journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au

issn: 1443-5756

Volume 8 (2007), Issue 2, Article 59, 8 pp.

UNIVALENT HARMONIC FUNCTIONS

H.A. AL-KHARSANI AND R.A. AL-KHAL

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE, GIRLS COLLEGE
P.O. BOX 838, DAMMAM, SAUDI ARABIA
hakh73@hotmail.com

ranaab@hotmail.com

Received 26 February, 2007; accepted 20 April, 2007 Communicated by H. Silverman

ABSTRACT. A necessary and sufficient coefficient is given for functions in a class of complex-valued harmonic univalent functions using the Dziok-Srivastava operator. Distortion bounds, extreme points, an integral operator, and a neighborhood of such functions are considered.

Key words and phrases: Harmonic functions, Dziok-Srivastava operator, Convolution, Integral operator, Distortion bounds, Neighborhood.

2000 Mathematics Subject Classification. 30C45, 30C50.

1. Introduction

Let U denote the open unit disc and S_H denote the class of functions which are complexvalued, harmonic, univalent, sense-preserving in U normalized by $f(0) = f_z(0) - 1 = 0$. Each $f \in S_H$ can be expressed as $f = h + \overline{g}$, where h and g are analytic in U. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in U is that |h'(z)| > |g'(z)| in U (see [3]). Thus for $f = h + \overline{g} \in S_H$, we may write

(1.1)
$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \qquad g(z) = \sum_{k=1}^{\infty} b_k z^k \quad (0 \le b_1 < 1).$$

Note that S_H reduces to S, the class of normalized analytic univalent functions if the co-analytic part of $f = h + \overline{g}$ is identically zero.

For $\alpha_j \in C$ $(j=1,2,\ldots,q)$ and $\beta_j \in C-\{0,-1,-2,\ldots\}$ $(j=1,2,\ldots,s)$, the generalized hypergeometric function is defined by

$${}_{q}F_{s}(\alpha_{1},\ldots,\alpha_{q};\beta_{1},\ldots,\beta_{s};z) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}\cdots(\alpha_{q})_{k}}{(\beta_{1})_{k}\cdots(\beta_{s})_{k}} \frac{z^{k}}{k!},$$
$$(q \leq s+1; q, s \in N_{0} = \{0,1,2,\ldots\}),$$

where $(a)_n$ is the Pochhammer symbol defined by

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} = a(a+1)\cdots(a+n-1)$$

for $n \in \mathbb{N} = \{1, 2, \ldots\}$ and 1 when n = 0. Corresponding to the function

$$h(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z) = z_q F_s(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z).$$

The Dziok-Srivastava operator [4], $H_{q,s}(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s)$ is defined by

$$H_{q,s}(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s) f(z) = h(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z) * f(z)$$

$$= z + \sum_{k=0}^{\infty} \frac{(\alpha_1)_{k-1} \cdots (\alpha_q)_{k-1}}{(\beta_1)_{k-1} \cdots (\beta_s)_{k-1}} \frac{a_k z^k}{(k-1)!},$$

where "*" stands for convolution.

To make the notation simple, we write

$$H_{q,s}[\alpha_1]f(z) = H_{q,s}(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s)f(z).$$

We define the Dziok-Srivastava operator of the harmonic function $f=h+\overline{g}$ given by (1.1) as

(1.2)
$$H_{q,s}[\alpha_1]f = H_{q,s}[\alpha_1]h + \overline{H_{q,s}[\alpha_1]g}.$$

Let $S_H^*(\alpha_1, \beta)$ denote the family of harmonic functions of the form (1.1) such that

(1.3)
$$\frac{\partial}{\partial \theta} (\arg H_{q,s}[\alpha_1] f) \ge \beta, \quad 0 \le \beta < 1, \ |z| = r < 1.$$

For $q=s+1,\ \alpha_2=\beta_1,\ldots,\alpha_q=\beta_s,\ S_H^*(1,\beta)=SH(\beta)$ [6] is the class of orientation-preserving harmonic univalent functions f which are starlike of order β in U, that is, $\frac{\partial}{\partial \theta}(\arg f(re^{i\theta})>\beta$.

Also, $S_H^*(n+1,\beta)=R_H(n,\beta)$ [7], is the class of harmonic univalent functions with $\frac{\partial}{\partial \theta}(\arg D^n f(z)) \geq \beta$, where D is the Ruscheweyh derivative (see [9]).

We also let $V_{\overline{H}}(\alpha_1, \beta) = S_H^*(\alpha_1, \beta) \cap V_H$, where V_H [5], the class of harmonic functions f of the form (1.1) and there exists ϕ so that, $\text{mod } 2\pi$,

(1.4)
$$\arg(a_k) + (k-1)\phi = \pi, \qquad \arg(b_k) + (k-1)\phi = 0 \qquad k \ge 2.$$

Jahangiri and Silverman [5] gave the sufficient and necessary conditions for functions of the form (1.1) to be in $V_H(\beta)$, where $0 \le \beta < 1$.

Note for $q=s+1, \ \alpha_1=1, \ \alpha_2=\beta_1,\ldots,\alpha_q=\beta_s$ and the co-analytic part of $f=h+\overline{g}$ being zero, the class $V_{\overline{H}}(\alpha_1,\beta)$ reduces to the class studied in [10].

In this paper, we will give a sufficient condition for $f=h+\overline{g}$ given by (1.1) to be in $S_H^*(\alpha_1,\beta)$ and it is shown that this condition is also necessary for functions in $V_{\overline{H}}(\alpha_1,\beta)$. Distortion theorems, extreme points, integral operators and neighborhoods of such functions are considered.

2. MAIN RESULTS

In our first theorem, we introduce a sufficient coefficient bound for harmonic functions in $S_H^*(\alpha_1, \beta)$.

Theorem 2.1. Let $f = h + \overline{q}$ be given by (1.1). If

(2.1)
$$\sum_{k=2}^{\infty} \frac{1}{(k-1)!} \left(\frac{k-\beta}{1-\beta} |a_k| + \frac{k+\beta}{1-\beta} |b_k| \right) \Gamma(\alpha_1, k) \le 1 - \frac{1+\beta}{1-\beta} |b_1|,$$

where
$$a_1 = 1$$
, $0 \le \beta < 1$ and $\Gamma(\alpha_1, k) = \left| \frac{(\alpha_1)_{k-1} \cdots (\alpha_q)_{k-1}}{(\beta_1)_{k-1} \cdots (\beta_s)_{k-1}} \right|$, then $f \in S_H^*(\alpha_1, \beta)$.

Proof. To prove that $f \in S_H^*(\alpha_1, \beta)$, we only need to show that if (2.1) holds, then the required condition (1.3) is satisfied. For (1.3), we can write

$$\frac{\partial}{\partial \theta} (\arg H_{q,s}[\alpha_1] f(z)) = \operatorname{Re} \left\{ \frac{z(H_{q,s}[\alpha_1] h(z))' - \overline{z(H_{q,s}[\alpha_1] g(z))'}}{H_{q,s}[\alpha_1] h + \overline{H_{q,s}[\alpha_1] g}} \right\}$$

$$= \operatorname{Re} \frac{A(z)}{B(z)}.$$

Using the fact that $\operatorname{Re}\omega\geq\beta$ if and only if $|1-\beta+\omega|\geq|1+\beta-\omega|$, it suffices to show that

$$(2.2) |A(z) + (1-\beta)B(z)| - |A(z) - (1+\beta)B(z)| \ge 0.$$

Substituting for A(z) and B(z) in (2.1) yields

$$(2.3) |A(z) + (1 - \beta)B(z)| - |A(z) - (1 + \beta)B(z)|$$

$$\geq (2 - \beta)|z| - \sum_{k=2}^{\infty} \frac{k+1-\beta}{(k-1)!} \Gamma(\alpha_{1},k)|a_{k}||z|^{k}$$

$$- \sum_{k=1}^{\infty} \frac{k-1+\beta}{(k-1)!} \Gamma(\alpha_{1},k)|b_{k}||z|^{k} - \beta|z|$$

$$- \sum_{k=2}^{\infty} \frac{k-1-\beta}{(k-1)!} \Gamma(\alpha_{1},k)|a_{k}||z|^{k} - \sum_{k=1}^{\infty} \frac{k+1+\beta}{(k-1)!} \Gamma(\alpha_{1},k)|b_{k}||z|^{k}$$

$$\geq 2(1-\beta)|z| \left\{ 1 - \sum_{k=2} \frac{k-\beta}{(1-\beta)(k-1)!} \Gamma(\alpha_{1},k)|a_{k}| - \sum_{k=1}^{\infty} \frac{k+\beta}{(1-\beta)(k-1)!} \Gamma(\alpha_{1},k)|b_{k}| \right\}$$

$$= 2(1-\beta)|z| \left\{ 1 - \frac{1+\beta}{1-\beta}|b_{1}| - \left[\sum_{k=2}^{\infty} \frac{1}{(k-1)!} \left(\frac{k-\beta}{1-\beta}|a_{k}| + \frac{k+\beta}{1-\beta}|b_{k}| \right) \Gamma(\alpha_{1},k) \right] \right\}.$$

The last expression is non-negative by (2.1) and so $f \in S_H^*(\alpha_1, \beta)$.

Now, we obtain the necessary and sufficient conditions for $f = h + \overline{g}$ given by (1.4).

Theorem 2.2. Let $f = h + \overline{g}$ be given by (1.4). Then $f \in V_{\overline{H}}(\alpha_1, \beta)$ if and only if

(2.4)
$$\sum_{k=2}^{\infty} \frac{1}{(k-1)!} \left(\frac{k-\beta}{1-\beta} |a_k| + \frac{k+\beta}{1-\beta} |b_k| \right) \Gamma(\alpha_1, k) \le 1 - \frac{1+\beta}{1-\beta} |b_1|,$$

where
$$a_1 = 1, \ 0 \le \beta < 1 \ and \ \Gamma(\alpha_1, k) = \left| \frac{(\alpha_1)_{k-1} \cdots (\alpha_q)_{k-1}}{(\beta_1)_{k-1} \cdots (\beta_s)_{k-1}} \right|$$
.

Proof. Since $V_{\overline{H}}(\alpha_1,\beta)\subset S_H^*(\alpha_1,\ \beta)$, we only need to prove the "only if" part of the theorem. To this end, for functions $f\in V_{\overline{H}}(\alpha_1,\beta)$, we notice that the condition $\frac{\partial}{\partial \theta}(\arg H_{q,s}[\alpha_1]f(z))\geq \beta$

is equivalent to

$$\frac{\partial}{\partial \theta} (\arg H_{q,s}[\alpha_1] f(z)) - \beta = \operatorname{Re} \left\{ \frac{z(H_{q,s}[\alpha_1] h(z))' - \overline{z(H_{q,s}[\alpha_1] g(z))'}}{H_{q,s}[\alpha_1] h(z) + \overline{H_{q,s}[\alpha_1] g(z)}} - \beta \right\} \ge 0.$$

That is,

(2.5)
$$\operatorname{Re}\left[\frac{(1-\beta)z + \sum_{k=2}^{\infty} \frac{k-\beta}{(k-1)!} \Gamma(\alpha_1, k) |a_k| z^k - \sum_{k=1}^{\infty} \frac{k+\beta}{(k-1)!} \overline{\Gamma(\alpha_1, k)} |b_k| \overline{z}^k}{z + \sum_{k=2}^{\infty} \Gamma(\alpha_1, k) |a_k| z^k + \sum_{k=1}^{\infty} \overline{\Gamma(\alpha_1, k)} |b_k| \overline{z}^k}\right] \ge 0.$$

The above condition must hold for all values of z in U. Upon choosing ϕ according to (1.4), we must have

$$(2.6) \qquad \frac{(1-\beta) - (1+\beta)|b_1| - \sum_{k=2}^{\infty} \left(\frac{k-\beta}{(k-1)!} |a_k| + \frac{k+\beta}{(k-1)!} |b_k|\right) \Gamma(\alpha_1, k) r^{k-1}}{1 + |b_1| + \sum_{k=2}^{\infty} \left(|a_k| + |b_k|\right) \Gamma(\alpha_1, k) r^{k-1}} \ge 0.$$

If condition (2.4) does not hold then the numerator in (2.6) is negative for r sufficiently close to 1. Hence there exist $z_0 = r_0$ in (0,1) for which the quotient of (2.6) is negative. This contradicts the fact that $f \in V_{\overline{H}}(\alpha_1, \beta)$ and so the proof is complete.

The following theorem gives the distortion bounds for functions in $V_{\overline{H}}(\alpha_1, \beta)$ which yields a covering result for this class.

Theorem 2.3. If $f \in V_{\overline{H}}(\alpha_1, \beta)$, then

$$|f(z)| \le (1+|b_1|)r + \frac{1}{\Gamma(\alpha_1, 2)} \left(\frac{1-\beta}{2-\beta} - \frac{1+\beta}{2-\beta}|b_1|\right)r^2 \qquad |z| = r < 1$$

and

$$|f(z)| \ge (1+|b_1|)r - \frac{1}{\Gamma(\alpha_1,2)} \left(\frac{1-\beta}{2-\beta} - \frac{1+\beta}{2+\beta}|b_1|\right) r^2 \qquad |z| = r < 1.$$

Proof. We will only prove the right hand inequality. The proof for the left hand inequality is similar.

Let $f \in V_{\overline{H}}(\alpha_1, \beta)$. Taking the absolute value of f, we obtain

$$|f(z)| \le (1+|b_1|)r + \sum_{k=2}^{\infty} (|a_k|+|b_k|)r^k \le (1+|b_1|)r + \sum_{k=2}^{\infty} (|a_k|+|b_k|)r^2.$$

That is,

$$|f(z)| \leq (1+|b_1|)r + \frac{1-\beta}{\Gamma(\alpha_1,2)(2-\beta)} \sum_{k=2}^{\infty} \left(\frac{2-\beta}{1-\beta}|a_k| + \frac{2-\beta}{1-\beta}|b_k|\right) \Gamma(\alpha_1,2)r^2$$

$$\leq (1+|b_1|)r + \frac{1-\beta}{\Gamma(\alpha_1,2)(2-\beta)} \left[1 - \frac{1+\beta}{1-\beta}|b_1|\right] r^2$$

$$\leq (1+|b_1|)r + \frac{1}{\Gamma(\alpha_1,2)} \left(\frac{1-\beta}{2-\beta} - \frac{1+\beta}{2-\beta}|b_1|\right) r^2.$$

Corollary 2.4. Let f be of the form (1.1) so that $f \in V_{\overline{H}}(\alpha_1, \beta)$. Then

(2.7)
$$\left\{\omega : |\omega| < \frac{2\Gamma(\alpha_{1}, 2) - 1 - (\Gamma(\alpha_{1}, 2) - 1)\beta}{(2 - \beta)\Gamma(\alpha_{1}, 2)} - \frac{2\Gamma(\alpha_{1}, 2) - 1 - (\Gamma(\alpha_{1}, 2) - 1)\beta}{(2 + \beta)\Gamma(\alpha_{1}, 2)} |b_{1}|\right\} \subset f(U).$$

Next, we examine the extreme points for $V_{\overline{H}}(\alpha_1, \beta)$ and determine extreme points of $V_{\overline{H}}(\alpha_1, \beta)$.

Theorem 2.5. Set

$$\lambda_k = \frac{(1-\beta)(k-1)!}{(k-\beta)\Gamma(\alpha_1,k)} \quad \text{and} \quad \mu_k = \frac{(1-\beta)(k-1)!}{(k+\beta)\Gamma(\alpha_1,k)}.$$

For b_1 fixed, the extreme points for $V_{\overline{H}}(\alpha_1, \beta)$ are

(2.8)
$$\left\{z + \lambda_k x z^k + \overline{b_1 z}\right\} \cup \left\{z + \overline{b_1 z + \mu_k x z^k}\right\},\,$$

where $k \geq 2$ and $|x| = 1 - |b_1|$.

Proof. Any function $f \in V_{\overline{H}}(\alpha_1, \beta)$ may be expressed as

$$f(z) = z + \sum_{k=2}^{\infty} |a_k| e^{i\gamma_k} |z^k + \overline{b_1 z} + \sum_{k=2}^{\infty} |b_k| e^{i\delta_k z^k},$$

where the coefficients satisfy the inequality (2.1). Set

$$h_1(z) = z, g_1(z) = b_1 z, h_k(z) = z + \lambda_k e^{i\gamma_k} z^k$$

 $g_k = b_1 z + \mu_k e^{i\delta_k} z^k, \text{ for } k = 2, 3, ...$

Writing
$$X_k = \frac{|a_k|}{\lambda_k}, Y_k = \frac{|b_k|}{\mu_k}, \quad k = 2, 3, \dots$$
 and

$$X_1 = 1 - \sum_{k=2}^{\infty} X_k;$$
 $Y_1 = 1 - \sum_{k=2}^{\infty} Y_k,$

we have

$$f(z) = \sum_{k=1}^{\infty} (X_k h_k(z) + Y_k g_k(z)).$$

In particular, setting

$$f_1(z) = z + \overline{b_1 z}$$
 and $f_k(z) = z + \lambda_k x z^k + \overline{b_1 z} + \overline{\mu_k y z^k}$
 $(k \ge 2, |x| + |y| = 1 - |b_1|),$

we see that the extreme points of $V_{\overline{H}}(\alpha_1, \beta)$ are contained in $\{f_k(z)\}$.

To see that f_1 is not an extreme point, note that f_1 may be written as

$$f_1(z) = \frac{1}{2} \{ f_1(z) + \lambda_2(1 - |b_1|)z^2 \} + \frac{1}{2} \{ f_1(z) - \lambda_2(1 - |b_1|)z^2 \},$$

a convex linear combination of functions in $V_{\overline{H}}(\alpha_1,\beta)$. If both $|x| \neq 0$ and $|y| \neq 0$, we will show that it can also be expressed as a convex linear combination of functions in $V_{\overline{H}}(\alpha_1,\beta)$. Without loss of generality, assume $|x| \geq |y|$. Choose $\epsilon > 0$ small enough so that $\epsilon < \frac{|x|}{|y|}$. Set

 $A = 1 + \epsilon$ and $B = 1 - \left| \frac{\epsilon x}{y} \right|$. We then see that both

$$t_1(z) = z + \lambda_k Axz^k + \overline{b_1 z + \mu_k y Bz^k}$$

and

$$t_2(z) = z + \lambda_k (2 - A)xz^k + \overline{b_1 z + \mu_k y(2 - B)z^k}$$

are in $V_{\overline{H}}(\alpha_1, \beta)$ and note that

$$f_n(z) = \frac{1}{2} \{ t_1(z) + t_2(z) \}.$$

The extremal coefficient bound shows that the functions of the form (2.8) are the extreme points for $V_{\overline{H}}(\alpha_1, \beta)$ and so the proof is complete.

For $q=s+1, \alpha_2=\beta_1, \ldots, \alpha_q=\beta_s, \alpha_1=n+1$, Theorems 2.1 to 2.5 give Theorems 1, 2, 3 and 4 in [7].

Now, we will examine the closure properties of the class $V_{\overline{H}}(\alpha_1, \beta)$ under the generalized Bernardi-Libera-Livingston integral operator $L_c(f)$ which is defined by

$$L_c(f(z)) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt, \qquad c > -1.$$

Theorem 2.6. Let $f \in V_{\overline{H}}(\alpha_1, \beta)$. Then $L_c(f(z))$ belongs to the class $V_{\overline{H}}(\alpha_1, \beta)$.

Proof. From the representation of $L_c(f(z))$, it follows that

$$L_{c}(f(z)) = \frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} \{h(t) + \overline{g}(t)\} dt$$

$$= \frac{c+1}{z^{c}} \left(\int_{0}^{z} t^{c-1} \left(t + \sum_{k=2}^{\infty} a_{k} t^{k} \right) dt + \overline{\int_{0}^{z} t^{c-1} \left(\sum_{k=1}^{\infty} b_{k} t^{k} \right)} dt \right)$$

$$= z + \sum_{k=2}^{\infty} A_{k} z^{k} + \sum_{k=1}^{\infty} \overline{B_{k} z^{k}},$$

where

$$A_k = \frac{c+1}{c+k} a_k, \qquad B_k = \frac{c+1}{c+k} b_k.$$

Therefore.

$$\sum_{k=2}^{\infty} \frac{1}{(k-1)!} \left(\frac{(k-\beta)(c+1)}{(1-\beta)(c+k)} |a_k| + \frac{(k+\beta)(c+1)}{(1-\beta)(c+k)} |b_k| \right) \Gamma(\alpha_1, k)$$

$$\leq \sum_{k=2}^{\infty} \frac{1}{(k-1)!} \left(\frac{k-\beta}{1-\beta} |a_k| + \frac{k+\beta}{1-\beta} |b_k| \right) \Gamma(\alpha_1, k)$$

$$\leq 1 - \frac{1+\beta}{1-\beta} b_1.$$

Since $f \in V_{\overline{H}}(\alpha_1, \beta)$, therefore by Theorem 2.2, $L_c(f(z)) \in V_{\overline{H}}(\alpha_1, \beta)$.

The next theorem gives a sufficient coefficient bound for functions in $S^*(\alpha_1, \beta)$.

Theorem 2.7. $f \in S_H^*(\alpha_1, \beta)$ if and only if

$$H_{q,s}[\alpha_1]h(z) * \left[\frac{2(1-\beta)z + (\xi - 1 + 2\beta)z^2}{(1-z)^2} \right] + \overline{H_{q,s}[\alpha_1]g} * \left[\frac{2(\xi + \beta)\overline{z} - (\xi - 1 + 2\beta)\overline{z}^2}{(1-\overline{z})^2} \right] \neq 0, \qquad |\xi| = 1, \quad z \in U.$$

Proof. From (1.3), $f \in S_H^*(\alpha_1, \beta)$ if and only if for $z = re^{i\theta}$ in U, we have

$$\frac{\partial}{\partial \theta} (\arg(H_{q,s}[\alpha_1] f(re^{i\theta}))) = \frac{\partial}{\partial \theta} \left[\arg\left(H_{q,s}[\alpha_1] h(re^{i\theta}) + \overline{H_{q,s}[\alpha_1] g(re^{i\theta})}\right) \right] \ge \beta.$$

Therefore, we must have

$$\operatorname{Re}\left\{\frac{1}{1-\beta}\left[\frac{z(H_{q,s}[\alpha_1]h(z))' - \overline{z(H_{q,s}[\alpha_1]g(z))'}}{H_{q,s}[\alpha_1]h(z) + \overline{H_{q,s}[\alpha_1]g(z)}} - \beta\right]\right\} \ge 0.$$

Since

$$\frac{1}{1-\beta}\left[\frac{z(H_{q,s}[\alpha_1]h(z))'-\overline{z(H_{q,s}[\alpha_1]g(z))'}}{H_{q,s}[\alpha_1]h(z)+\overline{H_{q,s}[\alpha_1]g(z)}}-\beta\right]=1\quad\text{at}\quad z=0,$$

the above required condition is equivalent to

(2.9)
$$\frac{1}{1-\beta} \left[\frac{z(H_{q,s}[\alpha_1]h(z))' - \overline{z(H_{q,s}[\alpha_1]g(z))'}}{H_{q,s}[\alpha_1]h(z) + \overline{H_{q,s}[\alpha_1]g(z)}} - \beta \right] \neq \frac{\xi - 1}{\xi + 1}, \\ |\xi| = 1, \ \xi \neq -1, \ 0 < |z| < 1.$$

By a simple algebraic manipulation, inequality (2.9) yields

$$\begin{split} 0 &\neq (\xi+1)[z(H_{q,s}[\alpha_1]h(z))' - \overline{z(H_{q,s}[\alpha_1]g(z))'}] \\ &- (\xi-1+2\beta)[H_{q,s}[\alpha_1]h(z) + \overline{H_{q,s}[\alpha_1]g(z)}] \\ &= H_{q,s}[\alpha_1]h(z) * \left[\frac{(\xi+1)z}{(1-z)^2} - \frac{\xi-1+2\beta}{1-z} \right] \\ &- \overline{H_{q,s}[\alpha_1]g(z)} * \left[\frac{(\overline{\xi}+1)z}{(1-z)^2} + \frac{(\overline{\xi}-1+2\beta)z}{1-z} \right] \\ &= H_{q,s}[\alpha_1]h(z) * \left[\frac{2(1-\beta)z + (\xi-1+2\beta)z^2}{(1-z)^2} \right] \\ &+ \overline{H_{q,s}[\alpha_1]g(z)} * \left[\frac{2(\overline{\xi}+\beta)z - (\overline{\xi}-1+2\beta)z^2}{(1-z)^2} \right], \end{split}$$

which is the condition required by Theorem 2.7.

Finally, for f given by (1.1), the δ -neighborhood of f is the set

$$N_{\delta}(f) = \left\{ F = z + \sum_{k=2}^{\infty} A_k z^k + \sum_{k=1}^{\infty} \overline{B_k z^k} : \sum_{k=2}^{\infty} k(|a_k - A_k| + |b_k - B_k|) + |b_1 - B_1| \le \delta \right\}$$

(see [1] [8]). In our case, let us define the generalized δ -neighborhood of f to be the set

$$N(f) = \left\{ F : \sum_{k=2}^{\infty} \frac{\Gamma(\alpha_1, k)}{(k-1)!} \left[(k-\beta)|a_k - A_k| + (k+\beta)|b_k - B_k| \right] + (1+\beta)|b_1 - B_1| \le (1-\beta)\delta \right\}.$$

Theorem 2.8. Let f be given by (1.1). If f satisfies the conditions

(2.10)
$$\sum_{k=2}^{\infty} \frac{k(k-\beta)}{(k-1)!} |a_k| \Gamma(\alpha_1, k) + \sum_{k=1}^{\infty} \frac{k(k+\beta)}{(k-1)!} |b_k| \Gamma(\alpha_1, k) \le 1 - \beta, \ 0 \le \beta < 1$$

and

$$\delta \leq \frac{1-\beta}{2-\beta} \left(1 - \frac{1+\beta}{1-\beta} |b_1| \right),\,$$

then $N(f) \subset S_H^*(\alpha_1, \beta)$.

Proof. Let f satisfy (2.10) and

$$F(z) = z + \overline{B_1 z} + \sum_{k=2}^{\infty} \left(A_k z^k + \overline{B_k z^k} \right)$$

belong to N(f). We have

$$(1+\beta)|B_{1}| + \sum_{k=2}^{\infty} \frac{\Gamma(\alpha_{1}, k)}{(k-1)!} ((k-\beta)|A_{k}| + (k+\beta)|B_{k}|)$$

$$\leq (1+\beta)|B_{1} - b_{1}| + (1+\beta)|b_{1}| + \sum_{k=2}^{\infty} \frac{\Gamma(\alpha_{1}, k)}{(k-1)!} [(k-\beta)|A_{k} - a_{k}| + (k+\beta)|B_{k} - b_{k}|]$$

$$+ \sum_{k=2}^{\infty} \frac{\Gamma(\alpha_{1}, k)}{(k-1)!} [(k-\beta)|a_{k}| + (k+\beta)|b_{k}|]$$

$$\leq (1-\beta)\delta + (1+\beta)|b_{1}| + \frac{1}{2-\beta} \sum_{k=2} k \frac{\Gamma(\alpha_{1}, k)}{(k-1)!} [(k-\beta)|a_{k}| + (k+\beta)|b_{k}|]$$

$$\leq (1-\beta)\delta + (1+\beta)|b_{1}| + \frac{1}{2-\beta} [(1-\beta) - (1+\beta)|b_{1}|]$$

$$\leq 1-\beta.$$

Hence, for

$$\delta \le \frac{1-\beta}{2-\beta} \left[1 - \frac{1+\beta}{1-\beta} |b_1| \right],$$

we have $F(z) \in S_H^*(\alpha_1, \beta)$.

REFERENCES

- [1] O. ALTINAŞ, Ö. ÖZKAN AND H.M. SRIVASTAVA, Neighborhoods of a class of analytic functions with negative coefficients, *Appl. Math. Lett.*, **13** (2000), 63–67.
- [2] Y. AVCI AND E. ZLOTKIEWICZ, On harmonic univalent mapping, *Ann. Univ. Marie Curie-Sklodowska Sect.*, **A44** (1990), 1–7.
- [3] J. CLUNIE AND T. SHEILL-SMALL, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A.I. Math., 9 (1984), 3–25.
- [4] J. DZIOK AND H.M. SRIVASTAVA, Classes of analytic functions associated with the generalized hypergeometric function, *Appl. Math. Comput.*, **103** (1999), 1–13.
- [5] J.M. JAHANGIRI AND H. SILVERMAN, Harmonic univalent functions with varying arguments, *Inter. J. Appl. Math.*, **8**(3) (2002), 267–275.
- [6] J.M. JANANGIRI, Harmonic functions starlike in the unit dsic, *J. Math. Anal. Appl.*, **235** (1999), 470–447.
- [7] G. MURUGUGUSSYBDARAMOORTHY, On a class of Ruscheweh-type harmonic univalent functions with varying arguments, *Southwest J. Pure Appl. Math.*, **2** (2003), 90–95 (electronic).
- [8] S. RUSCHEWEYH, Neighborhoods of univalent functions, *Proc. Amer. Math. Soc.*, **81** (1981), 521–528.
- [9] S. RUSCHEWEYH, New criteria for univalent functions, *Proc. Amer. Math. Soc.*, **49** (1975), 109–115.
- [10] H. SILVERMAN, Univalent functions with varying arguments, *Houston J. Math.*, **7** (1978), 283–289.