2 k+2}} \geq \frac{n^{n+1}}{(n+1)^{n}} \prod_{k=1}^{n}\left\{\frac{F_{k+1}^{-\frac{n+1}{n}}-L_{k+1}^{-\frac{n+1}{n}}}{F_{k+1}^{-1}-L_{k+1}^{-1}}\right\}
$$

and the proof is completed.
Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 15 of 16

References

[1] S. VAJDA, Fibonacci and Lucas Numbers and the Golden Section, New York, Wiley, 1989.
[2] A.T. BENJAMIN AND J. J. QUINN, Recounting Fibonacci and Lucas identities, College Math. J., 30(5) (1999), 359-366.
[3] J.L. DíAZ-BARRERO, Problem B-905, The Fibonaci Quarterly, 38(4) (2000), 373.
[4] J.L. DÍAZ-BARRERO, Advanced Problem H-581, The Fibonaci Quarterly, 40(1) (2002), 91.
[5] G. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge, 1997.
[6] P. STANICA, Inequalities on linear functions and circular powers, J. Ineq. Pure and Appl. Math., 3(3) (2002), Article 43. [ONLINE: http: //jipam.vu.edu.au/v3n3/015_02.html]

Rational Identities and Inequalities involving Fibonacci and Lucas Numbers

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 16 of 16

J. Ineq. Pure and Appl. Math. 4(5) Art. 83, 2003
http://jipam.vu.edu.au

[^0]: J. Ineq. Pure and Appl. Math. 4(5) Art. 83, 2003

