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ABSTRACT. We establish a direct proof of the well known equivalence between the Crandall-
Lions viscosity solution of the Hamilton-Jacobi equation+ H(w,) = 0 and the Krikov-
Vol'pert entropy solution of conservation layy + H (u), = 0. To reach at the purpose we work
directly with defining entropy and viscosity inequalities, and using the front tracking method,
and do not, as is usually done, exploit the convergence of the viscosity method.
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1. INTRODUCTION

In this paper we present a direct proof of the equivalence between the unique viscosity solu-
tion [4,/2, 3] of the Hamilton-Jacobi equation of the form

(1.1) w+ H(w,) =0, w(z,0) = wy(z),
and the unique entropy solution [7,/13] of the conservation law of the form
(1.2) w+ Hu), =0, u(z,0) = ug(z),

whereH : R — R is a given function of clas§? andw, € BUC(R), the space of all bounded
uniformly continuous functions, and, € L'(R) N BV (R), the space of all integrable func-
tions of bounded total variation. It is well known thatuf = %wo e LY(R) n BV(R), the
solutionsu(-,t) € BV (R),w(-,t) € BUC(R) of both problems are related by the transfor-

mationu(-,t) = w,(-,t). The usual proof in the one dimensional case of this relation exploits
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2 M. AAIBID AND A. SAYAH

the known results about existence, uniqueness, and convergence of the viscosity method. As is
usually done, the proof of this relation exploits the convergence of the viscosity method; it is
known that the solutions©, w* of

u; + H(u), = eu

¢ u(z,0) =up(z) € L'(R) N BV(R),
and
wy + H(wS) = ews,, w(x,0)=wy(x) € BUC(R),
converge to the entropy and viscosity solutiens of (1.1) and[(1.R) respectively. tby, <
L'(R) N BV(R) anduy = -Lwy, the regularity ofw* permits the relation* = w¢ which, after
letting e tend to0 gives the desired result = w,. In this paper we are going to prove that
the unique viscosity solutiow of (1.1) is related to the unique entropy solutiewf (1.2) by
the identityu = w, - whenu, = Lw, € L'(R) N BV(R)- by a direct analysis without using
the convergence of the viscosity method but instead using the defining viscosity and entropy
inequalities directly. We recall that a functianc BUC(Rx]0,77) is a viscosity solution of
the initial problem|(1.11) ifw(z, 0) = wo(z) andw is simultaneously a (viscosity) sub-solution
and a (viscosity) super-solutionkx |0, 77
Sub-solution For eachy € C'(Rx]0, T),
if w — ¢ has a local maximum point at a poifty, to) € Rx]0, 77,
theng@t(l'o, t()) + H(g@x(l'o, to)) < 0.
Super-solution For eachy € C*'(Rx]0, T),
if w — ¢ has a local minimum point at a poifity, to) € Rx]0, 77,
then oy(zo, o) + H(pa(20,t)) = 0.

The existence, uniqueness and stability properties of the viscosity solutions were systematically
studied by Kriakov, Crandall, Evans, Lions, Souganidis, and Ishii, [7,10] 4, 2,112, 3].

We recall thatu € L>(Rx]0,T7) is an entropy solution of the initial problerp (.2) if:
u(-,t) — uo(-)l|z2 ®y — 0ast — 0 and, for all convex entropy-entropy flux paif, ) :
R — R? with U"H’ = F’, we have:

oU(p) + 0. F(p) < oin the distributional sense.

In view that a continuous convex functidh can be a uniform limit of a sequence of convex
piece-affine functions of the form

U(z) = ap + a1 + 3;a;|x — k;|, k; constantse R,
then the convex paif/, F') can be replaced by the Kikov-pair [7]
(I- =k, sgn(- k)(H(-) — H(k)),

which is simple to manipulate. Therefore, using Kkav-pair, the definition of the entropy
solution can be presented as

[ = e senta = 1) (11(0) = 18t > 0,

for all positivep € C}(Rx]0,T][), and constants € R.

For the existence, uniqueness, and stability results of the entropy solution we refer to Lax
[8,19], Vol'pert [13], and Krizkov [7].

The main purpose of the present paper is to give a direct proof of the the equivalence between
viscosity solutions of the Hamilton-Jacobi equation](1.1) and entropy solutions of conservation
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law (I.2). There exist very few references which prove this relation without using the con-
vergence of the viscosity method. The main result of the paper is contained in the following
theorem:

Theorem 1.1.Letw be the unique viscosity solution of the Hamilton-Jacobi equafion (1.1) and
let u be the unique entropy solution to the conservation law

u + H(u), =0,
with initial data i
u(zx,0) = %wo(x).
If wy € BUC(R), or u(x,0) € L*(R) N BV (R), thenw,(z,t) = u(z,t) almost everywhere.

To show Theorern 1]1, we use the front tracking method, proposed firstly by Dafermos [5].
This is a numerical method for scalar conservation lawsg (1.2), which yield exact entropy solu-
tions in the initial datau, is piecewise constant, and the flux functifinpiecewise linear. We
then note that this method translates into a method that gives the exact viscosity solutions to
the Hamilton-Jacobi equation (1.1)if, and H are piecewise linear and Lipschitz continuous.
This gives Theorein 1.1 in the case of piecewise linear/constant initial data, and piecewise linear
Hamiltonians/flux functions. To extend the result to more general problems, we take ftie
closure of the set of the piecewise linear/constant initial data, and the Sup/Lip norm closure of
the set of the piecewise linear Hamiltonians/flux functions, utilizing stability estimates from
[12] and [6] for conservation laws and Hamilton-Jacobi equations respectively. Note that the
front tracking method was translated to the system of conservation laws (se¢, e.g., [1], [11]).

The paper is organized as follows. In Secfipn 2 we start by describing the front tracking for
scalar conservation lay (1.2), we treat firstly the linear case in Subspctjon 2.1, and in Subsection
[2.7 we extend the method to more general problems. Sgdtion 3 focuses on the Hamilton-Jacobi
equation[(1.]1), for which we translate the front tracking construction. Also we start by trans-
lating for the linear case in Subsection|3.1, Subsegtion 3.2 extends the construction to more
general Hamiltonians. The end of Subsecfiorj 3.2 is devoted to the main result of the paper

(Theorenj 1.10).
2. FRONT TRACKING METHOD FOR THE SCALAR CONSERVATION L AW

2.1. The linear case.We start by describing front tracking for scalar conservation laws in
the linear case, i.e., we assume tliats a piecewise linear continuous function amgis a
piecewise constant function with bounded support taking a finite number of values. To solve
the initial value problent (2]1),

(2.1) wp+ H(w), =0, u(z,0) = up(x),
we start by solving the Riemann problem, i.e., wheyés given by
{ w, for z <0,

up(x) =
o) u,, for x>0.

By breakpoints ofH we mean the points wher®’ is discontinuous. Let now/ — be the
lower convex envelope dff betweeny; andu,., i.e.,

H~ (u,uy, u,) = sup{h(u)|h” (u) >0, h(u) < H(u) betweens, andu, }.
Let alsoH~ be the upper concave envelopefdtetween:,; andu,.,
H™ (u,uy, uy) = inf{h(u)|h”(u) <0, h(u) > H(u) betweenu, andu, }.
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Now set
H= (u,ug,uy), 0f wy <y

H™ (u,ug,uy), 0f w > u,.

H*(u, uy, uy) :{

SinceH is assumed to be piecewise linear and continualisyill also be linear and continu-
ous. We suppose that* has/N — 1 breakpoints between andu,., call theseu,, ..., uy_; and
setu; = uw; anduy = wu,., such that,; < ;4 if v, < w, andu; > w; 1 If w; > u,.. We assume
thatu; € [—-M, M], forall: =0,1,..., N, where)M is constant. Now set

—00, if =0,
o= HmiIh g ;-1 N-1,
Uj41—Uj
+00, if i=N,
whereH; = H*(us; uy, u,) = H(u;).
Let

Qi = {(x,t)|0 <t< T, andtO'i,1 <x < tO'Z}
Then the following proposition holds:

Proposition 2.1. Set
u(z,t) =wu; for (z,t) € Q,
thenw is the entropy solution of the Riemann problém]|(2.1).

Proof. We show the proposition in the case wheye< u,., the other case is similar. First note
that the definition of the lower convex envelope implies thatfer [u;, u; 1],

> Hipr + (kb — uig1)o;
1 1
> §(Hi+1 + H;) + (k’ — §(Uz’+1 + UJ) a;.

To show that. is the entropy solution desired, we have to prove that for each non-negative test
functionp,

@2~ [ [(u= ot sealu— k(W) ~ HE)p)dud

n / (e, T) — Klep(, T) — uo(z) — Klep(z, 0)dz <0,

whereQr = R x [0, 7], andsgn(u — k) = 1if u — k > 0,and = —1if u — k < 0. The first
term in (2.2) is given by

- T [t Ko+ sen(u — B)(H(w) ~ HE)p)dode
__ i / /Q I g+ sl £)CH () — H () o
__ / (e, T) — klp(z, T) — |uo(z) — Klp(x,0)
- NZ / foulluen — H — s — k) — (s — k) (H (uesr) — H(R)

—sgn(u; — k)(H (w) — H(K)))p(oit, t)}dt,
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by Green’s formula applied to ea€h. Considering the integrand in the last term, we find that,
if &> Ui41 ork < wu;

oi(|uiv1 — k[ — |u; — k) — (sgn(uiyr — k) (H (uip1) — H(k))

— sgn(u; — k)(H (u;) — H(k))) = 0.
Otherwise, we find that
oi([uivr — k[ — [u; — k) — (sgn(uirr — k) (H (witr)
— H(k)) —sgn(u; — k)(H (u;) — H(k)))
1 1
= §(Hi+1 +H;)+ (k- §(Uz‘+1 +u;))o; > 0,

since fork € [u;, ui1],

1 1
H(k) > §(Hi+1 + H;) + (k‘ — §(ui+1 + ul)> ;.
This implies that:, defined in Proposition 2.1, is an entropy solution of the Riemann problem.

O

For a more general initial problem, i.e., whep has more than one discontinuous point,
one defines a series of Riemann problems. Note that the initial value function is piecewise
constant, and the construction of the solutions of this problem leads to defining the speeds

oi,i=1,...,N — 1, for each Riemann problem.

The solutionu(z, t) will be piecewise constant, with discontinuities on lines emanating from
the discontinuities of,y. These discontinuities are called fronts. In fact, the solution consists of
constant states separated by these discontinuities:

u(z,t) = uy, forz < z1(t),
u(z,t) =w;, fore, y <z <z, i=2,..,N—1,
u(z,t) = uy, forx > an_1(t),
where each front (path of discontinuity) is given by:
z;(t) = xo + o, (t — to).
The next proposition sums up the properties of the front tracking method.

Proposition 2.2. Let H be a continuous and piecewise linear continuous function with a finite
number of breakpoints in the intervgt M, M|, whereM is some constant. Assume thatis
piecewise constant function with a finite number of discontinuities taking values in the interval
[—M, M]. Then the initial value problem

ur+ H(u), =0, u(z,0)=up(z)

has an entropy solution which can be constructed by front tracking. The construction solution
u(zx,t) is a piecewise constant function:ofor eacht, andu(x, t) takes values in finite set

{up(z)} U {breakpoints of }.

Furthermore, there are only a finite number of collisions between fronis in

If H is another piecewise linear continuous function with a finite number of breakpoints in the
interval[— M, M| and7, is a piecewise constant function with a finite number of discontinuities
taking values in the interval- M, M|, setu to be the entropy solution to

U+ H(@), =0, a(z,0) = T(z).
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If ug andu, are in L'R N BV (R), then

[fu( T) =a Tl wy
< [luo = Uoll 1wy + T'(inf{|uol 5y w), ol Bv @) DIIH — H||Lip(-11,m)-
The proof of Propositiop 2|2 can be foundin([5, 6].

2.2. The general case.To deal with the general case, i.e, when the data of the problem is given
by
H € C? function andyg € L'(R) N BV (R),
we construct a piecewise linear continuous flii% as:
H((i+ 1)) — H(i9)
5 )

(2.3) H°(u) = H(i6) + (u — i) for 6 <u < (i+1)d.

Thenifn > § > 0,

[H" = Hl|Lipoaray < sup [(H) (u) = (HP) ()]
u€[—M,M]|

< sup [H'(u) — H'(v)]

[u—v|<n

< sup |HN (r)|dr

[u—v|<n Ju
< H" ||z (-aap
Thus(H"), ey is a Cauchy sequence (by theép-norm).
If furthermore,uy(z) € BV (R) N L'(R), set

1 (i+1)h
(2.4) up(z) = E/ uo(k)dr, for ih <z < (i+1)h,
ih

we have that,

(i+1)h 1 (i+1)h
g~ ol =3 [ @) =3 [ wn(eddslds

ih

I G GE
< Z E/ / |ug(z) — up(2)|dzdx

(i+1)h  p(i+1)h
<Z / / /|u0 )|dydzdz

(i+1)h
<o i

< h‘“O’BV(R)
Therefore ifth > 1 > 0,
[|ug — wpllor@) < llug — wollpr@) + [|up — woll (@)
< (h+Duolsvmw) < 2h|uo| gy (m)
Proposition 2.3. Letu"" be the entropy solution to
(2.5) u + H'(u™M), =0,  u™(z,0) = ul(x).
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The sequence:”"), , is a Cauchy sequence inf (R) since
(2.6) ™™, T) — u® (-, T)|| 1wy < (20 + T H"|| oo (im0 [t0] By (R) -

The proof of Propositiop 2|3 can be easily deduced from Propositipn 2.2. Now, using Propo-
sition[2.3, we can define the' limit

w= lim u™".
(n,h)—0

To prove that: is the entropy solution of the problein ([L.2), we have to proveudlsatisfies the
entropy condition, i.e., for each test functipmon-negative irC! (27), we have:

2.7) - /Q /(\u ~ Eln + san(u — B)(H(u) — H(k))py)dzdt

+ /R (e, T) — Klp(z, T) — Juo() — Klg(, 0)da < 0.

For the linear case we have:
2.8) — / / (U™ — Kooy + san(u™ — k)(HT (™) — HY(k))g.)dadt
Qp
+/ | (z, T) — k|o(x, T) — |ul(z) — klp(z,0)dz < 0.
R

Since|u” — k| — |u — k| and H" — H, then it easily follows that the limit function is an
entropy solution to

u + H(u), =0, u(x,0) = up(z).

In the next section we will describe how the front tracking construction translates to the Hamilton-
Jacobi equatiorj (1).1).

3. FRONT TRACKING METHOD FOR THE HAMILTON -JACOBI EQUATIONS

3.1. The linear case. We deal now with the Hamilton-Jacobi equation when the data of the
problem (I.1) is linear. Now set

(3.2) wy + H(w,) =0, w(z,0) = wy(x).

We assume thatf is piecewise linear and continuous, amng is also piecewise linear and
continuous, i.e.B%wo is bounded and piecewise constant.
First we study the Riemann problem fpr (3.1) which is the initial value problem

() ) wex, for x <0,
wol(T) = w +
0 0 u,x, for = >0.

wherew,; andu, are constants, c.f[ (2.3). Now le{x,t) denote the entropy solution of the
corresponding Riemann problem for the conservation [aw (2.1). In the linear case, using the
Hopf-Lax formula [10], the viscosity solution df (3.1) is given by

(3.2) w(x,t) = we(0) + zu(x,t) — tH (u(z,t)).

Note that in the case wheFé is convex, this formula can be derived from the Hopf-Lax formula
for the solution[(3.1). Also note th&f7*)’(u) is monotone between, andw,, hence we can
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define its inverse and set

{0 for = <tmin((H*) (w), (H*)' (u,)),
(HY)"Y(z/t), for tmin((H") (w),(H*) (u,)) <z,
((HF))"Ha/t), for @ <tmax((H*) (w), (H*) (u,)),

Uy for o > tmax((H*) (w), (H*) (u,)).

Although v is discontinuous, a closer look at the formyla [3.2) reveals ¢h& uniformly
continuous. Indeed, for fixedd w(x, t) is piecewise linear ir:, with breakpoints located at the
fronts inu. Hence, when computing, one only needs to keep a record of hawchanges at
the fronts. Along a front with speed, w is given by

(3.3) w(ot, t) = we(0) + t(oyu; — H(w;)) = we(0) + t(osuir — H(uig1)).

Now we can use the front tracking construction for conservation laws to define a solution to the
general initial value problen (3.1). We track the fronts as for the conservation law, but update
w along each front by (3]3). Note that if for sorte ¢), w(z,t) is determined by the solution

of the Riemann problem &t;. ¢,), then

u(z,t) =

(3.4) w(z,t) =w(x;,t;) + (r — xj)u(z,t) — (t —t;)H(u(x, 1)),
wherew is the solution of the initial value problem fgr (2.1) with the initial values given by
d

u(z,0) = %wo(x).
Analogously to Proposition 2.3 we have:

Proposition 3.1. The piecewise linear functiom(z, ) is the viscosity solution of (3.1). Fur-
thermorew(z, t) is piecewise linear on a finite number of polygon&ir R . If w is bounded
and uniformly continuougéBUC), thenw € BUC(R x [0,T]) for anyT < oo. If H is another
Lipschitz continuous piecewise linear function with a finite number of breakpointgy &the
viscosity solution of

wy + Hw,) =0, w(x,0)=wy(x),
andw, andw, are bounded and uniformly continuo(BUC), then

(3.5) lw(-, T) =@ (-, )| L@y < [|[wo — Wol|Loe(m) +T|S|l£4|H( u) — H(u)|,

whereM = min(||woz||, |[@Woz||)-

Proof. We first show thatv is a viscosity solution. We have thatis determined by the solution
of a finite number of Riemann problems at the poimist;). Given a poin{z, t) in wheret > 0,
we can find g such thatu(z, t) is determined by the Riemann problem solve@att; ).

Setu = w,. Lety be aC'-function, assume thdtry, t,) is the maximum point ofv — .
Sincew is piecewise linear, we can define the following limits

lim w, (7, to) — @2(7o,t0) > 0, hm wy(z,t0) — pz(xo, to) < 0.

Z‘—’.Z’O x—»xo

Or
(3.6) up < g (0, t0) < Uy,
whereu, =lim,_, .+ u(z, ;). Set

Hu)—H(ur)
s it w # u,,

Hﬁ/(ul), if w =u,.
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Sincew; < . (zo,t) < u,, the construction of7* implies that

(3.7) H(pz(x0,t0)) = H(w) + o(pa(x0,to) — w).
Now choos€z, t) sufficiently close tqxg, ty) such that
To— X
o =
to— 1

andw(x, t) is also determined by the solution of the Riemann proble@at;), andt < t,.
If 5 > 0, we have:

(3.8)

(o) — (1) =

Using (3.4) we have that

(¢(20,t0) — p(,1)).

w(xg, to) = w(x,t) + (vo — x)u; — (to — t) H (w).
Hence, by letting — t,_, we find that

o — H(u) > @i(w0,t0) + 0pa(0, o)
> (o, to) + H(pz(z0,10)) + owy — H(w),

which implies thatw is a sub-solution. A similar argument is applied to show thas$ super-
solution.

If t, = 0, assume thatz,, 0) is a maximum point oiv — . Setu;, = lim, ., +u(x,0+).
Then

w(z,t) = w(xg,0) + (x — xo)uy — tH(wy),

whereo = (z —zy)/t and(z, t) is sufficiently close tdzy, 0). Now, using[(3.) as before gives

the conclusion. Note that this also demonstrates the solution of the Riemann prioblem (3.1).
Next we show the stability estimate (B.5). This is a consequence of Proposition 1.4 in [12],

which in our context says that

sup {Jw(z,t) —w(y, t)| + 3RG(x —y)}

(z,y)€De
< sup {|wo(x) —Wo(y)| + 3RB(x — y)} +t sup |H(u) — H(u),
(z,y)€De |u|<M
wheregS.(z —y) = B(x/¢) for someC:® functiong(x) with 5(0) = 1 andg(x) = 0 for |x| > 1.
FurthermoreR = max(||w||, ||w]||). Consequently,
Hw('7t) - w('v t)||L°°(R) + ( Sl)lpD {3RBE($ - y) - |@(ZL’, t) - @(y, t)}
T,Yy)EDe
< ||lwo — w|| L) + 3R + tlslup |H (u) — H(u)|.
ul|<M

The inequality of the lemma now follows by noting thatis in BUC(R x [0,7T]), and taking
the limit ase — 0 on the left side. 0J

Now we are able to explicitly construct a viscosity solution to all problems of the fype (3.1)
where H andu, are piecewise linear and Lipschitz continuous with a finite number of break-
points. In the next subsection we extend the result to the more general case.
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3.2. The general case.Now we pass to the general case. We assume that
H € C? andw, € BUC(R).
First, we construct a piecewise linear continuous Hamiltofanlefined as follows:

H((i + 1)) — H(id)
; ,

(3.9) HO(u) = H(i6) + (u — i6) forid < u < (i + 1)6.

and let
wo((1 + 1)h) — wo(ih)
3 )

(3.10) wh = wo(ih) + (z — ih) forih <z < (i +1)h.

Setw®" to be the viscosity solution of
w4 H(w8) = 0, uf(2,0) = w(2).
Then forn > § > 0andh > [ > 0,

de,h(.’T) — wnvl(.jT)”Loo(R) < ||w6‘ _w(l)||Loo(R) —I—T|S|lifj\)/[ }Hé(u) — H”(U,)‘

< hl|wol|Lip + Nl H|| Lip-

Thus, the sequenae’” is a Cauchy sequence ii°. SinceH? converges uniformly tdd on
[—M, M|, we can use the stability result of the Hamiltonians in [3] to conclude that

t)= 1li Oh(z,t
w(z,t) ol W (2,t)
is a viscosity solution of

Now we can state the main result.

Theorem 3.2. Letw be the unique viscosity solution of the Hamilton-Jacobi equafion}(3.11),
wherewy is in BUC(R), and letu be the unique entropy solution to the conservation law

(3.12) w+ Hw), =0, u(z,0) = up(x),
with initial data

up(z) = @wo(:ﬁ).
Then fort > 0, w,(x,t) = u(z,t) almost everywhere.

Proof. Fix z, by construction we have that
wha,t) = e+ [0y

as(d,h) — 0, we have
wOh(z,t) — w(z,t),
WO (z,t) — w(z,t),
uM(y, ) — u(y, 1),
by the Lebesgue convergence theorem. Hence the theorem holds. O
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