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ABSTRACT. In this paper, using Steffensen’s inequality we prove several inequalities involving
Taylor’s remainder. Among the simplest particular cases we obtain Iyengar’s inequality and one
of Hermite-Hadamard’s inequalities for convex functions.
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1. I NTRODUCTION AND STATEMENT OF M AIN RESULTS

In this paper, using Steffensen’s inequality we prove several inequalities (Theorems 1.1 and
1.2) involving Taylor’s remainder. In Sections 3 and 4 we give several applications of Theorems
1.1 and 1.2. Among the simplest particular cases we obtain Iyengar’s inequality and one of
Hermite-Hadamard’s inequalities for convex functions. We prove Theorems 1.1 and 1.2 in
Section 2.

In what followsn denotes a non-negative integer,I ⊆ R is a generic interval, andI◦ is the
interior of I. We will denote byRn,f (c, x) the nth Taylor’s remainder of functionf(x) with
centerc, i.e.

Rn,f (c, x) = f(x)−
n∑

k=0

f (k)(c)

k!
(x− c)k.

The following two theorems are the main results of the present paper.

Theorem 1.1. Let f : I → R andg : I → R be two mappings,a, b ∈ I◦ with a < b, and let
f ∈ Cn+1 ([a, b]), g ∈ C ([a, b]). Assume thatm ≤ f (n+1)(x) ≤ M , m 6= M , andg(x) ≥ 0 for
all x ∈ [a, b]. Set

λ =
1

M −m

[
f (n)(b)− f (n)(a)−m(b− a)

]
.
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Then

1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx(i)

≤ 1

M −m

∫ b

a

[
Rn,f (a, x)−m

(x− a)n+1

(n + 1)!

]
g(x)dx

≤ 1

(n + 1)!

∫ b

a

[
(x− a)n+1 − (x− a− λ)n+1

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx;

and

1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx(ii)

≤ (−1)n+1

M −m

∫ b

a

[
Rn,f (b, x)−m

(x− b)n+1

(n + 1)!

]
g(x)dx

≤ 1

(n + 1)!

∫ b

a

[
(b− x)n+1 − (b− λ− x)n+1

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx.

Theorem 1.2. Let f : I → R and g : I → R be two mappings,a, b ∈ I◦ with a < b,
and let f ∈ Cn+1 ([a, b]), g ∈ C ([a, b]). Assume thatfn+1(x) is increasing on[a, b] and
m ≤ g(x) ≤ M , m 6= M , for all x ∈ [a, b]. Set

λ1 =
1

(M −m)(b− a)n+1

∫ b

a

(x− a)n+1g(x)dx− m

M −m
· b− a

n + 2
,

λ2 =
1

(M −m)(b− a)n+1

∫ b

a

(b− x)n+1g(x)dx− m

M −m
· b− a

n + 2
.

Then

f (n)(a− λ1)− f (n)(a) ≤ (n + 1)!

(M −m)(b− a)n+1

∫ b

a

Rn,f (a, x)(g(x)−m)dx(i)

≤ f (n)(b)− f (n)(b− λ1);

and

f (n)(a + λ2)− f (n)(a) ≤ (−1)n+1 (n + 1)!

(M −m)(b− a)n+1

∫ b

a

Rn,f (b, x) (g(x)−m) dx(ii)

≤ f (n)(b)− f (n)(b− λ2).

Remark 1.3. It is easy to verify that the inequalities in Theorems 1.1 and 1.2 become equalities
if f(x) is a polynomial of degree≤ n + 1.

2. PROOFS OF THEOREMS 1.1 AND 1.2

The following is well-known Steffensen’s inequality:
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Theorem 2.1. [4]. Suppose thef andg are integrable functions defined on(a, b), f is decreas-
ing and for eachx ∈ (a, b), 0 ≤ g(x) ≤ 1. Setλ =

∫ b

a
g(x)dx. Then

∫ b

b−λ

f(x)dx ≤
∫ b

a

f(x)g(x)dx ≤
∫ a+λ

a

f(x)dx.

Proposition 2.2. Let f : I → R and g : I → R be two maps,a, b ∈ I◦ with a < b and
let f ∈ Cn+1 ([a, b]), g ∈ C[a, b]. Assume that0 ≤ f (n+1)(x) ≤ 1 for all x ∈ [a, b] and∫ b

x
(t− x)ng(t)dt is a decreasing function ofx on [a, b]. Setλ = f (n)(b)− f (n)(a). Then

1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx(2.1)

≤
∫ b

a

Rn,f (a, x)g(x)dx

≤ 1

(n + 1)!

∫ b

a

[
(x− a)n+1 − (x− a− λ)n+1

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx.

Proof. Set

Fn(x) =
1

n!

∫ b

x

(t− x)ng(t)dt,

Gn(x) = fn+1(x),

λ =

∫ b

a

Gn(x)dx = f (n)(b)− f (n)(a).

ThenFn(x), Gn(x), andλ satisfy the conditions of Theorem 2.1. Therefore

(2.2)
∫ b

b−λ

Fn(x)dx ≤
∫ b

a

Fn(x)Gn(x)dx ≤
∫ a+λ

a

Fn(x)dx.

It is easy to see thatF ′
n(x) = −Fn−1(x). Hence

∫ b

a

Fn(x)Gn(x)dx =

∫ b

a

Fn(x)df (n)(x)

= f (n)(x)Fn(x)

∣∣∣∣b
a

+

∫ b

a

f (n)(x)Fn−1(x)dx

= −f (n)(a)

n!

∫ b

a

(x− a)ng(x)dx +

∫ b

a

Fn−1(x)Gn−1(x)dx
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= −f (n)(a)

n!

∫ b

a

(x− a)ng(x)dx− f (n−1)(a)

(n− 1)!

∫ b

a

(x− a)n−1g(x)dx +

∫ b

a

Fn−2(x)Gn−2(x)dx

= . . .

= −f (n)(a)

n!

∫ b

a

(x− a)ng(x)dx− f (n−1)(a)

(n− 1)!

∫ b

a

(x− a)n−1g(x)dx

− · · · − f(a)

∫ b

a

g(x)dx +

∫ b

a

f(x)g(x)dx.

Thus

(2.3)
∫ b

a

Fn(x)Gn(x)dx =

∫ b

a

Rn,f (a, x)g(x)dx.

In addition ∫ a+λ

a

Fn(x)dx =
1

n!

∫ a+λ

a

(∫ b

x

(t− x)ng(t)dt

)
dx.

Changing the order of integration, we obtain∫ a+λ

a

Fn(x)dx

=
1

n!

∫ a+λ

a

(∫ t

a

(t− x)ng(t)dx

)
dt +

1

n!

∫ b

a+λ

(∫ a+λ

a

(t− x)ng(t)dx

)
dt

= − 1

n!

∫ a+λ

a

g(t)
(t− x)n+1

n + 1

∣∣∣∣x=t

x=a

dt− 1

n!

∫ b

a+λ

g(t)
(t− x)n+1

n + 1

∣∣∣∣x=a+λ

x=a

dt

=
1

(n + 1)!

∫ a+λ

a

(t− a)n+1g(t)dt− 1

(n + 1)!

∫ b

a+λ

[
(t− a− λ)n+1 − (t− a)n+1

]
g(t)dt

=
1

(n + 1)!

∫ b

a

(t− a)n+1g(t)dt− 1

(n + 1)!

∫ b

a

(t− a− λ)n+1g(t)dt

+
1

(n + 1)!

∫ a+λ

a

(t− a− λ)n+1g(t)dt.

Thus,

(2.4)
∫ a+λ

a

Fn(x)dx =
1

(n + 1)!

∫ b

a

[
(x− a)n+1 − (x− a− λ)n+1

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx.

Similarly we obtain

(2.5)
∫ b

b−λ

Fn(x)dx =
1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx

Substituting (2.3), (2.4), and (2.5) into (2.2), we obtain (2.1). �

Proposition 2.3. Let f : I → R and g : I → R be two maps,a, b ∈ I◦ with a < b and let
f ∈ Cn+1 ([a, b]), g ∈ C ([a, b]). Assume thatm ≤ f (n+1)(x) ≤ M for all x ∈ [a, b] and

∫ b

x
(t−
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x)ng(t)dt is a decreasing function ofx on [a, b]. Setλ = 1
M−m

[
f (n)(b)− f (n)(a)−m(b− a)

]
.

Then

1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx(2.6)

≤ 1

M −m

∫ b

a

[
Rn,f (a, x)−m

(x− a)n+1

(n + 1)!

]
g(x)dx

≤ 1

(n + 1)!

∫ b

a

[
(x− a)n+1 − (x− a− λn+1)

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx.

Proof. Set

f̃(x) =
1

M −m

[
f(x)−m

(x− a)n+1

(n + 1)!

]
.

Then0 ≤ f̃ (n+1)(x) ≤ 1 and

λ =
1

M −m

[
f (n)(b)− f (n)(a)−m(b− a)

]
= f̃ (n)(b)− f̃ (n)(a).

Hencef̃(x), g(x), andλ satisfy the conditions of Proposition 2.2. Substitutingf̃(x) instead of
f(x) into (2.1), we obtain (2.6). �

Proof of Theorem 1.1(i).If g(x) ≥ 0 for all x ∈ [a, b], then
∫ b

x
(t − x)ng(t)dt is a decreasing

function ofx on [a, b]. Hence Proposition 2.3 implies Theorem 1.1(i). �

Proof of Theorems 1.1(ii), 1.2(i), and 1.2(ii).Proofs of Theorems 1.1(ii), 1.2(i), and 1.2(ii) are
similar to the above proof of Theorem 1.1(i). For the proof of Theorem 1.1(ii) we take

Fn(x) = − 1

n!

∫ x

a

(x− t)ng(t)dt, Gn(x) = fn+1(x).

For the proof of Theorem 1.2(i) we take

Fn(x) = −f (n+1)(x), Gn(x) =
1

n!

∫ b

x

(t− x)ng(t)dt.

For the proof of Theorem 1.2(ii) we take

Fn(x) = −f (n+1)(x), Gn(x) =
1

n!

∫ x

a

(x− t)ng(t)dt.

�

3. APPLICATIONS OF THEOREM 1.1

Theorem 3.1. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and letf ∈ Cn+1 ([a, b]).
Assume thatm ≤ f (n+1)(x) ≤ M , m 6= M , for all x ∈ [a, b]. Set

λ =
1

M −m

[
f (n)(b)− f (n)(a)−m(b− a)

]
.
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Then
1

(n + 2)!

[
m(b− a)n+2 + (M −m)λn+2

]
(i)

≤
∫ b

a

Rn,f (a, x)dx

≤ 1

(n + 2)!

[
M(b− a)n+2 − (M −m)(b− a− λ)n+2

]
;

and
1

(n + 2)!

[
m(b− a)n+2 + (M −m)λn+2

]
(ii)

≤ (−1)n+1

∫ b

a

Rn,f (b, x)dx

≤ 1

(n + 2)!

[
M(b− a)n+2 − (M −m)(b− a− λ)n+2

]
.

Proof. Takeg(x) ≡ 1 on [a, b] in Theorem 1.1. �

Two inequalities of the formA ≤ X ≤ B andA ≤ Y ≤ B imply two new inequalities
A ≤ 1

2
(X + Y ) ≤ B and |X − Y | ≤ B − A. Applying this construction to inequalities (i)

and (ii) of Theorem 3.1, we obtain the following two more symmetric with respect toa andb
inequalities:
Theorem 3.2. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and letf ∈ Cn+1 ([a, b]).
Assume thatm ≤ fn+1(x) ≤ M , m 6= M , for all x ∈ [a, b]. Set

λ =
1

M −m

[
f (n)(b)− f (n)(a)−m(b− a)

]
.

Then
1

(n + 2)!
[m(b− a)n+2 + (M −m)λn+2](i)

≤
∫ b

a

1

2

[
Rn,f (a, x) + (−1)n+1Rn,f (b, x)

]
dx

≤ 1

(n + 2)!

[
M(b− a)n+2 − (M −m)(b− a− λ)n+2

]
;

and

(ii)

∣∣∣∣∫ b

a

[Rn,f (a, x) + (−1)nRn,f (b, x)] dx

∣∣∣∣
≤ M −m

(n + 2)!

[
(b− a)n+2 − λn+2 − (b− a− λ)n+2

]
.

We now consider the simplest cases of inequalities (i) and (ii) of Theorem 3.2, namely the
cases whenn = 0 or 1.
Case 1.n = 0
Inequality (i) of Theorem 3.2 forn = 0 gives us the following result.
Theorem 3.3. Let f : I → R be a mapping,a, b ∈ I◦ with a < b and letf ∈ C1 ([a, b]).
Assume thatm ≤ f ′(x) ≤ M , m 6= M , for all x ∈ [a, b]. Set

λ =
1

M −m
[f(b)− f(a)−m(b− a)] .
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Then

m +
(M −m)λ2

(b− a)2
≤ f(b)− f(a)

b− a
≤ M − (M −m)(b− a− λ)2

(b− a)2
.

Remark 3.4. Theorem 3.3 is an improvement of a trivial inequalitym ≤ f(b)−f(a)
b−a

≤ M .

Forn = 0, inequality (ii) of Theorem 3.2 gives the following result:

Theorem 3.5. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and letf ∈ C1 ([a, b]).
Assume thatm ≤ f ′(x) ≤ M , m 6= M for all x ∈ [a, b]. Then∣∣∣∣∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a)

∣∣∣∣ ≤ [f(b)− f(a)−m(b− a)] [M(b− a)− f(b) + f(a)]

2(M −m)
.

Theorem 3.5 is a modification of Iyengar’s inequality due to Agarwal and Dragomir [1]. If
|f ′(x)| ≤ M , then takingm = −M in Theorem 3.5, we obtain∣∣∣∣∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a)

∣∣∣∣ ≤ M(b− a)2

4
− 1

4M
[f(b)− f(a)]2 .

This is the original Iyengar’s inequality [2]. Thus,inequality (ii) of Theorem 3.2 can be consid-
ered as a generalization of Iyengar’s inequality.

Case 2.n = 1
In the casen = 1, inequality (i) of Theorem 3.2 gives us the following result:

Theorem 3.6. Let f : I → R be a mapping,a, b ∈ I◦ with a < b and letf ∈ C2 ([a, b]).
Assume thatm ≤ f ′′(x) ≤ M , m 6= M , for all x ∈ [a, b]. Set

λ =
1

M −m
[f ′(b)− f ′(a)−m(b− a)] .

Then

1

6

[
m(b− a)3 + (M −m)λ3

]
≤

∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a) +

f ′(b)− f ′(a)

4
(b− a)2

≤ 1

6

[
M(b− a)3 − (M −m)(b− a− λ)3

]
.

In the casen = 1, inequality (ii) of Theorem 3.2 implies that iff ∈ C2 ([a, b]) andm ≤
f ′′(x) ≤ M , then∣∣∣∣f(b)− f(a)

b− a
− f ′(a) + f ′(b)

2

∣∣∣∣ ≤ [f ′(b)− f ′(a)−m(b− a)] [M(b− a)− f ′(b) + f ′(a)]

2(b− a)(M −m)
.

This result follows readily from Iyengar’s inequality if we takef ′(x) instead off(x) in Theorem
3.5.

4. APPLICATIONS OF THEOREM 1.2

Takeg(x) = M on [a, b] in Theorem 1.2. Thenλ1 = λ2 = b−a
n+2

and Theorem 1.2 implies

Theorem 4.1. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and letf ∈ Cn+1 ([a, b]).
Assume thatfn+1(x) is increasing on[a, b]. Then

(i)
(b− a)n+1

(n + 1)!

[
f (n)

(
a +

b− a

n + 2

)
− f (n)(a)

]
≤

∫ b

a

Rn,f (a, x)dx ≤ (b− a)n+1

(n + 1)!

[
f (n)(b)− f (n)

(
b− b− a

n + 2

)]
;
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and

(ii)
(b− a)n+1

(n + 1)!

[
f (n)

(
a +

b− a

n + 2

)
− f (n)(a)

]
≤ (−1)n+1

∫ b

a

Rn,f (b, x)dx ≤ (b− a)n+1

(n + 1)!

[
f (n)(b)− f (n)

(
b− b− a

n + 2

)]
.

The next theorem follows from Theorem 4.1 in exactly the same way as Theorem 3.2 follows
from Theorem 3.1.

Theorem 4.2. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and letf ∈ Cn+1 ([a, b]).
Assume thatfn+1(x) is increasing on[a, b]. Then

(b− a)n+1

(n + 1)!

[
f (n)

(
a +

b− a

n + 2

)
− f (n)(a)

]
(i)

≤ 1

2

∫ b

a

[
Rn,f (a, x) + (−1)n+1Rn,f (b, x)

]
dx

≤ (b− a)n+1

(n + 1)!

[
f (n)(b)− f (n)

(
b− b− a

n + 2

)]
;

(ii)

∣∣∣∣∫ b

a

[Rn,f (a, x) + (−1)nRn,f (b, x)] dx

∣∣∣∣
≤ (b− a)n+1

(n + 1)!

[
f (n)(b)− f (n)

(
b− b− a

n + 2

)
− f (n)

(
a +

b− a

n + 2

)
+ f (n)(a)

]
.

We now consider inequalities (i) and (ii) of Theorem 4.2 in the simplest cases whenn = 0 or
1.

Case 1.n = 0.
Inequality (i) of Theorem 4.2 gives a trivial fact: Iff ′(x) increases thenf

(
a+b
2

)
≤ f(a)+f(b)

2
.

Inequality (ii) of Theorem 4.2 gives the following result: Iff ′(x) is increasing, then

(4.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)− f

(
a + b

2

)
.

The left inequality (2.1) is a half of the famous Hermite-Hadamard’s inequality [3]: Iff(x) is
convex, then

(4.2) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Note that the right inequality (4.1) is weaker than the right inequality (4.2). Thus,inequality (ii)
of Theorem 4.2 can be considered as a generalization of the Hermite-Hadamard’s inequality
f

(
a+b
2

)
≤ 1

b−a

∫ b

a
f(x)dx, wheref(x) is convex.

Case 2.n = 1.
In this case Theorem 4.2 implies the following two results:
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Theorem 4.3. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and letf ∈ C2 ([a, b]).
Assume thatf ′′(x) is increasing on[a, b]. Then

(b− a)2

2

[
f ′

(
a +

b− a

3

)
+ f ′(a)

]
(i)

≤
∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a) +

f ′(b)− f ′(a)

4
(b− a)2

≤ (b− a)2

2

[
f ′(b)− f ′

(
b− a

3

)]
;

(ii)

∣∣∣∣f(b)− f(a)

b− a
− f ′(a) + f ′(b)

2

∣∣∣∣
≤ 1

2

[
f ′(a)− f ′

(
a +

b− a

3

)
− f ′

(
b− b− a

3

)
+ f ′(b)

]
.
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