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Abstract

The paper is devoted to the important section the Fourier analysis in one vari-
able (AMS subject classification 42A16). In this paper we introduce Leindler
space of Fourier - Haar coefficients, so we generalize [2, Theorem 7.a.12] and
application to the real method spaces.

2000 Mathematics Subject Classification: 26D15, 40A05, 42A16, 40A99, 46E30,
47A30, 47A63.
Key words: Leindler sequence space of Fourier - Haar coefficients, Lorentz space,

Haar functions, real method spaces.
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1. Introduction
A Banach spaceE[0, 1] is said to be arearrangement invariantspace (r.i) pro-
vided f ∗(t) ≤ g∗(t) for any t ∈ [0, 1] and g ∈ E implies thatf ∈ E and
‖f‖E ≤ ‖g‖E, whereg∗(t) is the rearrangement of|g(t)|. Denote byϕE
the fundamental function of (r.i) spaceE such thatϕE = ‖κe(t)‖ (see, [1,
p. 137]). Givenτ > 0, the dilation operatorστf(t) = f( t

τ
), t ∈ [0, 1] and

min(1, τ) ≤ ‖στ‖E→E ≤ max(1, τ). Denote by

αE = lim
τ→+0

ln ‖στ‖E→E

ln τ
, βE = lim

τ→∞

ln ‖στ‖E→E

ln τ

the Boyd indices ofE. In general,0 ≤ αE ≤ βE ≤ 1.
The associated space toE ′ is the space of all measurable functionsf(t) such

that
∫ 1

0
f(t)g(t)dt <∞ for everyg(t) ∈ E endowed with the norm

‖f(t)‖E′ = sup
‖g(t)‖E≤1

∫ 1

0

f(t)g(t)dt.

For every (r.i) spaceE space the embeddingE ⊂ E ′′ is isometric. If an (r.i)
spaceE is separable, then(χkn) is everywhere dense inE.

Denote byΨ the set of increasing concave functionsψ(t) ≥ 0 on [0, 1] with
ψ(0) = 0. Then each functionψ(t) ∈ Ψ generates theLorentzspaceΛ(ψ)
endowed with the norm

‖g(t)‖Λ(ψ) =

∫ 1

0

g∗(t)dϕ(t) <∞.
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For every (r.i) spaceE space the embeddingE ⊂ E ′′ is isometric.
Let beΩ the set of(n, k) such that1 ≤ k ≤ 2n, n ∈ N∪{0}. Putχ0

0 ≡ 1. If
(n, k) ∈ Ω,

χkn(t) =


1, k−1

2n < t < 2k−1
2n+1 ,

−1, 2k−1
2n+1 < t < k

2n ,

0, for anyt ∈
[
k−1
2n ,

k
2n

]
.

The set of functions
(
χkn
)

is called theHaar functions, normalized inL∞[0, 1]
(see [2, p. 15-18]). If an (r.i) spaceE is separable, then

(
χkn
)

everywhere dense
in E. Givenf(t) ∈ L1. TheFourier-Haar coefficientsare given by

cn,k(f) = 2n
∫ 1

0

f(t)χkn(t)dt.

Putg(t) =
∑

(n,k)∈Ω

cn,kχ
k
n for anyg ∈ L1[0, 1].

A Banach sequence spaceE is said to be arearrangement invariantspace
(r.i) provided that‖(an)‖E ≤ ‖(a∗n)‖E ,wherea∗n the rearrangement of sequence
(an)n∈N i.e.

a∗n = inf

{
sup
i∈N\J

|ai| : J ⊂ N, card(J) <n

}
.

It is maximal if the unit ballBE is closed in the poinwise convergence topol-
ogy inducted by the spaceA of all real sequences. This condition is equivalent
toE# = E ′, where

E# =

{
(bn)n∈N ⊂ A :

∞∑
n=1

|anbn| <∞, (an)n∈N ⊂ E

}
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is theKother dualofE. Clearly,E# is a maximal Banach space under the norm

‖(bn)‖E# = sup

{
∞∑
n=1

|anbn| <∞ : ‖(an)‖E ≤ 1

}
.

Denotingλ = (λn)
∞
n=1 be a sequence of positive numbers. We shall use the

following notation (see [3, pp. 517-518]):

Λn =
∞∑
k=n

λk andΛ(c)
n =

∞∑
k=n

λkΛ
−c
k , (Λ1 <∞);

furthermore, forc ≥ 0. By analogy with [3, pp. 517-518] we defineLeindler
sequence space of Fourier-Haar coefficients, for p > 0, c ≥ 0, with the norm:

‖(cn,k)∞n=1‖λ(p,c) =

(
∞∑
n=1

λnΛ
−c
n

(
2n∑
k=1

|cn,k| 2−n
)p) 1

p

<∞.

Why do we consider the sequence(cn,k)
∞
n=1? The answer to this question

follows from [2, Theorem 7.a.3], i.e.g ∈ Λ(ψ) ⇔ sup
0<t≤1

2−
n
p cn,1(g) < ∞.

Here, as usual,X ↪→ Y stands for the continuous embedding, that is,‖g‖Y ≤
C ‖g‖X for someC > 0 and everyg∈X. The sign∼= means that these spaces
coincide to with within equivalence of norms.
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2. Problems
By [2, Theorem 7.a.12] forp = 2 we have∥∥∥∥∥∥

∑
(n,k)∈Ω

cn,kχ
k
n

∥∥∥∥∥∥
L2

=

(
∞∑
n=1

2−n
2n∑
k=1

c2n,k

) 1
2

.

If for
∥∥(cn,k)∞n=1

∥∥
λ(p,c)

we putp = 2, c = 0, λn = 1, then

‖(cn,k)∞n=1‖λ(2,0) ≤M

∥∥∥∥∥∥
∑

(n,k)∈Ω

cn,kχ
k
n

∥∥∥∥∥∥
L2

.

Denote by

T

 ∑
(n,k)∈Ω

cn,kχ
k
n

 = (cn,k)(n,k)∈Ω.

Hence by [1, Chapter 2, §5, Theorem 5.5] we have the operator bounded from
Λ(ψ) into λ(2, 0). In general we consider

Problem 1. Let 0 < c < 1, 1 < p < ∞. Whether there exists a operatorT
bounded fromΛ(ψ) into λ(p, c)?

Let (E0, E1) be a compatible pair of Banach spaces. We recall

K(t, g) = K(t, g, E0, E1) = inf
g=g0+g1,gi∈Ei(i=0,1)

(
‖g0‖E0

+ t ‖g1‖E1

)
.
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Hereg ∈ E0 + E1, 0 < t ≤ 1. If 0 < θ < 1, 1 ≤ p ≤ ∞, then the spaces
(E0, E1)θ,p endowed with the norm

‖g‖(E0,E1)θ,p
=

(∫ 1

0

(K(t, g)t−θ)p
dt

t

) 1
p

<∞, iff p <∞

and
‖g‖(E0,E1)θ,p

= sup
0<t<1

K(t, g)t−θ <∞, iff p = ∞

are called real method spaces. Let0 ≤ α0 < α1 < 1, ψ0(t) = tα0 , ψ1,(t) = tα1 ,

0 < θ < 1, 1 ≤ p ≤ ∞,
∼
ψ(t) = t

ψ(t)
. In [5, §2, p. 174] the problem was solved:

when does the equivalence

(Λ(ψ0),Λ(ψ1))θ,p
∼=
(
M(

∼
ψ0),M(

∼
ψ1)
)
θ,p
.

holds?

We consider the embedding(Λ(ψ0),Λ(ψ1))θ,p ↪→
(
M(

∼
ψ0),M(

∼
ψ1)
)
θ,p

. Let

0 ≤ α0 = α1 < 1, ψ(t) = tα, 0 < θ < 1, 1 < p ≤ ∞.

Problem 2. Whether there exists0 < c < 1, 1 < p <∞ such that

T : (Λ(ψ),Λ(ψ))θ,p → (λ(p, c), λ(p, c))θ,p ?

In this article we consider Leindler sequence space of Fourier-Haar coeffi-
cientsλ(p, c).

To prove our theorems we need the following Theorem1 (see [4]).
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Theorem 1. If p > 1, 0 ≤ c < 1, then

∞∑
n=1

λnΛ
−c
n

(
n∑
k=1

|ak|

)p

≤
(

p

1− c

)p ∞∑
n=1

λ1−p
n Λp−c

n apn.

The constant is best possible.
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3. Lemmas and Theorems
Lemma 3.1. Let 1 < p < ∞, 0 ≤ c < 1 and sup

0<t≤1
2−

n
p cn,1(g) < ∞. Then the

operatorT is bounded fromΛ(ψ) into λ(p, c).

Proof. By [2, Theorem 4.a.1] for1 < p <∞ we have∫ 1

0

∣∣∣∣∣
2n∑
k=1

cn,kχ
k
n

∣∣∣∣∣
p

dt ≤
∫ 1

0

∣∣∣∣∣
∞∑
n=l

2n∑
k=1

cn,kχ
k
n

∣∣∣∣∣
p

dt ≤ 2p
∫ 1

0

∣∣∣∣∣∣
∑

(n,k)∈Ω

cn,kχ
k
n

∣∣∣∣∣∣
p

dt,

wheren ≤ l ≤ ∞.
On the other hand,∫ 1

0

∥∥∥∥∥
2n∑
k=1

cn,kχ
k
n

∥∥∥∥∥
p

Lp

dt =

∫ 1

0

2−n
2n∑
k=1

|cn,k|p dt = 2−n
2n∑
k=1

|cn,k|p .

Therefore, (
2−n

2n∑
k=1

|cn,k|p
) 1

p

≤ 2 ‖g‖Lp
.

From the above and [1, Chapter 2, §5, Theorem 5.5] we get

‖(cn,k)∞n=1‖λ(p,c) ≤ 2

(
∞∑
n=1

λnΛ
−c
n

) 1
p

‖g‖Λ(ψ) .

Hence the operatorT is bounded fromΛ(ψ) into λ(p, c). This proves the asser-
tion.
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Remark 3.1. In the Lemma3.1 the condition0 < c < 1, 1 < p < ∞ is
necessary for the operatorT.

We shall formulate the sufficient condition of boundedness of the operatorT
from Λ(ψ) into λ(p, c).

Theorem 3.2. Let 0 ≤ c < 1, sup
0<t≤1

2−
n
p cn,1(g) < ∞. For of boundedness the

operatorT bounded fromΛ(ψ) into λ(p, c) is sufficient that2 ≤ p <∞.

Proof. By Theorem1 and Hölder’s inequality we have

‖(cn,k)∞n=1‖λ(p,c) ≤
p

1− c

∞∑
n=1

λ
1
p
−1

n Λ
1− c

p
n

 ∑
(n,k)∈Ω

|cn,k|p 2−n

 1
p

.

Now using [2, Theorem 7.a.12 (c. 2)] and [1, Chapter 2, §5, Theorem 5.5] we
obtain that

∥∥(cn,k)∞n=1

∥∥
λ(p,c)

≤ p

1− c

∞∑
n=1

λ
1
p
−1

n Λ
1− c

p
n

∥∥∥∥∥∥
∑

(n,k)∈Ω

cn,kχ
k
n

∥∥∥∥∥∥
Λ(ψ)

.

This finishes the proof.

Remark 3.2. If 1 ≤ p < 2, 0 < c < 1, then by [2, Theorem 7.a.12 (c. 1)]
T : Λ(ψ) 9 λ(p, c).

Theorem 3.3.Let0 ≤ c < 1, 2 ≤ p ≤ ∞, sup
0<t≤1

2−
n
p cn,1(g) <∞. Then

T : (Λ(ψ),Λ(ψ))θ,p → (λ(p, c), λ(p, c))θ,p.
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Proof. Clearly, by Hölder’s inequality the estimate

∥∥(cn,k)∞n=1

∥∥
λ(p,c)

≤ p

1− c

∞∑
n=1

λ
1
p
−1

n Λ
1− c

p
n

∥∥(cn,k)∞n=1

∥∥
`2

holds. It is known that the operatorT is bounded fromL2 into `2. Then from
the above and [1, Chapter 2, §5, Theorem 5.5] we obtain

K(t, (cn,k)
∞
n=1, λ(p, c), λ(p, c)) ≤ K(t, g,Λ(ψ),Λ(ψ)).

HenceT : (Λ(ψ),Λ(ψ))θ,p → (λ(p, c), λ(p, c))θ,p. This completes the proof.
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