Journal of Inequalities in Pure and Applied Mathematics

APPLICATION LEINDLER SPACES TO THE REAL INTERPOLATION METHOD

VADIM KUKLIN

Department of Mathematics Voronezh State University Voronezh, 394693, Russia. *EMail*: craft_kiser@mail.ru J I M P A

volume 5, issue 3, article 68, 2004. Received 30 March, 2004; accepted 21 April, 2004.

Communicated by: H. Bor

©2000 Victoria University ISSN (electronic): 1443-5756 071-04

Abstract

The paper is devoted to the important section the Fourier analysis in one variable (AMS subject classification 42A16). In this paper we introduce Leindler space of Fourier - Haar coefficients, so we generalize [2, Theorem 7.a.12] and application to the real method spaces.

2000 Mathematics Subject Classification: 26D15, 40A05, 42A16, 40A99, 46E30, 47A30, 47A63.

Key words: Leindler sequence space of Fourier - Haar coefficients, Lorentz space, Haar functions, real method spaces.

Contents

1	Introduction	3
2	Problems	6
3	Lemmas and Theorems	9
Refe	erences	

Application Leindler Spaces to the Real Interpolation Method

Vadim Kuklin

Title Page Contents ▲ ▲ Go Back Close Quit Page 2 of 12

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

1. Introduction

A Banach space E[0, 1] is said to be a *rearrangement invariant* space (r.i) provided $f^*(t) \leq g^*(t)$ for any $t \in [0, 1]$ and $g \in E$ implies that $f \in E$ and $||f||_E \leq ||g||_E$, where $g^*(t)$ is the rearrangement of |g(t)|. Denote by φ_E the fundamental function of (r.i) space E such that $\varphi_E = ||\kappa_e(t)||$ (see, [1, p. 137]). Given $\tau > 0$, the dilation operator $\sigma_{\tau} f(t) = f(\frac{t}{\tau}), t \in [0, 1]$ and $\min(1, \tau) \leq ||\sigma_{\tau}||_{E \to E} \leq \max(1, \tau)$. Denote by

$$\alpha_E = \lim_{\tau \to +0} \frac{\ln \|\sigma_{\tau}\|_{E \to E}}{\ln \tau}, \qquad \beta_E = \lim_{\tau \to \infty} \frac{\ln \|\sigma_{\tau}\|_{E \to E}}{\ln \tau}$$

the Boyd indices of E. In general, $0 \le \alpha_E \le \beta_E \le 1$.

The associated space to E' is the space of all measurable functions f(t) such that $\int_0^1 f(t)g(t)dt < \infty$ for every $g(t) \in E$ endowed with the norm

$$\|f(t)\|_{E'} = \sup_{\|g(t)\|_E \le 1} \int_0^1 f(t)g(t)dt$$

For every (r.i) space E space the embedding $E \subset E''$ is isometric. If an (r.i) space E is separable, then (χ_n^k) is everywhere dense in E.

Denote by Ψ the set of increasing concave functions $\psi(t) \ge 0$ on [0, 1] with $\psi(0) = 0$. Then each function $\psi(t) \in \Psi$ generates the *Lorentz* space $\Lambda(\psi)$ endowed with the norm

$$\|g(t)\|_{\Lambda(\psi)} = \int_0^1 g^*(t) d\varphi(t) < \infty.$$

Application Leindler Spaces to the Real Interpolation Method

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

For every (r.i) space E space the embedding $E \subset E''$ is isometric. Let be Ω the set of (n, k) such that $1 \leq k \leq 2^n$, $n \in \mathbb{N} \cup \{0\}$. Put $\chi_0^0 \equiv 1$. If $(n, k) \in \Omega$,

$$\chi_n^k(t) = \begin{cases} 1, & \frac{k-1}{2^n} < t < \frac{2k-1}{2^{n+1}}, \\ -1, & \frac{2k-1}{2^{n+1}} < t < \frac{k}{2^n}, \\ 0, & \text{ for any } t \in \left[\frac{k-1}{2^n}, \ \frac{k}{2^n}\right] \end{cases}$$

The set of functions (χ_n^k) is called the *Haar functions*, normalized in $L_{\infty}[0, 1]$ (see [2, p. 15-18]). If an (r.i) space E is separable, then (χ_n^k) everywhere dense in E. Given $f(t) \in L_1$. The *Fourier-Haar coefficients* are given by

$$c_{n,k}(f) = 2^n \int_0^1 f(t)\chi_n^k(t)dt.$$

Put $g(t) = \sum_{(n,k)\in\Omega} c_{n,k}\chi_n^k$ for any $g \in L_1[0,1]$.

A Banach sequence space E is said to be a *rearrangement invariant* space (r.i) provided that $||(a_n)||_E \leq ||(a_n^*)||_E$, where a_n^* the rearrangement of sequence $(a_n)_{n \in \mathbb{N}}$ i.e.

$$a_n^* = \inf \left\{ \sup_{i \in \mathbf{N} \setminus \mathbf{J}} |a_i| : \mathbf{J} \subset \mathbf{N}, card(\mathbf{J}) < n \right\}$$

It is maximal if the unit ball B_E is closed in the poinwise convergence topology inducted by the space A of all real sequences. This condition is equivalent to $E^{\#} = E'$, where

$$E^{\#} = \left\{ (b_n)_{n \in \mathbf{N}} \subset A : \sum_{n=1}^{\infty} |a_n b_n| < \infty, (a_n)_{n \in \mathbf{N}} \subset E \right\}$$

Application Leindler Spaces to the Real Interpolation Method

Title Page		
Contents		
44	••	
◀		
Go Back		
Close		
Quit		
Page 4 of 12		

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

is the *Kother dual* of E. Clearly, $E^{\#}$ is a maximal Banach space under the norm

$$\|(b_n)\|_{E^{\#}} = \sup\left\{\sum_{n=1}^{\infty} |a_n b_n| < \infty : \|(a_n)\|_E \le 1\right\}$$

Denoting $\lambda = (\lambda_n)_{n=1}^{\infty}$ be a sequence of positive numbers. We shall use the following notation (see [3, pp. 517-518]):

$$\Lambda_n = \sum_{k=n}^{\infty} \lambda_k \text{ and } \Lambda_n^{(c)} = \sum_{k=n}^{\infty} \lambda_k \Lambda_k^{-c}, (\Lambda_1 < \infty);$$

furthermore, for $c \ge 0$. By analogy with [3, pp. 517-518] we define *Leindler* sequence space of Fourier-Haar coefficients, for $p > 0, c \ge 0$, with the norm:

$$\|(c_{n,k})_{n=1}^{\infty}\|_{\lambda(p,c)} = \left(\sum_{n=1}^{\infty} \lambda_n \Lambda_n^{-c} \left(\sum_{k=1}^{2^n} |c_{n,k}| \, 2^{-n}\right)^p\right)^{\frac{1}{p}} < \infty.$$

Why do we consider the sequence $(c_{n,k})_{n=1}^{\infty}$? The answer to this question follows from [2, Theorem 7.a.3], i.e. $g \in \Lambda(\psi) \Leftrightarrow \sup_{0 < t \le 1} 2^{-\frac{n}{p}} c_{n,1}(g) < \infty$. Here, as usual, $X \hookrightarrow Y$ stands for the continuous embedding, that is, $||g||_Y \le C ||g||_X$ for some C > 0 and every $g \in X$. The sign \cong means that these spaces coincide to with within equivalence of norms.

Application Leindler Spaces to the Real Interpolation Method

Title Page		
Contents		
44	••	
◀	•	
Go Back		
Close		
Quit		
Page 5 of 12		

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

2. Problems

By [2, Theorem 7.a.12] for p = 2 we have

$$\left\| \sum_{(n,k)\in\Omega} c_{n,k} \chi_n^k \right\|_{L_2} = \left(\sum_{n=1}^\infty 2^{-n} \sum_{k=1}^{2^n} c_{n,k}^2 \right)^{\frac{1}{2}}$$

If for $\|(c_{n,k})_{n=1}^{\infty}\|_{\lambda(p,c)}$ we put $p = 2, c = 0, \lambda_n = 1$, then

$$\|(c_{n,k})_{n=1}^{\infty}\|_{\lambda(2,0)} \le M \left\|\sum_{(n,k)\in\Omega} c_{n,k}\chi_{n}^{k}\right\|_{L_{2}}$$

Denote by

$$T\left(\sum_{(n,k)\in\Omega}c_{n,k}\chi_n^k\right) = (c_{n,k})_{(n,k)\in\Omega}.$$

Hence by [1, Chapter 2, §5, Theorem 5.5] we have the operator bounded from $\Lambda(\psi)$ into $\lambda(2,0)$. In general we consider

Problem 1. Let 0 < c < 1, 1 . Whether there exists a operator <math>T bounded from $\Lambda(\psi)$ into $\lambda(p, c)$?

Let (E_0, E_1) be a compatible pair of Banach spaces. We recall

$$K(t,g) = K(t,g,E_0,E_1) = \inf_{g=g_0+g_1,g_i\in E_i(i=0,1)} \left(\|g_0\|_{E_0} + t \|g_1\|_{E_1} \right).$$

Application Leindler Spaces to the Real Interpolation Method

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

Here $g \in E_0 + E_1$, $0 < t \le 1$. If $0 < \theta < 1$, $1 \le p \le \infty$, then the spaces $(E_0, E_1)_{\theta,p}$ endowed with the norm

$$\|g\|_{(E_0,E_1)_{\theta,p}} = \left(\int_0^1 (K(t,g)t^{-\theta})^p \frac{dt}{t}\right)^{\frac{1}{p}} < \infty, \text{ iff } p < \infty$$

and

$$||g||_{(E_0,E_1)_{\theta,p}} = \sup_{0 < t < 1} K(t,g)t^{-\theta} < \infty, \text{ iff } p = \infty$$

are called real method spaces. Let $0 \le \alpha_0 < \alpha_1 < 1$, $\psi_0(t) = t^{\alpha_0}$, $\psi_{1,}(t) = t^{\alpha_1}$, $0 < \theta < 1$, $1 \le p \le \infty$, $\psi(t) = \frac{t}{\psi(t)}$. In [5, §2, p. 174] the problem was solved: when does the equivalence

$$(\Lambda(\psi_0), \Lambda(\psi_1))_{\theta, p} \cong \left(M(\widetilde{\psi_0}), M(\widetilde{\psi_1})\right)_{\theta, p}.$$

holds?

We consider the embedding $(\Lambda(\psi_0), \Lambda(\psi_1))_{\theta, p} \hookrightarrow \left(M(\widetilde{\psi_0}), M(\widetilde{\psi_1}) \right)_{\theta, p}$. Let $0 \le \alpha_0 = \alpha_1 < 1, \ \psi(t) = t^{\alpha}, \ 0 < \theta < 1, \ 1 < p \le \infty.$

Problem 2. Whether there exists $0 < c < 1, 1 < p < \infty$ such that

$$T: (\Lambda(\psi), \Lambda(\psi))_{\theta, p} \to (\lambda(p, c), \lambda(p, c))_{\theta, p} ?$$

In this article we consider Leindler sequence space of Fourier-Haar coefficients $\lambda(p, c)$.

To prove our theorems we need the following Theorem 1 (see [4]).

Application Leindler Spaces to the Real Interpolation Method

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

Theorem 1. *If* $p > 1, 0 \le c < 1$ *, then*

$$\sum_{n=1}^{\infty} \lambda_n \Lambda_n^{-c} \left(\sum_{k=1}^n |a_k| \right)^p \le \left(\frac{p}{1-c} \right)^p \sum_{n=1}^{\infty} \lambda_n^{1-p} \Lambda_n^{p-c} a_n^p.$$

The constant is best possible.

Application Leindler Spaces to the Real Interpolation Method

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

3. Lemmas and Theorems

Lemma 3.1. Let $1 and <math>\sup_{0 < t \le 1} 2^{-\frac{n}{p}} c_{n,1}(g) < \infty$. Then the operator T is bounded from $\Lambda(\psi)$ into $\lambda(p, c)$.

Proof. By [2, Theorem 4.a.1] for 1 we have

$$\int_{0}^{1} \left| \sum_{k=1}^{2^{n}} c_{n,k} \chi_{n}^{k} \right|^{p} dt \leq \int_{0}^{1} \left| \sum_{n=l}^{\infty} \sum_{k=1}^{2^{n}} c_{n,k} \chi_{n}^{k} \right|^{p} dt \leq 2^{p} \int_{0}^{1} \left| \sum_{(n,k) \in \Omega} c_{n,k} \chi_{n}^{k} \right|^{p} dt,$$

where $n \leq l \leq \infty$.

On the other hand,

$$\int_0^1 \left\| \sum_{k=1}^{2^n} c_{n,k} \chi_n^k \right\|_{L_p}^p dt = \int_0^1 2^{-n} \sum_{k=1}^{2^n} |c_{n,k}|^p dt = 2^{-n} \sum_{k=1}^{2^n} |c_{n,k}|^p.$$

Therefore,

$$\left(2^{-n}\sum_{k=1}^{2^n} |c_{n,k}|^p\right)^{\frac{1}{p}} \le 2 \|g\|_{L_p}.$$

From the above and [1, Chapter 2, §5, Theorem 5.5] we get

$$\left\| (c_{n,k})_{n=1}^{\infty} \right\|_{\lambda(p,c)} \le 2 \left(\sum_{n=1}^{\infty} \lambda_n \Lambda_n^{-c} \right)^{\frac{1}{p}} \left\| g \right\|_{\Lambda(\psi)}$$

Hence the operator T is bounded from $\Lambda(\psi)$ into $\lambda(p,c)$. This proves the assertion.

Application Leindler Spaces to the Real Interpolation Method

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

Remark 3.1. In the Lemma 3.1 the condition $0 < c < 1, 1 < p < \infty$ is necessary for the operator T.

We shall formulate the sufficient condition of boundedness of the operator T from $\Lambda(\psi)$ into $\lambda(p,c)$.

Theorem 3.2. Let $0 \le c < 1$, $\sup_{0 < t \le 1} 2^{-\frac{n}{p}} c_{n,1}(g) < \infty$. For of boundedness the operator T bounded from $\Lambda(\psi)$ into $\lambda(p,c)$ is sufficient that $2 \le p < \infty$.

Proof. By Theorem 1 and Hölder's inequality we have

$$\|(c_{n,k})_{n=1}^{\infty}\|_{\lambda(p,c)} \leq \frac{p}{1-c} \sum_{n=1}^{\infty} \lambda_n^{\frac{1}{p}-1} \Lambda_n^{1-\frac{c}{p}} \left(\sum_{(n,k)\in\Omega} |c_{n,k}|^p \, 2^{-n} \right)^{\frac{1}{p}}$$

Now using [2, Theorem 7.a.12 (c. 2)] and [1, Chapter 2, §5, Theorem 5.5] we obtain that

$$\left\| (c_{n,k})_{n=1}^{\infty} \right\|_{\lambda(p,c)} \leq \frac{p}{1-c} \sum_{n=1}^{\infty} \lambda_n^{\frac{1}{p}-1} \Lambda_n^{1-\frac{c}{p}} \left\| \sum_{(n,k)\in\Omega} c_{n,k} \chi_n^k \right\|_{\Lambda(\psi)}.$$

This finishes the proof.

Remark 3.2. If $1 \le p < 2$, 0 < c < 1, then by [2, Theorem 7.a.12 (c. 1)] $T : \Lambda(\psi) \twoheadrightarrow \lambda(p, c)$.

Theorem 3.3. Let $0 \le c < 1, 2 \le p \le \infty$, $\sup_{0 < t \le 1} 2^{-\frac{n}{p}} c_{n,1}(g) < \infty$. Then

 $T: (\Lambda(\psi), \Lambda(\psi))_{\theta, p} \to (\lambda(p, c), \lambda(p, c))_{\theta, p}.$

Application Leindler Spaces to the Real Interpolation Method

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

Proof. Clearly, by Hölder's inequality the estimate

$$\left\| (c_{n,k})_{n=1}^{\infty} \right\|_{\lambda(p,c)} \leq \frac{p}{1-c} \sum_{n=1}^{\infty} \lambda_n^{\frac{1}{p}-1} \Lambda_n^{1-\frac{c}{p}} \left\| (c_{n,k})_{n=1}^{\infty} \right\|_{\ell_2}$$

holds. It is known that the operator T is bounded from L_2 into ℓ_2 . Then from the above and [1, Chapter 2, §5, Theorem 5.5] we obtain

 $K(t, (c_{n,k})_{n=1}^{\infty}, \lambda(p, c), \lambda(p, c)) \le K(t, g, \Lambda(\psi), \Lambda(\psi)).$

Hence $T : (\Lambda(\psi), \Lambda(\psi))_{\theta, p} \to (\lambda(p, c), \lambda(p, c))_{\theta, p}$. This completes the proof.

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au

References

- S.G. KREIN, YU. I. PETUNIN AND E.M. SEMENOV, *Interpolation linear operators*, Nauka, Moscow, 1978, in Russian; Math. Mono., Amer. Math. Soc., Providence, RI, 1982, English translation.
- [2] I. NOVIKOV AND E. SEMENOV, *Haar Series and Linear Operators*, Mathematics and Its Applications, Kluwer Acad. Publ., 1997.
- [3] L. LEINDLER, Hardy Bennett Type Theorems, *Math. Ineq. and Appl.*, **4** (1998), 517–526.
- [4] L. LEINDLER, Two theorems of Hardy-Bennett type, *Acta Math. Hung.*, 79(4) (1998), 341–350.
- [5] E. SEMENOV, On the stability of the real interpolation method in the class of rearrangement invariant spaces, *Israel Math. Proceedings*, **13** (1999), 172–182.

Application Leindler Spaces to the Real Interpolation Method

Title	Title Page		
Contents			
••			
•			
Go Back			
Close			
Quit			
Page 12 of 12			

J. Ineq. Pure and Appl. Math. 5(3) Art. 68, 2004 http://jipam.vu.edu.au