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Abstract

The theorem proved in this paper is a generalization of some results, concern-
ing integrability of trigonometric series, due to R.P. Boas, L. Leindler, etc. This
result can be considered as an example showing the utility of the notion of
power-monotone sequences.

2000 Mathematics Subject Classification: 42A32.
Key words: Trigonometrical series, Integrability, Quasi power-monotone sequence.

The author was partially supported by the Hungarian National Foundation for Scien-
tific Research under Grant # T 029094.

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
3 Lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
References

http://jipam.vu.edu.au/
mailto:nemethj@math.u-szeged.hu
http://jipam.vu.edu.au/
http://www.ams.org/msc/


Power-Monotone Sequences
and Integrability of

Trigonometric Series

J. Németh

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 14

J. Ineq. Pure and Appl. Math. 4(1) Art. 3, 2003

http://jipam.vu.edu.au

1. Introduction
Several authors have studied the integrability of the series

(1.1) g(x) =
∞∑

n=1

bn sin nx

requiring certain conditions on the sequence{bn} (see [1] – [6] and [9] – [14]).
For example R.P. Boas in [2] proved the following result for (1.1):

Theorem 1.1. If bn ↓ 0 then for0 ≤ γ ≤ 1, x−γg(x) ∈ L[0, π] if and only if∑∞
n=1 nγ−1bn converges.

This theorem had previously been proved forγ = 0 by W.H. Young [14] and
was later extended by P. Heywood [6] for 1 < γ < 2.

Further generalization was given by Aljančić, R. Bojaníc and M. Tomíc in
[1], by using the so called slowly varying functions.
A positive, continuous function defined on[0,∞) is called slowly varying if
L(tx)
L(x)

→ 1, if x →∞ for all t > 0.
They proved among others the following results:

Theorem 1.2. Let L(x) be a convex, non-decreasing showly varying function.
If bn ↓ 0, thenL(1/x)g(x) ∈ L(0, π] if and only if

∑∞
n=1 n−1L(n)bn converges.

Theorem 1.3. LetL(x) be a slowly varying function. Ifbn ↓ 0 and0 < γ < 2,
thenx−γL

(
1
x

)
g(x) ∈ L[0, π] if and only if

∑∞
n=1 nγ−1L(n)bn converges.

Later the monotonicity condition on{bn} was changed to more general ones
by S.M. Shah [11] and L. Leindler [9]. Before formulating a result of this type
we need a definition due to L. Leindler.
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A sequencec := {cn} of positive numbers tending to zero is of rest bounded
variation, or brieflyR+

0 BV S, if it has the property

(1.2)
∞∑

n=m

|cn − cn+1| ≤ K(c)cm

for all natural numberm, whereK(c) is a constant depending only onc.
Using this notion L. Leindler ([9]) proved

Theorem 1.4.Let{bn} ∈ R+
0 BV S. If 0 ≤ γ ≤ 1 and

(1.3)
∞∑

n=1

nγ−1bn < ∞,

thenx−γg(x) ∈ L(0; π).

The aim of the present note is to give further generalization of above men-
tioned theorems by using the concept of the so called quasiβ-power-monotone
sequence changing the functionxγ to more general one. We deal only with the
sufficiency of the conditions because only this point of the proofs has interest in
showing up the utility of the quasiβ-power-monotone sequences, the proof of
the necessity, in general, goes on the same way as in the earlier cited papers.

First we need some definitions before formulating our result and the lemmas
used in the proof.

Following L. Leindler we shall say that a sequenceγ := {γn} of positive
terms is quasiβ-power-monotone increasing (decreasing) if there exists a natu-
ral numberN := N(β, γ) and constantK := K(β, γ) > 1 such that

(1.4) Knβγn ≥ mβγm (nβγn ≤ Kmβγm)
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holds for anyn ≥ m ≥ N .
Here and in the sequel,K and Ki denote positive constants that are not

necessarily the same of each occurrence.
If (1.4) holds withβ = 0 then we omit the attribute “β-power”.
Furthermore, we shall say that a sequenceγ := {γn} of positive terms is

quasi geometrically increasing (decreasing) if there exist natural numbersµ :=
µ(γ), N := N(γ) and a constantK := K(γ) ≥ 1 such that

(1.5) γn+µ ≥ 2γn and γn ≤ Kγn+1 (γn+µ ≤
1

2
γn and γn+1 ≤ Kγn)

hold for alln ≥ N .
A sequence{γn} is said to be bounded by blocks if the inequalities

(1.6) α1Γ
(k)
m ≤ γn ≤ α2Γ

(k)
M , 0 < α1 ≤ α2 < ∞

hold for any2k ≤ n ≤ 2k+1, k = 1, 2, . . ., where

Γ(k)
m := min(γ2k , γ2k+1) and Γ

(k)
M := max(γ2k , γ2k+1).

Finally, for a given sequence{γn}, γ(x) will denote the following function:

γ(x) = γn if x =
1

n
, n ≥ 1; linear on the interval

[
1

n + 1
,
1

n

]
.
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2. Result
Theorem 2.1. Let {bn} ∈ R+

0 BV S and {γn} such thatγnn
−2+ε is quasi-

monotone decreasing for someε > 0. If

(2.1)
∞∑

n=1

γn

n
bn < ∞

thenγ(x)g(x) ∈ L(0; π].

Remark 2.1. This result is a generalization of Theorem1.4since in (1.3) nγ is
replaced byγn and the case0 ≤ γ ≤ 1 is extending to0 ≤ γ < 2. Furthermore
the sufficiency parts of Theorem1.2and1.3are also special cases of our Theo-
rem in a few respects: namely the monotonicity of{bn} is changed to the prop-
erty ofR+

0 BV S and as we will prove later for any slowly varying functionL(x)
and for0 ≤ γ < 2 the sequence{nγL(n)n−2+ε} is quasi-monotone decreasing
for someε(> 0) thereforenγL(n) can be replaced by{γn} (0 ≤ γ < 2). More-
over using our result it turns out that the convexity and monotonicity conditions
on L(x) can be dropped in the case of Theorem1.2. For example our result
contains statement of the type

∑∞
n=2

1
n log n

bn < ∞⇒ 1
log 1

x

g(x) ∈ L[0; π], too.
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3. Lemmas
We need the following lemmas.

Lemma 3.1. ([8]) A positive sequence{γn} bounded by blocks is quasiε-
power-monotone decreasing with a certain positive exponentε if and only if
the sequence{γ2n} is quasi geometrically decreasing.

Lemma 3.2. ([7]) For any positive sequenceγ := {γn} the inequalities

(3.1)
∞∑

n=m

γn ≤ Kγm (m = 1, 2, . . . ; K ≥ 1),

or

(3.2)
m∑

n=1

γn ≤ Kγm (m = 1, 2, . . . ; K ≥ 1),

hold if and only ifγ is quasi geometrically decreasing or increasing, respec-
tively.

Lemma 3.3. If {γn} has the same property as in Theorem2.1, then

(3.3) γn ≤ K ·
n∑

k=1

γk

k
for all n,

and

(3.4) γn ≤ K · n2 for all n.

These statements immediately follow from the definition of{γn}.
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Lemma 3.4. If {bn} ∈ R+
0 BV S and (2.1) is satisfied then

(3.5)
∞∑

n=1

|bn − bn+1|
n∑

k=1

γk

k
< ∞.

Proof. Using the definition ofR+
0 BV S (see (1.2)) we have from (2.1) that

∞∑
n=1

γn

n

∞∑
k=n

|bk − bk+1| < ∞.

Now changing the order of summation we get (3.5).
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4. Proofs
Proof of Theorem2.1. Since{bn} is of bounded variation, the functiong(x) is
continuous except perhaps at 0 ([15, p. 4]), so we are concerned only with a
neighbourhood of 0.

We shall writec(x) := 1 − cos x. Then by Abel transformation ([3, p. 5])
we have

1

2
g(x) =

1

sin x

∞∑
n=0

bn+1[c{(n + 2)x} − c(nx)]

=
1

sin x

[
−b2c(x) + b3c(2x) +

∞∑
n=3

(bn−1 − bn+1)c(nx)

]
.

Sincesin x ∼ x asx → 0, so it is enough to prove the existence of

(4.1)
∫ 1

0

γ(x) · 1

x

∞∑
n=3

|bn−1 − bn+1|c(nx)dx.

and the integrability ofγ(x)c(x)/x andγ(x)c(2x)/x.
Applying Levi’s theorem, the existence of (4.1) will follow from

(4.2)
∞∑

n=3

|bn−1 − bn+1|
∫ 1

0

γ(x)
1

x
c(nx)dx < ∞.

Divide the integral
∫ 1

0
γ(x) 1

x
c(nx)dx into two parts for a fixedn:∫ 1

0

γ(x)
1

x
c(nx)dx =

∫ 1/n

0

γ(x)
1

x
c(nx)dx +

∫ 1

1/n

γ(x)
1

x
c(nx)dx(4.3)
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= I1 + I2.

In the estimate ofI1 we use that from the property of{γn} assumed in Theorem
2.1it follows that

{
γ2n

4n

}
is geometrically decreasing and so by Lemma3.1(3.1)

can be applied for this sequence. So, in the last step using (3.3) also, we get that

I1 =

∫ 1/n

0

γ(x)
1

x
c(nx)dx(4.4)

=

∫ 1/n

0

γ(x)
1

x
(1− cos nx)dx

=

∫ 1/n

0

γ(x)xn2 1− cos nx

n2x2
dx

≤ K1n
2

∫ 1/n

0

γ(x)xdx

≤ K2n
2

∞∑
k=n

γ

(
1

k

)
1

k3
≤ K3n

2

∞∑
l=[log n]

γ

(
1

2`

)
1

4`

≤ K4γ

(
1

n

)
= K4γn ≤ K5

n∑
k=1

γk

k
.

Now we estimateI2:

I2 =

∫ 1

1/n

γ(x)
1

x
c(nx)dx(4.5)

≤ 2

∫ 1

1/n

γ(x)
1

x
dx ≤ K

n∑
k=1

γ

(
1

k

)
1

k
= K

n∑
k=1

γk

k
.
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Since (4.3), (4.4), (4.5) with (3.5) give (4.2), so the integral (4.1) exists. Finally
the integrability ofγ(x)c(x)/x andγ(x)c(2x)/x can be proved by the same
way that was used in the estimate ofI1 in (4.4), applying still (3.4).

Thus the proof of Theorem2.1 is complete.

Proof of Remark2.1. The only fact we need to show that the sequence
{nγL(n)n−2+ε} is quasi monotone decreasing for someε(> 0), where0 ≤
γ < 2 andL(x) is an arbitrary slowly varying function. According to Lemma
3.1 it is enough to prove that the sequence{nγ−2L(n)} is bounded by blocks
and that{2n(γ−2)L(2n)} is a quasi geometrically decreasing sequence. It is ob-
vious that for the sequence{nγ−2L(n)} (1.6) is equivalent to the existence of
positive constantsK1, K2 such that

(4.6) K1 ≤
L(2k + `)

L(2k)
≤ K2

hold for arbitraryk and1 ≤ ` ≤ 2k. But since from the definition ofL(x)

(4.7) lim
x→∞

L(tx)

L(x)
= 1

is uniformly satisfied in the ratiot on the interval[1, 2] (see [1, p. 69]) therefore
(4.6) holds.

In order to prove that for the sequence2n(γ−2)L(2n) the properties (1.5) hold
it is enough to show that there exist natural numbersµ andN and a constant
K ≥ 1 such that

(4.8) (2γ−2)n+µL(2n+µ) ≤ 1

2
(2γ−2)nL(2n)
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and

(4.9) (2γ−2)n+1L(2n+1) ≤ K(2γ−2)nL(2n)

hold if n > N .
However, (4.8) is equivalent to

(4.10)
L(2n+µ)

L(2n)
≤ 1

2
(22−γ)µ

and if (22−γ)µ > 2 then by using (4.7), (4.10) holds ifn is large enough, which
gives (4.8). Finally since (4.9) can be obtained by using a similar argument as
before, Remark2.1 is proved.
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