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ABSTRACT. A necessary and sufficient coefficient is given for functions in a class of complex-
valued harmonic univalent functions using the Dziok-Srivastava operator. Distortion bounds,
extreme points, an integral operator, and a neighborhood of such functions are considered.
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1. INTRODUCTION

Let U denote the open unit disc art); denote the class of functions which are complex-
valued, harmonic, univalent, sense-preserving inormalized byf(0) = f.(0) — 1 = 0. Each
f € Sy can be expressed gs= h + g, whereh and g are analytic inU. We call h the
analytic part andy the co-analytic part of. A necessary and sufficient condition ffrto be
locally univalent and sense-preservinglinis that|h'(z)| > |¢'(z)| in U (see [8]). Thus for
f=h+ge Sy, we may write

(1.1) h(z)=z+ iakzk, g(z) = ibkzk (0<b <1).
k=2 k=1

Note thatSy reduces td, the class of normalized analytic univalent functions if the co-analytic
part of f = h + g is identically zero.

Fora; € C(j=1,2,...,¢9)ands; € C—{0,—1,-2,...} (j =1,2,...,s), the generalized
hypergeometric function is defined by

o0

| oy = (@ (g 2
oFs (ar, ... aq By ..., Bs; 2) ;(ﬂl)k...(ﬁs)kk!’

(g <s+1;q,s€ Ng={0,1,2,...}),
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where(a),, is the Pochhammer symbol defined by
~Tla+n)
O

forn e N={1,2,...} and 1 whem = 0. Corresponding to the function
h(ala---aaq;ﬁla'-wﬁ& ) (ala"waq;ﬁlw"aﬁs;z)'
The Dziok-Srivastava operator [4}, s (a1, . .., aq; B, - - ., Bs) is defined by

Hq,s<041> cee 7aq;ﬁla s 765)f(z) = h(ab .. aq;ﬁla s 7653'2) * f(Z)

oo k
(0n)k—1- - (g1 arz
=z+ E ;
= (B k=1 (Bs)p—1 (B —1)!

ala+1)---(a+n—1)

where “%” stands for convolution.
To make the notation simple, we write

H,[ou]f(2) = Hys(an,...,aq B, ..., 0s) f(2).

We define the Dziok-Srivastava operator of the harmonic fungtieni + g given by [1.1)
as

(1.2) H, [on]f = Hyslonlh + Hy s[aa]g.
Let S}, (a1, 3) denote the family of harmonic functions of the fofm (1.1) such that

0
g Hylaolf) 2 5, 0B <1 o] =r<1.

Forq = s+ 1, ay = b1,...,a, = B, Sy(1,58) = SH(B) [6] is the class of orientation-
preserving harmonic univalent functiofisvhich are starlike of orde? in U, that is,%(arg f(re?) >
G.

Also, Sy (n + 1,8) = Ru(n,B) [{], is the class of harmonic univalent functions with
Z(arg D" f(z)) > 3, whereD is the Ruscheweyh derivative (séé [9]).

We also letV (o, 8) = S5 (aq, ) N Vi, whereVy [5], the class of harmonic functions
of the form [1.1) and there exis¢sso that,mod 2,

(1.4) arg(ax) + (k — 1)¢ =, arg(by) + (k—1)¢p =0 k> 2.

Jahangiri and Silvermanl[5] gave the sufficient and necessary conditions for functions of the
form (1.1) to be inV (), where0 < 3 < 1.

Note forg = s+ 1, a3 =1, ag = f,...,04 = (5 and the co-analytic part of = h+ g
being zero, the classg;(«;, 5) reduces to the class studiedlin/[10].

In this paper, we will give a sufficient condition fgf = ~ + g given by [1.1) to be in
S3 (a1, B) and it is shown that this condition is also necessary for functiong;ifa,, ). Dis-
tortion theorems, extreme points, integral operators and neighborhoods of such functions are
considered.

(1.3)

2. MAIN RESULTS

In our first theorem, we introduce a sufficient coefficient bound for harmonic functions in
S;I(Oéla 5)
Theorem 2.1.Let f = h + g be given by[(1]1). If

R

> 1 k-7
ey > gy (T b,
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(a1)k—1-(yg

wherea; = 1,0 < 8 <1landl'(a1, k) = | 53 (ﬁ)

(@1,5)

Proof. To prove thatf € S, (a1, 3), we only need to show that if (3.1) holds, then the required
condition [1.3B) is satisfied. Fdr (1.3), we can write

2(Hyou]h(2)) — z(Hq,s[ang@))f}
Hg s[an]h + Hy g[on]g

0
5 (g Hy foal £(2)) = Re {

_n AB)

_>RBAB(z)
Using the fact thaRew > gifand only if |1 — 4+ w| > |1 + 8 — w|, it suffices to show that
(2.2) [A(z) + (1 = 8)B(2)] = [A(2) = (1 + ) B(2)| = 0.

Substituting forA(z) and B(z) in (2.1) yields
(2.3) |A(z) + (1 = 8)B(2)| — |A(z) — (1 + 5)B(2)]

> 2= Bl - 3 AL oy, kyfale

2 (h—1)!
1
-3 bl - 91
k=1 )
k=1 X k+1
- Zrl)‘ﬁl“(abk)\akHzlk - ZHF(%WWW
k=2 ’ k=1 :
k—p
> 2(1 = p)lz] {1 D2 1)!F(a1,k)|ak|

|
I

k+ 3
(1_6><k_ ) (ala )’bk’}

=2(1—ﬁ)|2|{1 ]

B [z; (k_ll)! <11f ﬁlak| k+ﬁ|bkz|) (041,]{7)] }

k=

The last expression is non-negative py (2.1) and §057; (v, §). O
Now, we obtain the necessary and sufficient conditiongfer i + g given by [1.4).
Theorem 2.2.Let f = h + g be given by[(1]4). Thefi€ Viz(a4, §) if and only if

> 1 k—f k+p3 1+
(2.4) 2 (k— 1>! <1—ﬁ|ak‘ + = ’bk|) (Oél,k> <1-— T ’b1|

wherea; =1, 0< g < 1 andF(Oq,k) Bk Bs)k

Proof. SinceV(ay, B) C S§ (a1, (), we only need to prove the “only if” part of the theorem.
To this end, for functiong € V(a1 3), we notice that the conditioff; (arg H, s[c:] f(2)) > 3
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is equivalent to

d 2(Hyslan]h(2)) — 2(Hyslea]g(2))
arg H, ;[o1]f(2)) — B = Re — — >0
5918 Hyslon]f(2)) = 6 { H, fonlh(2) £ T onlg(2) ﬁ} >
That is,
A o1 ar|z k+ﬂ o1 zZk
25)  Re (1= B8)2 + 302 ol (e, k) lawl2® — 3202, 5T (an, k) [y ] -
z+ ) sy Do, B)lagl 2% + 3207, (Oéh )!bklzk

The above condition must hold for all valueszoh U. Upon choosing according to[(1.}4), we
must have

(1= 8) = (1 + Bl = 52 (Arlanl + (=51l ) Dlan, k)t
L [by] + 22525 (law| + [bk]) T(on, k)it
If condition (2.4) does not hold then the numeratof in](2.6) is negative safficiently close to

1. Hence there exist = r in (0, 1) for which the quotient of (2]6) is negative. This contradicts
the fact thatf € Vi (aq, 3) and so the proof is complete. O

(2.6) > 0.

The following theorem gives the distortion bounds for functiong3fia;, 5) which yields a
covering result for this class.

Theorem 2.3.1f f € Vz(aq, ), then

1 1— 1
FENE A+ by + (2_§ - Qfg\bly) 2z =r<1

1 [(1-8 148 B
PO Wty = o (G5 = ) =<t

Proof. We will only prove the right hand inequality. The proof for the left hand inequality is

similar.
Let f € Vz(au, B). Taking the absolute value ¢f we obtain

and

@< @ [bal)r+ > (arl + be))r® < (14 oa)r + Y (lax] + bil)r?

k=2 k=2
That is,
1— (2 - 2 —
OIS W4+ o f_ﬁ > (Tl + T ) T2
k=2
1-— 1
< WD + g L gl

1 1-— 1
<UD+ g (505~ 5l

Corollary 2.4. Let f be of the form[(1]1) so that € Vjz(ay, 3). Then

{w ol 9T (a1,2) — 1 — (D(an,2) — 1)3
' (2= B)I (e, 2)
_ QF(OQ, 2) —-1- (F(Oq,?) — 1)ﬂ
(24 B) (e, 2)

2.7)

bl } € ().
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Next, we examine the extreme points 16f(«a , 3) and determine extreme pointsiéf (a1, 3).
Theorem 2.5. Set

(1-p)(k—1)! _(1=8)(k—-1)!
Mk 2 T R e k)
For b, fixed, the extreme points fof; (a4, 3) are
(2.8) {z+)\kxzk+b1_z} U {z+blz+ukx2k},

wherek > 2 and|x| =1 — |by].
Proof. Any function f € Vi (a1, 5) may be expressed as
F(2) =2+ lagle™|F +brz+ ) [byleidsh,

k=2 k=2
where the coefficients satisfy the inequalfty {2.1). Set

hi(2) = 2z, 91(2) = biz, hi(2) = 2 + A\pe 2

gr = b1z + ppe® 2k, for k=23, ...

writing X, = 51 v, = Bk =2,3,.. and

X1=1—2Xk; Y1:1—Zyk,
o k=2
we have -
Z Xihi(2) + Yigr(2)).
k=1

In particular, setting
fiz)=z+biz and  fi(2) = 2+ Nz + bz + oyt
(k= 2, [z + [y[ =1 — |bu]),

we see that the extreme pointsigf(«;, 3) are contained i fx(z)}.
To see thaff; is not an extreme point, note thAtmay be written as

£1(2) = LA + 2L = )22} + 5 L) = dal1 = [n])22),

a convex linear combination of functions W;(a4, 3). If both |z| # 0 and|y| # 0, we will
show that it can also be expressed as a convex linear combination of functibgdn, ).

Without loss of generality, assunte| > |y|. Choose: > 0 small enough so that < '””‘ . Set
A=1+eandB=1—

€T

. We then see that both

tl(z) =24+ MAzz* + b1z + wyBzF
and

to(2) = 2 4+ Me(2 — A)xz® + b1z + py(2 — B)zk
are inVg(ay, #) and note that

fu(2) = 510(2) + 12(2)).

The extremal coefficient bound shows that the functions of the form (2.8) are the extreme points
for Vz (a1, 5) and so the proof is complete. O
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Forg=s+1,ay = f,...,a0 = 35,00 = n+ 1, Theorems$ 2]1 to 2.5 give Theorems 1, 2,
3and 4 in|[7].

Now, we will examine the closure properties of the cl&g«4, ) under the generalized
Bernardi-Libera-Livingston integral operatb(f) which is defined by

L(f(2)) = ctl /0 tHf(t)dt, c>—1.

ZC

Theorem 2.6.Let f € V5 (a1, 5). ThenL.(f(z)) belongs to the clask; (a4, 3).

Proof. From the representation &f.(f(z)), it follows that

= ¢t 1 : c—1 —
Le(H(z) = — /0 tH{h(t) + 3(t) bt
= e S ot at i [ e (S bk )d
o (/0 t (t+kz:;akt> t+/0 t (}; kt) t)
=z At + Y Bk,
k=2 k=1
where 1 1
c+ ot
Ak—c+kak, Bk_c+k,bk
Therefore,
kz:; (k—1)! ((1 B)(c+ k) o] + (1= B)(c+ k) |bl~c|) ['(aq, k)
1 (k=P k+ 3
= kz:; (k—1)! (1 _5|a’f| T 6|bk|> [y, k)
Sl_ijg“
Sincef € Viz(aq, 3), therefore by Theorein 3.2,.(f(2)) € Viz(a1, 8). -

The next theorem gives a sufficient coefficient bound for functiorts i, ).

Theorem 2.7. f € S};(aq, B) if and only if

21— B)z+ (€1 +25)22}
-2

H, s[on]h(z) * {

206+ 0)z — (£ —1+20)7°
(1-72)?

Proof. From [1.3),f € Si (i, 8) if and only if for = = re' in U, we have

+_Hq,s[a‘1]g*{ }7&0, =1 zeU

sp(ara(H ol e ) = 5 [arg (Hyufonlh(re?) + Hy Jalare) )] 2 5.

Therefore, we must have

e { 1 [z<Hq,s[a1]h<z>>' — 2(Hy [ s () 5] } -
1-p H,s[oa]h(z) + Hyslaa]g(2)
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Since

1| 2(Hgslen]h(2)) — 2(Hgslen]g(2))"
1— ﬂ Hq,s[al]h(’z) + Hq,s[al]g(z)
the above required condition is equivalent to

—ﬁ] =1 at z=0,

1| z(Hyslaa]h(2)) — z(Hys[an]g(2))" §-1
9 =3 [ Hyolalh(e) + Fofadg®) ] T
€l=1, £ -1, 0< |2| < 1.
By a simple algebraic manipulation, inequality (2.9) yields
0 # (€ + D[z(Hys[on]h(2))" — 2(Hys[on]g(2))]
— (£ =14 20)[Hyslon]h(z) + Hys[an]g(2)]
B (E+1)z £—1+20
= H,slon]h(z) * [(1_2)2 T ] |
- Hyfalye) [ ES 120 )z‘
et s [ B+ (€= 142022
— Hylouln(e) » |2 ESIE2E
 Hy g (MOS0 ’22‘ ,

which is the condition required by Theor¢m|2.7.
Finally, for f given by [1.1), thé-neighborhood of is the set

Ns(f) = {F =24 Y A+ Bk
k=2 k=1

> k(lar — Agl + b — Bel) + by — By| < 5}
k=2

(seel[1]I8]). In our case, let us define the generalize@ighborhood off to be the set

N(p) = {F 3 T 0 Bl — A+ (B Bl

+(1+8)b— B <(1- ﬁ)é}.
Theorem 2.8. Let f be given by[(1]1). If satisfies the conditions
@10 S MO re Y WWMW <1-8,0<p<1
k=1

p—s (k—1)! 1)!
and

1 1
5§2—§<1 1+ﬁ‘bl|)’

thenN(f) C S} (a1, B).
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Proof. Let f satisfy [2.1D) and

F(z) =2+ Bz + Y (At + Bk
k=2

belong toN(f). We have

(1+ﬁ|Bll+Z POwk) (o — g)Ad + (k + 8)1B.))

- !

< (14 BB — b+ (1+ B)lb] +2Lf))![<k—ﬁ>mk—ak|+<k+ﬁ>|Bk—bku
DI ”al’ [(k — B)lax] + (k + 5) b
k=2

<(1=B)0+ 1+l + ﬁZk O‘“ [(k = B)ax| + (k + B)lbx]

< (1 =80+ (1 +B)lbr] + 52— [(1 = 8) (14 A) o]

5}
<1-3.
Hence, for
1-3 1+
"S5 ll_ 1—5"’1'] |
we havel'(z) € S§(aq, 5). O
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