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Abstract

Some estimations and inequalities are given for the higher order central mo-
ments of a random variable taking values on a finite interval. An application is
considered for estimating the moments of a truncated exponential distribution.
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1. Introduction
Distribution functions and density functions provide complete descriptions of
the distribution of probability for a given random variable. However they do
not allow us to easily make comparisons between two different distributions.
The set of moments that uniquely characterizes the distribution under reason-
able conditions are useful in making comparisons. Knowing the probability
function, we can determine the moments, if they exist. There are, however, ap-
plications wherein the exact forms of probability distributions are not known or
are mathematically intractable so that the moments can not be calculated. As
an example, an application in insurance in connection with the insurer’s pay-
out on a given contract or group of contracts follows a mixture or compound
probability distribution that may not be known explicitly. It is this problem that
motivates to find alternative estimations for the moments of a probability distri-
bution. Based on the mathematical inequalities, we develop some estimations
of the moments of a random variable taking its values on a finite interval.

SetX to denote a random variable whose probability function isf : [a, b] ⊂
R → R+ and its associated distribution functionF : [a, b] → [0, 1].

Denote byMr therth central moment of the random variableX defined as

(1.1) Mr =

∫ b

a

(t− µ)rdF, r = 0, 1, 2, . . . ,

whereµ is the mean of the random variableX. It may be noted thatM0 = 1,
M1 = 0 andM2 = σ2, the variance of the random variableX.

When reference is made to therth moment of a particular distribution, we
assume that the appropriate integral (1.1) converges for that distribution.
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2. Results Involving Higher Moments
We first prove the following theorem for the higher central moments of the
random variableX.

Theorem 2.1.For the random variableX with distribution functionF : [a, b] →
[0, 1],

(2.1)
∫ b

a

(b− t)(t− a)mdF

=
m∑

k=0

(
m

k

)
(µ− a)k [(b− µ)Mm−k −Mm−k+1] , m = 1, 2, 3, . . . .

Proof. Expressing the left hand side of (2.1) as∫ b

a

(b− t)(t− a)mdF =

∫ b

a

[(b− µ)− (t− µ)][(t− µ) + (µ− a)]mdF,

and using the binomial expansion

[(t− µ) + (µ− a)]m =
m∑

k=0

(
m

k

)
(µ− a)k(t− µ)m−k,

we get∫ b

a

(b− t)(t− a)mdF

=

∫ b

a

[(b− µ)− (t− µ)]

[
m∑

k=0

(
m

k

)
(µ− a)k(t− µ)m−k

]
dF
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=
m∑

k=0

(
m

k

)
(b− µ)(µ− a)k ·

∫ b

a

(t− µ)m−kdF

−
m∑

k=0

(
m

k

)
(µ− a)k ·

∫ b

a

(t− µ)m−k+1dF,

and hence the theorem.

In practice numerical moments of order higher than the fourth are rarely con-
sidered, therefore, we now derive the results for the first four central moments
of the random variableX based on Theorem2.1.

Corollary 2.2. For m = 1, k = 0, 1 in (2.1), we have

(2.2)
∫ b

a

(b− t)(t− a)dF = (b− µ)(µ− a)−M2.

This is a result in Theorem 1 by Barnett and Dragomir [1].

Corollary 2.3. For m = 2, k = 0, 1, 2 in (2.1),

(2.3)
∫ b

a

(b− t)(t−a)2dF = (b−µ)(µ−a)2 +[(b−µ)−2(µ−a)]M2−M3.

Corollary 2.4. For m = 3, k = 0, 1, 2, 3, we have from (2.1)

(2.4)
∫ b

a

(b− t)(t− a)3dF

= (b− µ)(µ− a)3 + 3(µ− a)[(b− µ)− (µ− a)]M2

+ [(b− µ)− 3(µ− a)]M3 −M4.
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3. Some Estimations for the Central Moments
We apply Hölder’s inequality [4] and results of Barnett and Dragomir [1] to
derive the bounds for the central moments of the random variableX.

Theorem 3.1.For the random variableX with distribution functionF : [a, b] →
[0, 1], we have

(3.1)
∫ b

a

(b− t)r(t− a)sdF ≤


(b− a)r+s+1 · Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)
· ||f ||∞,

(b− a)2+ 1
q [B(rq + 1, sq + 1)] · ||f ||p,

for p > 1, 1
p

+ 1
q

= 1, r, s ≥ 0.

Proof. Let t = a(1− u) + bu. Then∫ b

a

(b− t)r(t− a)sdt = (b− a)r+s+1 ·
∫ 1

0

(1− u)rusdu.

Since
∫ 1

0
us(1− u)rdu = Γ(r+1)Γ(s+1)

Γ(r+s+2)
,∫ b

a

(b− t)r(t− a)sdt = (b− a)r+s+1 · Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)
.

Using the property of definite integral,

(3.2)
∫ b

a

(b− t)s(t− a)rdF ≥ 0, for r, s ≥ 0,

http://jipam.vu.edu.au/
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we get,∫ b

a

(b− t)s(t− a)rdF

≤ ||f ||∞
∫ b

a

(b− t)s(t− a)rdt,

= (b− a)r+s+1 · Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)
· ||f ||∞ for r, s ≥ 0,

the first inequality in (3.1).
Now applying the Hölder’s integral inequality,∫ b

a

(b− t)s(t− a)rdF

≤
[∫ b

a

fp(t)dt

] 1
p
[∫ b

a

(b− t)sq(t− a)rqdt

] 1
q

= (b− a)2+ 1
q [B(rq + 1, sq + 1)] · ||f ||p,

the second inequality in (3.1).

Theorem 3.2.For the random variableX with distribution functionF : [a, b] →
[0, 1],

m(b− a)r+s+1 · Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)
(3.3)

≤
∫ b

a

(b− t)s(t− a)rdF
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≤ M(b− a)r+s+1 · Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)
, r, s ≥ 0.

Proof. Noting that ifm ≤ f ≤ M, a.e. on[a, b], then

m(b− t)s(t− a)r ≤ (b− t)s(t− a)rf ≤ M(b− t)s(t− a)r,

a.e. on[a, b] and by integrating over[a, b], we prove the theorem.

3.1. Bounds for the Second Central MomentM2 (Variance)

It is seen from (2.2) and (3.2) that the upper bound forM2, variance of the
random variableX, is

(3.4) M2 ≤ (b− µ)(µ− a).

Consideringx = (b− µ) andy = (µ− a) in the elementary result

xy ≤ (x + y)2

4
, x, y ∈ R,

we have

(3.5) M2 ≤
(b− a)2

4
,

and thus,

(3.6) 0 ≤ M2 ≤ (b− µ)(µ− a) ≤ (b− a)2

4
.
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From (2.2) and (3.1), we get

(b− µ)(µ− a)−M2 ≤
(b− a)3

6
||f ||∞,

(b− µ)(µ− a)−M2 ≤ ||f ||p(b− a)2+ 1
q [B(q + 1, q + 1)], p > 1,

1

p
+

1

q
= 1.

Other estimations forM2 from (2.2) and (3.1) are

m
(b− a)3

6
≤ (b− µ)(µ− a)−M2 ≤ M

(b− a)3

6
, m ≤ f ≤ M,

resulting in

(3.7) M2 ≤ (b− µ)(µ− a)−m
(b− a)3

6
, m ≤ f ≤ M.

3.2. Bounds for the Third Central Moment M3

From (2.3) and (3.2), the upper bound forM3

M3 ≤ (b− µ)(µ− a)2 + [(b− µ)− 2(µ− a)]M2.

Further we obtain from (2.3) and (3.4),

(3.8) M3 ≤ (b− µ)(µ− a)(a + b− 2µ),

from (2.3) and (3.5),

(3.9) M3 ≤
1

4
[(b− µ)3 + (b− µ)(µ− a)2 − 2(µ− a)3],

http://jipam.vu.edu.au/
mailto:kumarp@unbc.ca
http://jipam.vu.edu.au/


Moments Inequalities of A
Random Variable Defined Over

A Finite Interval

Pranesh Kumar

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 24

J. Ineq. Pure and Appl. Math. 3(3) Art. 41, 2002

http://jipam.vu.edu.au

and from (2.3) and (3.7),

(3.10) M3 ≤ (b− µ)(µ− a)(a + b− 2µ)− m(b− a)3(b + µ− 2a)

6
.

3.3. Bounds for the Fourth Central Moment M4

The upper bounds forM4 from (2.4) and (3.2)

M4 ≤ (b− µ)(µ− a)3

+ 3(µ− a)[(b− µ)− (µ− a)]M2 + [(b− µ)− 3(µ− a)]M3.

Using (2.4), (3.4) and (3.8), we have

(3.11) M4 ≤ (b− µ)(µ− a)[(b− a)2 − 3(b− µ)(µ− a)],

from (2.4), (3.5) and (3.9),

(3.12) M4 ≤
1

4

[
(b− µ)4 + 4(b− µ)2(µ− a)2

−4(b− µ)(µ− a)3 + 3(µ− a)4
]
,

and from (2.4), (3.7) and (3.10),

(3.13) M4 ≤ (b− µ)(µ− a)[(µ− a)2

+ (a + b− 2µ)(a + b− 4µ) + 3(b− µ)(a + b− 2µ)]

− m(b− a)3(a + b− 2µ)(b− 2a− µ)

6
.
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4. Results Based on the Grüss Type Inequality
We prove the following theorem based on the pre-Grüss inequality:

Theorem 4.1.For the random variableX with distribution functionF : [a, b] →
[0, 1],

(4.1)

∣∣∣∣∫ b

a

(b− t)r(t− a)sf(t)dt− (b− a)r+s · Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)

∣∣∣∣
≤ 1

2
(M −m)(b− a)r+s+1

×

[
Γ(2r + 1)Γ(2s + 1)

Γ(2r + 2s + 2)
−

(
Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)

)2
] 1

2

,

wherem ≤ f ≤ M a.e. on[a, b] andr, s ≥ 0.

Proof. We apply the following pre-Grüss inequality [4]:

(4.2)

∣∣∣∣∫ b

a

h(t)g(t)dt− 1

b− a

∫ b

a

h(t) dt · 1

b− a

∫ b

a

g(t)dt

∣∣∣∣
≤ 1

2
(φ− γ) ·

[
1

b− a

∫ b

a

g2(t)dt−
(

1

b− a

∫ b

a

g(t)dt

)2
] 1

2

,

provided the mappingsh, g : [a, b] → R are measurable, all integrals involved
exist and are finite andγ ≤ h ≤ φ a.e. on[a, b].
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Let h(t) = f(t), g(t) = (b− t)r(t− a)s in (4.2). Then

(4.3)

∣∣∣∣∫ b

a

(b− t)r(t− a)sf(t)dt

− 1

b− a

∫ b

a

f(t)dt · 1

b− a

∫ b

a

(b− t)r(t− a)sdt

∣∣∣∣
≤ 1

2
(M −m) ·

[
1

b− a

∫ b

a

{(b− t)r(t− a)s}2 dt

−
(

1

b− a

∫ b

a

(b− t)r(t− a)sdt

)2
] 1

2

,

wherem ≤ f ≤ M a.e. on[a.b].
On substituting from (3.2) into (4.3), we prove the theorem.

Corollary 4.2. For r = s = 1 in (4.2),∣∣∣∣∫ b

a

(b− t)(t− a)f(t)dt− (b− a)2

6

∣∣∣∣ ≤ (M −m)(b− a)3

12
√

5
,

a result (2.7) in Theorem 1 by Barnett and Dragomir [1].

We have the following lemma based on the pre-Grüss inequality:

Lemma 4.3. For the random variableX with distribution functionF : [a, b] →
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[0, 1],

(4.4)

∣∣∣∣∫ b

a

(b− t)r(t− a)sf(t)dt− (b− a)r+s Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)

∣∣∣∣
≤ 1

2
(M −m)

[
(b− a)

∫ b

a

f 2(t)dt− 1

] 1
2

,

wherem ≤ f ≤ M a.e. on[a, b] andr, s ≥ 0.

Proof. We chooseh(t) = (b − t)r(t − a)s, g(t) = f(t) in the pre-Grüss in-
equality (4.2) to prove this lemma.

We now prove the following theorems based on Lemma4.3:

Theorem 4.4.For the random variableX with distribution functionF : [a, b] →
[0, 1],

(4.5)

∣∣∣∣∫ b

a

(b− t)r(t− a)sf(t)dt− (b− a)r+s Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)

∣∣∣∣
≤ 1

4
(b− a)(M −m)2,

wherem ≤ f ≤ M a.e. on[a, b] andr, s ≥ 0.

Proof. Barnett and Dragomir [3] established the following identity:

(4.6)
1

b− a

∫ b

a

f(t)g(t)dt = p +

(
1

b− a

)2

·
∫ b

a

f(t) dt ·
∫ b

a

g(t) dt,
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where

|p| ≤ 1

4
(Γ− γ)(Φ− φ), and Γ < f < γ, Φ < g < φ.

By takingg = f in (4.6), we get

(4.7)
1

b− a

∫ b

a

f 2(t)dt

= p +

(
1

b− a

)2

, where |p| ≤ 1

4
(M −m), M < f < m.

Thus, (4.4) and (4.7) prove the theorem.

Another inequality based on a result from Barnett and Dragomir [3] follows:

Theorem 4.5.For the random variableX with distribution functionF : [a, b] →
[0, 1],

(4.8)

∣∣∣∣∫ b

a

(b− t)r(t− a)sf(t)dt− (b− a)r+s · Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)

∣∣∣∣
≤ 1

4
M(M −m)(b− a),

wherem ≤ f ≤ M a.e. on[a, b] andr, s ≥ 0.

Proof. Barnett and Dragomir [3] have established the following inequality:

(4.9)

∣∣∣∣ 1

b− a

∫ b

a

fn(t)dt−
(

1

b− a

)n∣∣∣∣
≤ Γ2

4(b− a)n−2

[
Γn−1 · (b− a)n−1 − 1

Γ · (b− a)− 1

]
,
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whereγ < f < Γ.

From (4.9), we get[∣∣∣∣∣ 1

b− a

∫ b

a

f 2(t)dt−
(

1

b− a

)2
∣∣∣∣∣
] 1

2

≤ M

2
, m ≤ f ≤ M.

and substituting in (4.4) proves the theorem.

http://jipam.vu.edu.au/
mailto:kumarp@unbc.ca
http://jipam.vu.edu.au/


Moments Inequalities of A
Random Variable Defined Over

A Finite Interval

Pranesh Kumar

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 24

J. Ineq. Pure and Appl. Math. 3(3) Art. 41, 2002

http://jipam.vu.edu.au

5. Results Based on the Hölder’s Integral Inequal-
ity

We consider the Hölder’s integral inequality [4] and for t ∈ [a, b], 1
p

+ 1
q

=
1, p > 1, ∣∣∣∣∫ t

a

(t− u)n f (n+1)(u)du

∣∣∣∣(5.1)

≤
(∫ t

a

|f (n+1)(u)|du

) 1
p

·
(∫ t

a

(t− u)nqdu

) 1
q

≤ ||f (n+1)||p ·
[
(t− a)nq+1

nq + 1

] 1
q

.

On applying (5.1),we have the theorem:

Theorem 5.1.For the random variableX with distribution functionF : [a, b] →
[0, 1], suppose that the density functionf : [a, b] is n− times differentiable and
f (n) (n ≥ 0) is absolutely continuous on[a, b]. Then,

(5.2)

∣∣∣∣∫ b

a

(t− a)r(b− t)sf(t)dt

−
n∑

k=0

(b− a)r+s+k+1 · Γ(s + 1)Γ(r + k + 1)

Γ(r + s + k + 2)

∣∣∣∣∣
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≤ 1

n!
·



||f (n+1)||∞
n + 1

· (b− a)r+s+n+2 · Γ(r + n + 2)Γ(s + 1)

Γ(r + s + n + 3)
,

if f (n+1) ∈ L∞[a, b],

||f (n+1)||p
(nq + 1)1/q

· (b− a)r+s+n+ 1
q
+1 ·

Γ(r + n + 1
q

+ 1)Γ(s + 1)

Γ(r + s + n + 1
q

+ 2)
,

if f (n+1) ∈ Lp[a, b] , p > 1,

||f (n+1)||1 · (b− a)r+s+n+1 · Γ(r + n + 1)Γ(s + 1)

Γ(r + s + n + 2)
,

if f (n+1) ∈ L1[a, b],

where||.||p (1 ≤ p ≤ ∞) are the Lebesgue norms on[a, b], i.e.,

||g||∞ := ess sup
t∈[a,b]

|g(t), and ||g||p :=

(∫ b

a

|g(t)|pdt

) 1
p

, (p ≥ 1).

Proof. Using the Taylor’s expansion off abouta :

f(t) =
n∑

k=0

(t− a)k

k!
fk(a) +

1

n!

∫ t

a

(t− u)nf (n+1)(u)du, t ∈ [a, b],

we have

(5.3)
∫ b

a

(t− a)r(b− t)sf(t)dt =
n∑

k=0

[∫ b

a

(t− a)r+k(b− t)sdt · fk(a)

k!

]
+

[
1

n!

∫ b

a

(t− a)r(b− t)s

(∫ t

a

(t− u)n f (n+1)(u)du

)
dt

]
.
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Applying the transformationt = (1− x)a + xb, we have

(5.4)
∫ b

a

(t− a)r+k(b− t)sdt = (b− a)r+s+k+1 · Γ(s + 1)Γ(r + k + 1)

Γ(r + s + k + 2)
.

For t ∈ [a, b],it may be seen that∣∣∣∣∫ t

a

(t− u)nf (n+1)(u)du

∣∣∣∣ ≤
∫ t

a

|(t− u)n|| f (n+1)(u)|du(5.5)

≤ sup
u∈[a,b]

|f (n+1)(u)| ·
∫ t

a

(t− u)ndu

≤ ||f (n+1)||∞ ·
(t− a)n+1

n + 1
.

Further, fort ∈ [a, b],∣∣∣∣∫ t

a

(t− u)nf (n+1)(u)du

∣∣∣∣ ≤
∫ t

a

(t− u)n|f (n+1)(u)|du(5.6)

≤ (t− a)n

∫ t

a

|f (n+1)(u)|du

≤ ||f (n+1)|| · (t− a)n.

Let

(5.7) M(a, b) :=
1

n!

∫ b

a

(t− a)r(b− t)s

(∫ t

a

(t− u)nf (n+1)(u)du

)
dt.
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Then (5.1) and (5.5) to (5.7) result in

(5.8) M(a, b)

≤ 1

n!
·



||f (n+1)||∞
n+1

·
∫ b

a
(t− a)r+n+1(b− t)sdt, if f (n+1) ∈ L∞[a, b],

||f (n+1)||p
(nq+1)1/q ·

∫ b

a
(t− a)r+n+ 1

q (b− t)sdt, if f (n+1) ∈ Lp[a, b] , p > 1,

||f (n+1)||1 ·
∫ b

a
(t− a)r+n(b− t)sdt, if f (n+1) ∈ L1[a, b].

Using (5.3), (5.4) and (5.8), we prove the theorem.

Corollary 5.2. Consideringr = s = 1, the inequality (5.8) leads to

M(a, b)

≤ 1

n!



||f (n+1)||∞
(n + 1)

· (b− a)n+4

(n + 3)(n + 4)
, if f (n+1) ∈ L∞[a, b],

||f (n+1)||p
(nq + 1)

1
q

· (b− a)n+ 1
q
+3(

n + 1
q

+ 2
) (

n + 1
q

+ 3
) , if f (n+1) ∈ Lp[a, b] , p > 1,

||f (n+1)||1 ·
(b− a)n+3

(n + 2)(n + 3)
, if f (n+1) ∈ L1[a, b],

,

which is Theorem 3 of Barnett and Dragomir [1].
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6. Application to the Truncated Exponential Dis-
tribution

The truncated exponential distribution arises frequently in applications partic-
ularly in insurance contracts with caps and deductible and in the field of life-
testing. A random variableX with distribution function

F (x) =


1− e−λx for 0 ≤ x < c,

1 for x ≥ c,

is a truncated exponential distribution with parametersλ andc.
The density function forX :

f(x) =


λe−λx for 0 ≤ x < c

0 for x ≥ c
+ e−λc · δc(x),

whereδc is the delta function atx = c. This distribution is therefore mixed with
a continuous distributionf(x) = λe−λx on the interval0 ≤ x < c and a point
mass of sizee−λc atx = c.

The moment generating function for the random variableX:

MX(t) =

∫ c

0

etx · λe−λxdx + etc · e−λc

=


λ− te−c(λ−t)

λ− t
, for t 6= λ,

λc + 1, for t = λ.
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For further calculations in what follows, we assumet 6= λ. From the moment
generating functionMX(t), we have:

E(X) =
1− e−λc

λ
,

E(X2) =
2[1− (1 + λc)e−λc]

λ2
,

E(X3) =
3[2− (2 + 2λc + λ2c2)e−λc]

λ3
,

E(X4) =
4[6− (6 + 6λc + 3λ2c2 + λ3c3)e−λc]

λ4
.

The higher order central moments are:

Mk =
k∑

i=0

(
k

i

)
E(X i) · µk−i, for k = 2, 3, 4, . . . ,

in particular,

M2 =
1− 2λce−λc − e−2λc

λ2
,

M3 =
16− 3e−λc(10 + 4λc + λ2c2) + 6e−2λc(3 + λc)− 4e−3λc

λ3
,

M4 =
65− 4e−λc(32 + 15λc + 6λ2c2 + λ3c3)

λ4

+
3e−2λc(30 + 16λc + 4λ2c2)− 4e−3λc(8 + 3λc) + 5e−4λc

λ4
.
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Using the moment-estimation inequality (3.6), the upper bound forM2, in terms
of the parametersλ andc of the distribution:

M̂2 ≤
(1− e−λc)(λc− 1 + e−λc)

λ2
.

The upper bounds forM3 using (3.8)

M̂3 ≤
(2− 3λc + λ2c2)− e−λc(6− 6λc + λ2c2) + 3e−2λc(2− λc)− 2e−3λc

λ3
,

and using (3.9)

M̂3 ≤
(−3 + 4λc− 3λ2c2 + λ3c3)

4λ3

+
e−λc(9− 8λc + 3λ2c2)− e−2λc(9− 4λc) + 3e−3λc

4λ3
.

The upper bounds forM4 using (3.11)

M̂4 ≤
(−3 + 6λc− 4λ2c2 + λ3c3) + e−λc(12− 18λc + 8λ2c2 − λ3c3)

λ4

− 2e−2λc(9 + 9λc + 2λ2c2)− 6e−3λc(2− λc) + 3e−4λc

λ4
,

and from (3.12),

M̂4 ≤
(12− 16λc + 103λ2c2 − 4λ3c3 + λ4c4)

4λ4
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− 4e−λc(12− 12λc + 5λ2c2 − λ3c3)

4λ4

+
2e−2λc(36 + 24λc + 5λ2c2)− 16e−3λc(3− λc) + 12e−4λc

4λ4
.
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