Journal of Inequalities in Pure and Applied Mathematics

IMPROVEMENTS OF EULER-TRAPEZOIDAL TYPE INEQUALITIES WITH HIGHER-ORDER CONVEXITY AND APPLICATIONS

volume 5, issue 3, article 66, 2004.

DAH-YAN HWANG

Department of General Education
Kuang Wu Institute of Technology
Peito, Taipei, Taiwan 11271, R.O.C.
EMail: dyhuang@mail.apol.com.tw
Received 28 May, 2003;
accepted 12 April, 2004.
Communicated by: C.E.M. Pearce
Abstract

Abstract

We improve a bounds relating to Euler's formula for the case of a function with higher-order convexity properties. These are used to improve estimates of the error involved in the use of the trapezoidal formula for integrating such a function.

2000 Mathematics Subject Classification: 26D15, 26D20.
Key words: Hadamard inequality, Euler formula, Convex functions, Integral inequalities, Numerical integration.

Contents

1 Introduction 3
2 The Euler-Trapezoidal Formula and Some Identities 5
3 Results 8
4 Application 13
References

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

J. Ineq. Pure and Appl. Math. 5(3) Art. 66, 2004 http://jipam.vu.edu.au

1. Introduction

Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex mapping defined on the interval I of real numbers and $a, b \in I$ with $a<b$. The following inequality:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is known in the literature as Hadamard's inequality for convex mappings. Note that some of the classical inequalities for means can be derived from (1.1) for appropriate particular selections of the mappings f. Over the last decade this pair of inequalities (1.1) have been improved and extended in a number of ways, including the derivation of estimates of the differences between the two sides of each inequality.

In [4], Dragomir and Agarwal have made use of the latter to derive bounds for the error term in the trapezoidal formula for the numerical integration of an integrable function f such that $\left|f^{\prime}\right|^{q}$ is convex for some $q \geq 1$. Some improvements of their result have been derived in [6] and [7].

Recently, Lj Dedic et al. [3, Theorem 2 for $r=1]$ establish the following basic result which was obtained for the difference between the two side of the right-hand Hadamard inequality.

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a real-valued twice differentiable function. If $\left|f^{\prime \prime}\right|^{q}$ is convex for some $q \geq 1$, then

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-\frac{b-a}{2}[f(a)+f(b)]\right| \leq \frac{(b-a)^{3}}{12}\left[\frac{\left|f^{\prime \prime}(a)\right|^{q}+\left|f^{\prime \prime}(b)\right|^{q}}{2}\right]^{\frac{1}{q}} \tag{1.2}
\end{equation*}
$$

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 3 of 16 |

J. Ineq. Pure and Appl. Math. 5(3) Art. 66, 2004
http://jipam.vu.edu.au

If $\left|f^{\prime \prime}\right|^{q}$ is concave, then

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-\frac{b-a}{2}[f(a)+f(b)]\right| \leq \frac{(b-a)^{3}}{12}\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right| \tag{1.3}
\end{equation*}
$$

In this paper, using Euler-trapezoidal formula, we shall generalize and improve the inequalities (1.2) and (1.3). Also, we apply the result to obtain a better estimates of the error in the trapezoidal formula.

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang
Title Page
J. Ineq. Pure and Appl. Math. 5(3) Art. 66, 2004 http://jipam.vu.edu.au

2. The Euler-Trapezoidal Formula and Some Identities

In what follows, let $B_{n}(t), n \geq 0$ be the Bernoulli polynomials and $B_{n}=$ $B_{n}(0), n \geq 0$, the Bernoulli numbers. The first few Bernoulli polynomials are
$B_{0}(t)=1, \quad B_{1}(t)=t-\frac{1}{2}, \quad B_{2}(t)=t^{2}-t+\frac{1}{6}, \quad B_{3}(t)=t^{3}-\frac{3}{2} t^{2}+\frac{1}{2} t$,
$B_{4}(t)=t^{4}-2 t^{3}+t^{2}-\frac{1}{30}$
and the first few Bernoulli numbers are

$$
B_{0}=1, \quad B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{3}=0, \quad B_{4}=-\frac{1}{30}, \quad B_{5}=0
$$

For some details on the Bernoulli polynomials and the Bernoulli numbers, see for example [1, 5].

The relevant key properties of the Bernoulli polynomials are

$$
\begin{aligned}
& B_{n}^{\prime}(t)=n B_{n-1}(t), \quad(n \geq 1) \\
& B_{n}(1+t)-B_{n}(t)=n t^{n-1}, \quad(n \geq 0)
\end{aligned}
$$

(See for example, [1, Chapter 23]). Let $P_{2 n}(t)=\left[B_{n}(t)-B_{n}\right] / n!$. We note that $P_{2 n}(t), P_{2 n}\left(\frac{t}{2}\right)$ and $P_{2 n}\left(1-\frac{t}{2}\right)$ do not change sign on (0.1).

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Go Back	
Close	
Quit	

Page 5 of 16

By [2, p. 274], we have the following Euler-trapezoidal formula:

$$
\begin{align*}
& \int_{a}^{b} f(x) d x=\frac{b-a}{2}[f(a)+f(b)] \tag{2.1}\\
& -\sum_{k=1}^{r-1} \frac{(b-a)^{2 k} B_{2 k}}{(2 k)!}\left[f^{(2 k-1)}(b)-f^{(2 k-1)}(a)\right] \\
& \quad+(b-a)^{2 r+1} \int_{0}^{1} P_{2 r}(t) f^{(2 r)}(a+t(b-a)) d t
\end{align*}
$$

and by [2, p. 275], we have
(2.2) $\int_{a}^{a+n h} f(x) d x=T(f ; h)$

$$
\begin{aligned}
-\sum_{k=1}^{r-1} \frac{B_{2 k} h^{2 k}}{(2 k)!} & {\left[f^{(2 k-1)}(a+n h)-f^{(2 k-1)}(a)\right] } \\
& +h^{2 r+1} \sum_{k=0}^{n-1} \int_{0}^{1} P_{2 r}(t) f^{(2 r)}(a+h(t+k)) d t
\end{aligned}
$$

where

$$
T(f ; h)=h\left[\frac{1}{2} f(a)+\sum_{k=1}^{n-1} f(a+n h)+\frac{1}{2} f(a+n h)\right]
$$

is estimates of integral $\int_{a}^{a+h} f(x) d x$.

Dah-Yan Hwang

Title Page

Contents

Go Back
Close
Quit
Page 6 of 16
J. Ineq. Pure and Appl. Math. 5(3) Art. 66, 2004

In this article, we adopt the terminology that f is $(j+2)$-convex if $f^{(j)}$ is convex, so ordinary convexity is two-convexity. A corresponding definition applies for $(j+2)$-concavity.

For our results, we need the following identities. By $B_{2 j+1}\left(\frac{1}{2}\right)=0$ for $j \geq 0 ; B_{j}=B_{j}(1)$ for $j \geq 0$ and integrating by parts, we have that the following identities hold:

$$
\begin{equation*}
a_{\mathrm{I}}(r)=\int_{0}^{1} P_{2 r}\left(\frac{t}{2}\right) d t=-\frac{2 B_{2 r+1}}{(2 r+1)!}-\frac{B_{2 r}}{(2 r)!} \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
a_{\mathrm{II}}(r)=\int_{0}^{1} t P_{2 r}\left(\frac{t}{2}\right) d t=-\frac{4\left(B_{2 r+2}\left(\frac{1}{2}\right)-B_{2 r+2}\right)}{(2 r+2)!}-\frac{B_{2 r}}{2(2 r)!} \tag{II}
\end{equation*}
$$

(III) $\quad a_{\mathrm{III}}(r)=\int_{0}^{1}(1-t) P_{2 r}\left(\frac{t}{2}\right) d t$

$$
=\frac{4\left(B_{2 r+2}\left(\frac{1}{2}\right)-B_{2 r+2}\right)}{(2 r+2)!}-\frac{2 B_{2 r+1}}{(2 r+1)!}-\frac{B_{2 r}}{2(2 r)!}
$$

$$
\begin{equation*}
a_{\mathrm{IV}}(r)=\int_{0}^{1} P_{2 r}\left(1-\frac{t}{2}\right) d t=\frac{2 B_{2 r+1}}{(2 r+1)!}-\frac{B_{2 r}}{(2 r)!} \tag{IV}
\end{equation*}
$$

(V) $\quad a_{\mathrm{V}}(r)=\int_{0}^{1} t P_{2 r}\left(1-\frac{t}{2}\right) d t=-\frac{4\left(B_{2 r+2}\left(\frac{1}{2}\right)-B_{2 r+2}\right)}{(2 r+2)!}-\frac{B_{2 r}}{2(2 r)!}$,
(VI) $\quad a_{\mathrm{VI}}(r)=\int_{0}^{1}(1-t) P_{2 r}\left(1-\frac{t}{2}\right) d t$

$$
=-\frac{4\left(B_{2 r+2}\left(\frac{1}{2}\right)-B_{2 r+2}\right)}{(2 r+2)!}+\frac{2 B_{2 r+1}}{(2 r+1)!}-\frac{B_{2 r}}{2(2 r)!} .
$$

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page

Contents

| $\mathbf{~ G o ~ B a c k ~}$ |
| :---: | :---: |
| Close |
| Quit |
| Page 7 of 16 |

3. Results

In the remainder of the paper we shall use the notation

$$
\begin{aligned}
I_{r}=(-1)^{r}\left\{\int_{a}^{b} f(x) d x\right. & -\frac{(b-a)}{2}[f(a)+f(b)] \\
& \left.+\sum_{k=1}^{r-1} \frac{B_{2 k}(b-a)^{2 k}}{(2 k)!}\left[f^{(2 k-1)}(b)-f^{(2 k-1)}(a)\right]\right\}
\end{aligned}
$$

As above, the empty sum for $r=1$ is interpreted as zero.
Theorem 3.1. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a real-valued ($2 r$)-times differentiable function.
(a) If $\left|f^{(2 r)}\right|^{q}$ is convex for $q \geq 1$, then
(3.1) $\left|I_{r}\right| \leq(b-a)^{2 r+1}\left(\frac{1}{2}\right)^{\frac{1}{q}}\left(\frac{\left|B_{2 r}\right|}{(2 r)!}\right)^{1-\frac{1}{q}}\left\{\left|a_{\mathrm{III}}(r)\right| \cdot\left|f^{(2 r)}(a)\right|^{q}\right.$

$$
\left.+\left(\left|a_{\mathrm{II}}(r)\right|+\left|a_{\mathrm{V}}(r)\right|\right) \cdot\left|f^{(2 r)}\left(\frac{a+b}{2}\right)\right|^{q}+\left|a_{\mathrm{VI}}(r)\right| \cdot\left|f^{(2 r)}(b)\right|^{q}\right\}^{\frac{1}{q}}
$$

(b) If $\left|f^{(2 r)}\right|^{q}$ is concave for $q \geq 1$, then
(3.2) $\left|I_{r}\right| \leq \frac{(b-a)^{2 r+1}}{2}$

$$
\times\left\{\left|a_{\mathrm{I}}(r)\right| \cdot\left|f^{(2 r)}\left(\frac{\left|a_{\mathrm{III}}(r)\right| \cdot a+\left|a_{\mathrm{II}}(r)\right| \cdot\left(\frac{a+b}{2}\right)}{\left|a_{\mathrm{I}}(r)\right|}\right)\right|\right.
$$

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page

Contents

Go Back
Close
Quit
Page 8 of 16
J. Ineq. Pure and Appl. Math. 5(3) Art. 66, 2004

$$
\left.+\left|a_{\mathrm{IV}}(r)\right| \cdot\left|f^{(2 r)}\left(\frac{\left|a_{\mathrm{VI}}(r)\right| \cdot b+\left|a_{\mathrm{V}}(r)\right| \cdot\left(\frac{a+b}{2}\right)}{\left|a_{\mathrm{IV}}(r)\right|}\right)\right|\right\} .
$$

Proof. From (2.1) and the definition of I_{r}, we have

$$
\begin{aligned}
\left|I_{r}\right| & \leq(b-a)^{2 r+1} \int_{0}^{1}\left|P_{2 r}(t) f^{(2 r)}(a+t(b-a))\right| d t \\
& =(b-a)^{2 r} \int_{a}^{b}\left|P_{2 r}\left(\frac{x-a}{b-a}\right)\right| \cdot\left|f^{(2 r)}(x)\right| d x
\end{aligned}
$$

It follows from Hölder's inequality that

$$
\begin{align*}
\left|I_{r}\right| \leq\left(\int_{a}^{b}\left|P_{2 r}\left(\frac{x-a}{b-a}\right)\right|\right. & d x)^{1-\frac{1}{q}} \tag{3.3}\\
& \times\left(\int_{a}^{b}\left|P_{2 r}\left(\frac{x-a}{b-a}\right)\right| \cdot\left|f^{(2 r)}(x)\right|^{q} d x\right)^{\frac{1}{q}}
\end{align*}
$$

Now,

$$
\begin{align*}
\int_{a}^{b}\left|P_{2 r}\left(\frac{x-a}{b-a}\right)\right| d x & =(b-a)\left|\int_{0}^{1} P_{2 r}(t) d t\right| \tag{3.4}\\
& =\frac{(b-a)\left|B_{2 r}\right|}{(2 r)!}
\end{align*}
$$

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page

Contents

Page 9 of 16
and, by the convexity of $\left|f^{(2 r)}\right|^{q}$, we have

$$
\begin{align*}
& \int_{a}^{b} \mid P_{2 r}\left.\left(\frac{x-a}{b-a}\right)|\cdot| f^{(2 r)}(x)\right|^{q} d x \tag{3.5}\\
&=\int_{a}^{\frac{a+b}{2}}\left|P_{2 r}\left(\frac{x-a}{b-a}\right)\right| \cdot\left|f^{(2 r)}(x)\right|^{q} \\
&+\int_{\frac{a+b}{2}}^{b}\left|P_{2 r}\left(\frac{x-a}{b-a}\right)\right| \cdot\left|f^{(2 r)}(x)\right|^{q} d x \\
&=\frac{b-a}{2} {\left[\int_{0}^{1}\left|P_{2 r}\left(\frac{t}{2}\right)\right| \cdot\left|f^{(2 r)}\left((1-t) a+t\left(\frac{a+b}{2}\right)\right)\right|^{q} d t\right.} \\
&+\left.\int_{0}^{1}\left|P_{2 r}\left(1-\frac{t}{2}\right)\right| \cdot\left|f^{(2 r)}\left((1-t) b+t\left(\frac{a+b}{2}\right)\right)\right|^{q} d t\right] \\
& \leq \frac{b-a}{2} {\left[\left|\int_{0}^{1}(1-t) P_{2 r}\left(\frac{t}{2}\right) d t\right| \cdot\left|f^{(2 r)}(a)\right|^{q}\right.} \\
&+\left|\int_{0}^{1} t P_{2 r}\left(\frac{t}{2}\right) d t\right| \cdot\left|f^{(2 r)}\left(\frac{a+b}{2}\right)\right|^{q} \\
&+\left|\int_{0}^{1}(1-t) P_{2 r}\left(1-\frac{t}{2}\right) d t\right| \cdot\left|f^{(2 r)}(b)\right|^{q} \\
&+\left.\left|\int_{0}^{1} P_{2 r}\left(1-\frac{t}{2}\right) d t\right| \cdot\left|f^{(2 r)}\left(\frac{a+b}{2}\right)\right|^{q}\right]
\end{align*}
$$

Thus, by (3.3), (3.4) and (3.5) and the identities (II), (III), (V) and (VI), we have the inequality (3.1).

On the other hand, since $\left|f^{(2 r)}\right|^{q}$ is concave implies that $\left|f^{(2 r)}\right|$ is concave

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page

Contents

4	\rightarrow
4	-
Go Back	
Close	
Quit	

Page 10 of 16
J. Ineq. Pure and Appl. Math. 5(3) Art. 66, 2004
and by Jensen's integral inequality, we have

$$
\begin{aligned}
\left|I_{r}\right| \leq(b-a)^{2 r} & {\left[\int_{a}^{\frac{a+b}{2}}\left|P_{2 r}\left(\frac{x-a}{b-a}\right)\right| \cdot\left|f^{(2 r)}(x)\right| d x\right.} \\
& \left.+\int_{\frac{a+b}{2}}^{b}\left|P_{2 r}\left(\frac{x-a}{b-a}\right)\right| \cdot\left|f^{(2 r)}(x)\right| d x\right] \\
=(b-a)^{2 r+1} & {\left[\int_{0}^{1}\left|P_{2 r}\left(\frac{t}{2}\right)\right| \cdot\left|f^{(2 r)}\left((1-t) a+t\left(\frac{a+b}{2}\right)\right)\right| d t\right.} \\
& \left.+\int_{0}^{1}\left|P_{2 r}\left(1-\frac{t}{2}\right)\right| \cdot\left|f^{(2 r)}\left((1-t) b+t\left(\frac{a+b}{2}\right)\right)\right|\right] \\
\leq \frac{(b-a)^{2 r+1}}{2} & {\left[\left|\int_{0}^{1} P_{2 r}^{1}\left(\frac{t}{2}\right) d t\right|\right.} \\
& \times\left|f^{(2 r)}\left(\frac{\left|\int_{0}^{1} P_{2 r}\left(\frac{t}{2}\right)\left((1-t) a+t\left(\frac{a+b}{2}\right)\right) d t\right|}{\left|\int_{0}^{1} P_{2 r}\left(\frac{t}{2}\right) d t\right|}\right)\right| \\
+ & \left.\int_{0}^{1} P_{2 r}\left(1-\frac{t}{2}\right) d t \right\rvert\, \\
& \left.\times\left|f^{(2 r)}\left(\frac{\left|\int_{0}^{1} P_{2 r}\left(1-\frac{t}{2}\right)\left((1-t) b+t\left(\frac{a+b}{2}\right)\right) d t\right|}{\left|\int_{0}^{1} P_{2 r}\left(1-\frac{t}{2}\right) d t\right|}\right)\right|\right]
\end{aligned}
$$

Thus, by identities I, II, III, IV, V and VI, we have the inequality (3.2).

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page

Contents

Page 11 of 16

For $r=1$ in Theorem 3.1, we have the following corollary.

Corollary 3.2. Under the assumptions of Theorem 3.1. If f is a 4-convex function, we have

$$
\begin{align*}
\mid \int_{a}^{b} f(x) d x & \left.-\frac{b-a}{2}[f(a)+f(b)] \right\rvert\, \tag{3.6}\\
& \leq \frac{(b-a)^{3}}{12}\left[\frac{3\left|f^{\prime \prime}(a)\right|^{q}+10\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|^{q}+3\left|f^{\prime \prime}(b)\right|^{q}}{16}\right]^{\frac{1}{q}}
\end{align*}
$$

and if f is a 4-concave function, we have

$$
\begin{align*}
&\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]\right| \tag{3.7}\\
& \leq \frac{(b-a)^{3}}{12}\left[\frac{\left|f^{\prime \prime}\left(\frac{11 a+5 b}{16}\right)\right|+\left|f^{\prime \prime}\left(\frac{5 a+11 b}{16}\right)\right|}{2}\right]
\end{align*}
$$

Remark 3.1. Using the convexity of $\left|f^{\prime \prime}\right|^{q}$, we have

$$
\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|^{q} \leq \frac{\left|f^{\prime \prime}(a)\right|^{q}+\left|f^{\prime \prime}(b)\right|^{q}}{2}
$$

Hence inequality (3.6) is an improvement of inequality (1.2).
Since $\left|f^{\prime \prime}\right|^{q}$ is concave implies that $\left|f^{\prime \prime}\right|$ is concave, we have

$$
\frac{1}{2}\left[\left|f^{\prime \prime}\left(\frac{11 a+5 b}{16}\right)\right|+\left|f^{\prime \prime}\left(\frac{5 a+11 b}{16}\right)\right|\right] \leq\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|
$$

Thus inequality (3.7) is an improvement of inequality (1.3).

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page

Contents

Page 12 of 16

4. Application

To obtain estimates of the error in the trapezoidal formula, we apply the results of the previous section on each interval from the subdivision

$$
[a, a+b], \quad[a+h, a+2 h], \ldots,[a+(n-1) h, a+n h] .
$$

We define

$$
J_{r}=\int_{a}^{a+n h} f(x) d x-T(f ; h)+\sum_{k=1}^{r-1} \frac{B_{2 k} h^{2 k}}{(2 k)!}\left[f^{(2 k-1)}(a+n h)-f^{(2 k-1)}(a)\right]
$$

Theorem 4.1. If $f:[a, a+n h] \rightarrow \mathbb{R}$ is a (2r)-time differentiable function $(r \geq 1)$.
(a) If $\left|f^{(2 r)}\right|^{q}$ is convex for some $q \geq 1$, then

$$
\begin{aligned}
& \left|J_{2 r}\right| \leq h^{2 r+1}\left(\frac{1}{2}\right)^{\frac{1}{q}}\left(\frac{\left|B_{2 r}\right|}{(2 r)!}\right)^{1-\frac{1}{q}} \\
& \times \sum_{m=1}^{n}\left\{\left|a_{\mathrm{III}}(r)\right| \cdot\left|f^{(2 r)}(a+(m-1) h)\right|^{q}\right. \\
& \\
& \quad+\left(\left|a_{\mathrm{II}}(r)\right|+\left|a_{\mathrm{V}}(r)\right|\right) \cdot\left|f^{(2 r)}\left(a+\left(m-\frac{1}{2}\right) h\right)\right|^{q} \\
& \\
& \left.\quad+\left|a_{\mathrm{VI}}(r)\right| \cdot\left|f^{(2 r)}(a+m h)\right|^{q}\right\}^{\frac{1}{q}}
\end{aligned}
$$

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page

Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |

Page 13 of 16
J. Ineq. Pure and Appl. Math. 5(3) Art. 66, 2004
(b) If $\left|f^{(2 r)}\right|^{q}$ is concave for some $q \geq 1$, then

$$
\begin{aligned}
& \left|J_{2 r}\right| \leq \frac{h^{2 r+1}}{2} \sum_{m=1}^{n}\left\{\left|a_{\mathrm{I}}(r)\right|\right. \\
& \quad \times\left|f^{(2 r)}\left(\frac{\left|a_{\mathrm{III}}(r)\right|\left(a+(m-1 \cdot h)+\left|a_{\mathrm{II}}(r)\right|\left(a+\left(m-\frac{1}{2}\right) \cdot h\right)\right.}{\left|a_{\mathrm{I}}(r)\right|}\right)\right| \\
& \left.+\left|a_{\mathrm{IV}}(r)\right| \cdot\left|f^{(2 r)}\left(\frac{\left|a_{\mathrm{VI}}(r)\right|(a+m h)+\left|a_{\mathrm{II}}(r)\right| \cdot\left(a+\left(m-\frac{1}{2}\right) h\right)}{\left|a_{\mathrm{IV}}(r)\right|}\right)\right|\right\} .
\end{aligned}
$$

Proof. Since

$$
\begin{aligned}
\left|J_{r}\right| \leq \sum_{m=1}^{n}\{ & \int_{a+(m-1) h}^{a+m h} f(x) d x-\frac{h}{2}[f(a+(m-1) h)+f(a+m h)] \\
& \left.+\sum_{k=1}^{r-1} \frac{B_{2 k} h^{2 k}}{(2 k)!}\left[f^{(2 k-1)}(a+m h)-f^{(2 k-1)}(a+(m-1) h)\right]\right\}
\end{aligned}
$$

we have

$$
\begin{aligned}
&\left|J_{r}\right| \leq \sum_{m=1}^{n} h^{2 r+1}\left(\frac{1}{2}\right)^{\frac{1}{q}}\left(\frac{\left|B_{2 r}\right|}{(2 r)!}\right)^{1-\frac{1}{q}}\left\{\left|a_{\mathrm{III}}(r)\right| \cdot\left|f^{(2 r)}(a+(m-1) h)\right|^{q}\right. \\
&+\left(\left|a_{\mathrm{II}}(r)\right|+\left|a_{\mathrm{V}}(r)\right|\right) \cdot \mid\left.f^{(2 r)}\left(a+\left(m-\frac{1}{2}\right) h\right)\right|^{q} \\
&\left.+\left|a_{\mathrm{II}}(r)\right| \cdot\left|f^{(2 r)}(a+m h)\right|^{q}\right\}^{\frac{1}{q}}
\end{aligned}
$$

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page

Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 14 of 16 |

by Theorem 3.1(a) applied to each interval $[a+(m-1) h, a+m h]$. Obviously, the proof (a) is complete.

The proof (b) is similar.
Remark 4.1. As the same discussion in the Section 3, Theorem 4.1 for $r=1$ is an improvement of Theorem 4 for $r=1$ in [3].

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang
Title Page
J. Ineq. Pure and Appl. Math. 5(3) Art. 66, 2004 http://jipam.vu.edu.au

References

[1] M. ABRAMOWITZ and I.A. STEGUN, Handbook of Mathematical Functions, Dover, New York, 1965.
[2] I.S. BEREZIN AND N.P. ZHIDKOV, Computing Methods, Vol. I, Pergamon Press, Oxford, 1965.
[3] LJ. DEDIC, C.E.M. PEARCE AND J. PEČARIĆ, Hadamard and DragomirAgarwal inequalities, Higher-order convexity and the Euler formula, J. Korean Math., 38(6) (2001), 1235-1243.
[4] S.S. DRAGOMIR AND R.P. AGARWAL, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5)(1998), 91-95.
[5] V.I. KRYLOV, Approximate Calculation of Integrals, Macmillan, New York, 1962.
[6] C.E.M. PEARCE AND J. PEČARIĆ, Inequalities for differentiable mapping with application to special means and quadrature, Appl. Math. Lett., 13 (2000), 51-55.
[7] GAU-SHENG YANG, DAH-YAN HWANG AND KUEI-LIN TSENG, Some inequalities for differentiable convex and concave mappings, Computer and Mathematics with Applications, 47 (2004), 207-216.

Improvements of Euler-Trapezoidal Type Inequalities with Higher-Order Convexity and Applications

Dah-Yan Hwang

Title Page	
Contents	
44	-
4	>
Go Back	
Close	
Quit	
Page 16 of 16	

