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Abstract

In this paper we establish two new integral inequalities similar to that of the
Griss inequality by using a fairly elementary analysis.
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In 1935 (see4, p. 296]), G. Griss proved the following integral inequality
which gives an estimation for the integral of a product in terms of the product

of integrals:
/ (x) dz

‘b—a/f dx——/f )dx -

1 On Griss T Int |
<3 (M —m) (N = n), R
provided thatf andg are two integrable functions dn, b] and satisfying the B.G. Pachpatte
condition
m< f(x) <M, n<g(z) <N, Title Page
for all x € [a,b], wherem, M, n, N are given real constants. Contents
A great deal of attention has been given to the above inequality and many « N
papers dealing with various generalizations, extensions and variants have ap-
peared in the literature, sed |- [6] and the references cited therein. The main 4 >
purpose of the p_resgnt paper is to e_stabllsh t_wo new mte_gra_l inequalities S|mllar Go Back
to that of the Griss inequality involving functions and their higher order deriva-
tives. The analysis used in the proof is elementary and our results provide new Close
estimates on inequalities of this type. Quit
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In this section, we state our results to be proved in this paper. In what follows,
we denote byR, the set of real numbers afid b)) C R, a < b.
Our main results are given in the following theorems.

Theorem 2.1.Let f,g : [a,b] — R be functions such that™=Y ¢™=1) are
absolutely continuous ofa, b] and ™, ¢ € L., [a,b]. Then

(2.1)

‘bia/:f@)ﬂ@dw— (b% abf<x>da:) (ﬁ/abg@)dx)
1

_ m/ [(iFk (x)) g(z)+ <2Gk (@) f(z)

k=1 k=1

dx

< simap ), (@Il 417 @ 7].) A )
where
b— )" 4 (1) (x — o) ] &
2.2)  Fi(z) = _< ) (k:(+1))!( ) _f”(w),
b— )"+ (1) (x — o) ] &
2.3) Gi(x) = _< ) (k:(+1))!( ) _g”(m),
b
2.4) Av(x) = [ |K.(xb)dt,
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in which K, : [a,b]* — R is given by

(t ;‘a) if te€la,x]
(2.5) K, (z,t) = ‘
t ;,@ it te(x,b]
and
£ = sup [£7(B)] < oo,
te(a,b]
Hg(n)”OO — tSI[lIZ] }g(") (t)‘ < 00,
€la,

for x € [a,b] andn > 1 a natural number.

Theorem 2.2.Letp,q : [a,b] — R be functions such thai"= ¢~ are
absolutely continuous ofa, b] andp™, ¢ € L, [a,b]. Then

(2.6)

! p(2)a(2)do —n L p(@) s . e
L G =7

+ ﬁ/ [(ipk (x)) q(x)+ (Z_:Qk (5’7)> p(z)

k=1

< s ) @ @) B
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where

(2.8) Qx(x)

(2.9) B, ()
in which
and

(n=k) p* Y (@) (2 = ) =p* Y (1) (w =)

k!

(n—k) 4“7V (@)@ =a)" ="V ) (=)

b—a

k!
/ ’($ — t)n_l r(t, x)} dt,

t—a, if a<t<ax<b,

r(t,x) =
t—0b, if a<z<t<h,
1™ = sup [p™ (1)] < oo,
te(a,b]
lg™]|.. = sup |¢" ()] < oo,
tela,b]

for z € [a,b] andn > 1 is a natural number.

b—a

’

Y
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2.1

From the hypotheses ofi we have the following integral identity (seé, [p.
52)):

b n—1 V(g — o)
(3.1) /f(t)dt: [(b ) (+k(+11))!( ) ]f(’“’(x)

1" / K (1) 1O (1)

for z € [a,0]. In [1] the identity 3.1) is proved by mathematical induction. For
a different proof, seej]. The identity 38.1) can be rewritten as

n—1

LS

k=1

B b
_ b_a/aKn(x,t)f()(t)dt.

Similarly, from the hypotheses gnwe have the identity

(32) f( =—/f i~

n—1

I -
(33) g(l’):m i dt— Q;Gk
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Multiplying (3.2) by ¢ (x) and @.3) by f () and summing the resulting identi-

ties and integrating from to b and rewriting we have

oo g s (g [ r0w) oLy )
) (b_@/a[(,;F ) (ZG’“ ) ]d‘”

—Q(bia)Q [/abg(a:){b_a / K, (z,t) f™ (t)dt}dx
+ /abf(a:) {(b__l): /ab K, (2.8) g™ (1 dt} dx] |

From (3.4) we observe that

‘b—a/f bla/abfmdx) bfa/ab () )
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1 " (1o (o) 1] £ ™ .
<so=ap ), @I+ 1 @97 A,

which is the required inequality ir2(1). The proof is complete.
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2.2

From the hypotheses gnwe have the following integral identity (se&, [p.

291)):

n—1 b
(MD%<M@+§:&@Q—$ia/p@My

1

b
= m/a (33 — t)ni T (t, 37) p(n) (t) dt7

for z € [a,b]. The identity ¢.1) can be rewritten as

4.2) p(z :—/ dx— Pk(:v)

1 bx_ A
+(n—1) (b—a)/( t)" o (t, ) p (t)dt.

Similarly, from the hypotheses anwe have the identity

(4.3) q(x) = /’ dx—EZQk

1 S - (n)
+(n—1)!(b—a)/a(x )" (tx) g™ (t) dt.
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Multiplying (4.2) by ¢ (x) and @.3) by p () and summing the resulting identi-
ties and integrating from to b and rewriting we have

(bia/abq(m)dx)

Qx (x)) p(x)] dx

(4.4)

[ = (7 [pww)

—m/ [(Zpk($)>CI(l’)+

k=1

N 2(n_1)1!<b_a)2 Uabq(:p){/ab(x—t)"—lr(t,x)pm) (t)dt}dx

+/abp(x) {/b (x— " r (ha) g™ (1) dt} dm} |

From (4.4) and following the similar arguments as in the last part of the proof
of Theorem2.1, we get the desired inequality i&.¢). The proof is complete.
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