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ABSTRACT. We establish a direct proof of the well known equivalence between the Crandall-
Lions viscosity solution of the Hamilton-Jacobi equationwt + H(wx) = 0 and the Krüzkov-
Vol’pert entropy solution of conservation lawut +H(u)x = 0. To reach at the purpose we work
directly with defining entropy and viscosity inequalities, and using the front tracking method,
and do not, as is usually done, exploit the convergence of the viscosity method.
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1. I NTRODUCTION

In this paper we present a direct proof of the equivalence between the unique viscosity solu-
tion [4, 2, 3] of the Hamilton-Jacobi equation of the form

(1.1) wt + H(wx) = 0, w(x, 0) = w0(x),

and the unique entropy solution [7, 13] of the conservation law of the form

(1.2) ut + H(u)x = 0, u(x, 0) = u0(x),

whereH : R → R is a given function of classC2 andw0 ∈ BUC(R), the space of all bounded
uniformly continuous functions, andu0 ∈ L1(R) ∩ BV (R), the space of all integrable func-
tions of bounded total variation. It is well known that ifu0 = d

dx
w0 ∈ L1(R) ∩ BV (R), the

solutionsu(·, t) ∈ BV (R), w(·, t) ∈ BUC(R) of both problems are related by the transfor-
mationu(·, t) = wx(·, t). The usual proof in the one dimensional case of this relation exploits

ISSN (electronic): 1443-5756

c© 2006 Victoria University. All rights reserved.

073-05

http://jipam.vu.edu.au/
mailto:maaibid@statistic.gov.ma
mailto:sayah@fsr.ac.ma
http://www.ams.org/msc/


2 M. AAIBID AND A. SAYAH

the known results about existence, uniqueness, and convergence of the viscosity method. As is
usually done, the proof of this relation exploits the convergence of the viscosity method; it is
known that the solutionsuε, wε of

uε
t + H(uε)x = εuε

xx, uε(x, 0) = u0(x) ∈ L1(R) ∩BV (R),

and
wε

t + H(wε
x) = εwε

xx, wε(x, 0) = w0(x) ∈ BUC(R),

converge to the entropy and viscosity solutionsu, w of (1.1) and (1.2) respectively. Ifw0x ∈
L1(R) ∩ BV (R) andu0 = d

dx
w0, the regularity ofwε permits the relationuε = wε

x which, after
letting ε tend to0 gives the desired resultu = wx. In this paper we are going to prove that
the unique viscosity solutionw of (1.1) is related to the unique entropy solutionu of (1.2) by
the identityu = wx - whenu0 = d

dx
w0 ∈ L1(R) ∩ BV (R)- by a direct analysis without using

the convergence of the viscosity method but instead using the defining viscosity and entropy
inequalities directly. We recall that a functionw ∈ BUC(R×]0, T [) is a viscosity solution of
the initial problem (1.1) ifw(x, 0) = w0(x) andw is simultaneously a (viscosity) sub-solution
and a (viscosity) super-solution inR×]0, T [:
Sub-solution: For eachϕ ∈ C1(R×]0, T [),

if w − ϕ has a local maximum point at a point(x0, t0) ∈ R×]0, T [,

thenϕt(x0, t0) + H(ϕx(x0, t0)) ≤ 0.

Super-solution: For eachϕ ∈ C1(R×]0, T [),

if w − ϕ has a local minimum point at a point(x0, t0) ∈ R×]0, T [,

then ϕt(x0, t0) + H(ϕx(x0, t0)) ≥ 0.

The existence, uniqueness and stability properties of the viscosity solutions were systematically
studied by Krüzkov, Crandall, Evans, Lions, Souganidis, and Ishii, [7, 10, 4, 2, 12, 3].

We recall thatu ∈ L∞(R×]0, T [) is an entropy solution of the initial problem (1.2) if:
||u(·, t) − u0(·)||L1

loc(R) → 0 ast → 0 and, for all convex entropy-entropy flux pairs(U, F ) :

R → R2 with U ′H ′ = F ′, we have:

∂tU(p) + ∂xF (p) ≤ o in the distributional sense.

In view that a continuous convex functionU can be a uniform limit of a sequence of convex
piece-affine functions of the form

Uε(x) = a0 + a1 + Σiai|x− ki|, ki constants∈ R,

then the convex pair(U, F ) can be replaced by the Kruz̈kov-pair [7]

(| · −k|, sgn(·, k)(H(·)−H(k)),

which is simple to manipulate. Therefore, using Kruz̈kov-pair, the definition of the entropy
solution can be presented as∫ T

0

∫
R
(|u− k|ϕt + sgn(u− k)(H(u)−H(k))ϕx)dxdt ≥ 0,

for all positiveϕ ∈ C1
c (R×]0, T [), and constantsk ∈ R.

For the existence, uniqueness, and stability results of the entropy solution we refer to Lax
[8, 9], Vol’pert [13], and Krüzkov [7].

The main purpose of the present paper is to give a direct proof of the the equivalence between
viscosity solutions of the Hamilton-Jacobi equation (1.1) and entropy solutions of conservation
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ENTROPY SOLUTIONS 3

law (1.2). There exist very few references which prove this relation without using the con-
vergence of the viscosity method. The main result of the paper is contained in the following
theorem:

Theorem 1.1.Letw be the unique viscosity solution of the Hamilton-Jacobi equation (1.1) and
let u be the unique entropy solution to the conservation law

ut + H(u)x = 0,

with initial data

u(x, 0) =
d

dx
w0(x).

If w0 ∈ BUC(R), or u(x, 0) ∈ L1(R) ∩BV (R), thenwx(x, t) = u(x, t) almost everywhere.

To show Theorem 1.1, we use the front tracking method, proposed firstly by Dafermos [5].
This is a numerical method for scalar conservation laws (1.2), which yield exact entropy solu-
tions in the initial datau0, is piecewise constant, and the flux functionH piecewise linear. We
then note that this method translates into a method that gives the exact viscosity solutions to
the Hamilton-Jacobi equation (1.1) ifw0 andH are piecewise linear and Lipschitz continuous.
This gives Theorem 1.1 in the case of piecewise linear/constant initial data, and piecewise linear
Hamiltonians/flux functions. To extend the result to more general problems, we take theL∞/L1

closure of the set of the piecewise linear/constant initial data, and the Sup/Lip norm closure of
the set of the piecewise linear Hamiltonians/flux functions, utilizing stability estimates from
[12] and [6] for conservation laws and Hamilton-Jacobi equations respectively. Note that the
front tracking method was translated to the system of conservation laws (see, e.g., [1], [11]).

The paper is organized as follows. In Section 2 we start by describing the front tracking for
scalar conservation law (1.2), we treat firstly the linear case in Subsection 2.1, and in Subsection
2.2 we extend the method to more general problems. Section 3 focuses on the Hamilton-Jacobi
equation (1.1), for which we translate the front tracking construction. Also we start by trans-
lating for the linear case in Subsection 3.1, Subsection 3.2 extends the construction to more
general Hamiltonians. The end of Subsection 3.2 is devoted to the main result of the paper
(Theorem 1.1).

2. FRONT TRACKING M ETHOD FOR THE SCALAR CONSERVATION L AW

2.1. The linear case.We start by describing front tracking for scalar conservation laws in
the linear case, i.e., we assume thatH is a piecewise linear continuous function andu0 is a
piecewise constant function with bounded support taking a finite number of values. To solve
the initial value problem (2.1),

(2.1) ut + H(u)x = 0, u(x, 0) = u0(x),

we start by solving the Riemann problem, i.e., whereu0 is given by

u0(x) =

{
ul, for x < 0,

ur, for x ≥ 0.

By breakpoints ofH we mean the points whereH ′ is discontinuous. Let nowH^ be the
lower convex envelope ofH betweenul andur, i.e.,

H^(u, ul, ur) = sup{h(u)|h”(u) ≥ 0, h(u) ≤ H(u) betweenul andur}.
Let alsoH_ be the upper concave envelope ofH betweenul andur,

H_(u, ul, ur) = inf{h(u)|h”(u) < 0, h(u) ≥ H(u) betweenul andur}.
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4 M. AAIBID AND A. SAYAH

Now set

H](u, ul, ur) =

{
H^(u, ul, ur), if ul ≤ ur;

H_(u, ul, ur), if ul > ur.

SinceH is assumed to be piecewise linear and continuous,H] will also be linear and continu-
ous. We suppose thatH] hasN − 1 breakpoints betweenul andur, call theseu2, ..., uN−1 and
setu1 = ul anduN = ur, such thatui ≤ ui+1 if ul ≤ ur andui > ui+1 if ul > ur. We assume
thatui ∈ [−M, M ], for all i = 0, 1, . . . , N, whereM is constant. Now set

σi =


−∞, if i = 0,
Hi+1−Hi

ui+1−ui
, if i = 1, ..., N − 1,

+∞, if i = N,

whereHi = H](ui; ul, ur) = H(ui).
Let

Ωi = {(x, t)|0 ≤ t ≤ T, andtσi−1 < x ≤ tσi}.
Then the following proposition holds:

Proposition 2.1. Set
u(x, t) = ui for (x, t) ∈ Ωi,

thenu is the entropy solution of the Riemann problem (2.1).

Proof. We show the proposition in the case whereul ≤ ur, the other case is similar. First note
that the definition of the lower convex envelope implies that fork ∈ [ui, ui+1],

H(k) ≥ Hi + (k − ui)σi

≥ Hi+1 + (k − ui+1)σi

≥ 1

2
(Hi+1 + Hi) +

(
k − 1

2
(ui+1 + ui)

)
σi.

To show thatu is the entropy solution desired, we have to prove that for each non-negative test
functionϕ,

(2.2) −
∫

ΩT

∫
(|u− k|ϕt + sgn(u− k)(H(u)−H(k))ϕx)dxdt

+

∫
R
|u(x, T )− k|ϕ(x, T )− |u0(x)− k|ϕ(x, 0)dx ≤ 0,

whereΩT = R × [0, T ], andsgn(u − k) = 1 if u − k ≥ 0, and = −1 if u − k < 0. The first
term in (2.2) is given by

−
∫

ΩT

∫
(|u− k|ϕt + sgn(u− k)(H(u)−H(k))ϕx)dxdt

= −
N∑

i=1

∫ ∫
Ωi

|ui − k|ϕt + sgn(ui − k)(H(ui)−H(k))ϕxdxdt

= −
∫

R
|u(x, T )− k|ϕ(x, T )− |u0(x)− k|ϕ(x, 0)

−
N−1∑
i=1

∫ T

0

{σi(|ui+1 − k| − |ui − k|)− (sgn(ui+1 − k)(H(ui+1)−H(k))

− sgn(ui − k)(H(ui)−H(k)))ϕ(σit, t)}dt,
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by Green’s formula applied to eachΩi. Considering the integrand in the last term, we find that,
if k > ui+1 or k < ui

σi(|ui+1 − k| − |ui − k|)− (sgn(ui+1 − k)(H(ui+1)−H(k))

− sgn(ui − k)(H(ui)−H(k))) = 0.

Otherwise, we find that

σi(|ui+1 − k| − |ui − k|)− (sgn(ui+1 − k)(H(ui+1)

−H(k))− sgn(ui − k)(H(ui)−H(k)))

=
1

2
(Hi+1 + Hi) + (k − 1

2
(ui+1 + ui))σi ≥ 0,

since fork ∈ [ui, ui+1],

H(k) ≥ 1

2
(Hi+1 + Hi) +

(
k − 1

2
(ui+1 + ui)

)
σi.

This implies thatu, defined in Proposition 2.1, is an entropy solution of the Riemann problem.
�

For a more general initial problem, i.e., whenu0 has more than one discontinuous point,
one defines a series of Riemann problems. Note that the initial value function is piecewise
constant, and the construction of the solutions of this problem leads to defining the speeds
σi, i = 1, ..., N − 1, for each Riemann problem.
The solutionu(x, t) will be piecewise constant, with discontinuities on lines emanating from
the discontinuities ofu0. These discontinuities are called fronts. In fact, the solution consists of
constant states separated by these discontinuities:

u(x, t) = u1, for x < x1(t),

u(x, t) = ui, for xi−1 < x < xi, i = 2, ..., N − 1,

u(x, t) = uN , for x > xN−1(t),

where each front (path of discontinuity) is given by:

xi(t) = x0 + σi(t− t0).

The next proposition sums up the properties of the front tracking method.

Proposition 2.2. LetH be a continuous and piecewise linear continuous function with a finite
number of breakpoints in the interval[−M, M ], whereM is some constant. Assume thatu0 is
piecewise constant function with a finite number of discontinuities taking values in the interval
[−M, M ]. Then the initial value problem

ut + H(u)x = 0, u(x, 0) = u0(x)

has an entropy solution which can be constructed by front tracking. The construction solution
u(x, t) is a piecewise constant function ofx for eacht, andu(x, t) takes values in finite set

{u0(x)} ∪ {breakpoints ofH}.
Furthermore, there are only a finite number of collisions between fronts inu.
If H is another piecewise linear continuous function with a finite number of breakpoints in the
interval [−M, M ] andu0 is a piecewise constant function with a finite number of discontinuities
taking values in the interval[−M, M ], setu to be the entropy solution to

ut + H(u)x = 0, u(x, 0) = u0(x).
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6 M. AAIBID AND A. SAYAH

If u0 andu0 are inL1R ∩BV (R), then

||u(·, T )− u(·, T )||L1(R)

≤ ||u0 − u0||L1(R) + T (inf{|u0|BV (R), |u0|BV (R)})||H −H||Lip([−M,M ]).

The proof of Proposition 2.2 can be found in [5, 6].

2.2. The general case.To deal with the general case, i.e, when the data of the problem is given
by

H ∈ C2 function and,u0 ∈ L1(R) ∩BV (R),

we construct a piecewise linear continuous fluxHδ, as:

(2.3) Hδ(u) = H(iδ) + (u− iδ)
H((i + 1)δ)−H(iδ)

δ
, for iδ ≤ u < (i + 1)δ.

Then ifη > δ > 0,

||Hη −Hδ||Lip([−M,M ]) ≤ sup
u∈[−M,M ]

|(Hη)′(u)− (Hδ)′(u)|

≤ sup
|u−v|≤η

|H ′(u)−H ′(v)|

≤ sup
|u−v|≤η

∫ v

u

|H ′′
(r)|dr

≤ ||H ′′||L∞([−M,M ])η.

Thus(Hη)η∈N is a Cauchy sequence (by theLip-norm).
If furthermore,u0(x) ∈ BV (R) ∩ L1(R), set

(2.4) uh
0(x) =

1

h

∫ (i+1)h

ih

u0(κ)dκ, for ih ≤ x < (i + 1)h,

we have that,

||uh
0 − u0||L1(R) =

∑
i

∫ (i+1)h

ih

|u0(x)− 1

h

∫ (i+1)h

ih

u0(z)dz|dx

≤
∑

i

1

h

∫ (i+1)h

ih

∫ (i+1)h

ih

|u0(x)− u0(z)|dzdx

≤
∑

i

1

h

∫ (i+1)h

ih

∫ (i+1)h

ih

∫ x

z

|u′0(y)|dydzdx

≤
∑

i

h

∫ (i+1)h

ih

|u′0(y)|dy

≤ h|u0|BV (R).

Therefore ifh ≥ l > 0,

||uh
0 − ul

0||L1(R) ≤ ||uh
0 − u0||L1(R) + ||ul

0 − u0||L1(R)

≤ (h + l)|u0|BV (R) ≤ 2h|u0|BV (R).

Proposition 2.3. Letuη,h be the entropy solution to

(2.5) uη,h
t + Hη(uη,h)x = 0, uη,h(x, 0) = uh

0(x).
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The sequence(uη,h)η,h is a Cauchy sequence inL1(R) since

(2.6) ||uη,h(·, T )− uδ,l(·, T )||L1(R) ≤ (2h + T ||H ′′||L∞([−M,M ])η)|u0|BV (R).

The proof of Proposition 2.3 can be easily deduced from Proposition 2.2. Now, using Propo-
sition 2.3, we can define theL1 limit

u = lim
(η,h)→0

uη,h.

To prove thatu is the entropy solution of the problem (1.2), we have to prove thatu satisfies the
entropy condition, i.e., for each test functionϕ non-negative inC1

c (ΩT ), we have:

(2.7) −
∫

ΩT

∫
(|u− k|ϕt + sgn(u− k)(H(u)−H(k))ϕx)dxdt

+

∫
R
|u(x, T )− k|ϕ(x, T )− |u0(x)− k|ϕ(x, 0)dx ≤ 0.

For the linear case we have:

(2.8) −
∫

ΩT

∫
(|uη,h − k|ϕt + sgn(uη,h − k)(Hη(uη,h)−Hη(k))ϕx)dxdt

+

∫
R
|uη,h(x, T )− k|ϕ(x, T )− |uh

0(x)− k|ϕ(x, 0)dx ≤ 0.

Since|uη,h − k| → |u − k| andHη → H, then it easily follows that the limit functionu is an
entropy solution to

ut + H(u)x = 0, u(x, 0) = u0(x).

In the next section we will describe how the front tracking construction translates to the Hamilton-
Jacobi equation (1.1).

3. FRONT TRACKING M ETHOD FOR THE HAMILTON -JACOBI EQUATIONS

3.1. The linear case.We deal now with the Hamilton-Jacobi equation when the data of the
problem (1.1) is linear. Now set

(3.1) wt + H(wx) = 0, w(x, 0) = w0(x).

We assume thatH is piecewise linear and continuous, andw0 is also piecewise linear and
continuous, i.e.,∂

∂x
w0 is bounded and piecewise constant.

First we study the Riemann problem for (3.1) which is the initial value problem

w0(x) = w0(0) +

{
ulx, for x < 0,

urx, for x ≥ 0.

whereul andur are constants, c.f. (2.3). Now letu(x, t) denote the entropy solution of the
corresponding Riemann problem for the conservation law (2.1). In the linear case, using the
Hopf-Lax formula [10], the viscosity solution of (3.1) is given by

(3.2) w(x, t) = w0(0) + xu(x, t)− tH(u(x, t)).

Note that in the case whereH is convex, this formula can be derived from the Hopf-Lax formula
for the solution (3.1). Also note that(H])′(u) is monotone betweenul andur, hence we can
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8 M. AAIBID AND A. SAYAH

define its inverse and set

u(x, t) =


ul for x < t min((H])′(ul), (H

])′(ur)),

((H])′)−1(x/t), for t min((H])′(ul), (H
])′(ur)) ≤ x,

((H])′)−1(x/t), for x < t max((H])′(ul), (H
])′(ur)),

ur for x ≥ t max((H])′(ul), (H
])′(ur)).

Although u is discontinuous, a closer look at the formula (3.2) reveals thatw is uniformly
continuous. Indeed, for fixedt, w(x, t) is piecewise linear inx, with breakpoints located at the
fronts inu. Hence, when computingw, one only needs to keep a record of howw changes at
the fronts. Along a front with speedσi, w is given by

(3.3) w(σit, t) = w0(0) + t(σiui −H(ui)) = w0(0) + t(σiui+1 −H(ui+1)).

Now we can use the front tracking construction for conservation laws to define a solution to the
general initial value problem (3.1). We track the fronts as for the conservation law, but update
w along each front by (3.3). Note that if for some(x, t), w(x, t) is determined by the solution
of the Riemann problem at(xi, tj), then

(3.4) w(x, t) = w(xj, tj) + (x− xj)u(x, t)− (t− tj)H(u(x, t)),

whereu is the solution of the initial value problem for (2.1) with the initial values given by

u(x, 0) =
d

dx
w0(x).

Analogously to Proposition 2.3 we have:

Proposition 3.1. The piecewise linear functionw(x, t) is the viscosity solution of (3.1). Fur-
thermorew(x, t) is piecewise linear on a finite number of polygons inR×R+

0 . If w0 is bounded
and uniformly continuous(BUC), thenw ∈ BUC(R× [0, T ]) for anyT < ∞. If H is another
Lipschitz continuous piecewise linear function with a finite number of breakpoints, andw is the
viscosity solution of

wt + H(wx) = 0, w(x, 0) = w0(x),

andw0 andw0 are bounded and uniformly continuous(BUC), then

(3.5) ||w(·, T )− w(·, T )||L∞(R) ≤ ||w0 − w0||L∞(R) + T sup
|u|≤M

|H(u)−H(u)|,

whereM = min(||w0x||, ||w0x||).

Proof. We first show thatw is a viscosity solution. We have thatw is determined by the solution
of a finite number of Riemann problems at the points(xi, tj). Given a point(x, t) in wheret > 0,
we can find aj such thatw(x, t) is determined by the Riemann problem solved at(xi, tj).

Setu = wx. Let ϕ be aC1-function, assume that(x0, t0) is the maximum point ofw − ϕ.
Sincew is piecewise linear, we can define the following limits

lim
x→x−0

wx(x, t0)− ϕx(x0, t0) ≥ 0, lim
x→x+

0

wx(x, t0)− ϕx(x0, t0) ≤ 0.

Or

(3.6) ul ≤ ϕx(x0, t0) ≤ ur,

whereul,r = limx→x±0
u(x, t−0 ). Set

σ =


H(ul)−H(ur)

ul−ur
if ul 6= ur,

H]
′
(ul), if ul = ur.
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Sinceul ≤ ϕx(x0, t0) ≤ ur, the construction ofH] implies that

(3.7) H(ϕx(x0, t0)) ≥ H(ul) + σ(ϕx(x0, t0)− ul).

Now choose(x, t) sufficiently close to(x0, t0) such that

σ =
x0 − x

t0 − t

andw(x, t) is also determined by the solution of the Riemann problem at(xj, tj), andt < t0.
If t0 > 0, we have:

(3.8)
1

t0 − t
(w(x0, t0)− w(x, t)) ≥ 1

t0 − t
(ϕ(x0, t0)− ϕ(x, t)).

Using (3.4) we have that

w(x0, t0) = w(x, t) + (x0 − x)ul − (t0 − t)H(ul).

Hence, by lettingt → t0−, we find that

σul −H(ul) ≥ ϕt(x0, t0) + σϕx(x0, t0)

≥ ϕt(x0, t0) + H(ϕx(x0, t0)) + σul −H(ul),

which implies thatw is a sub-solution. A similar argument is applied to show thatw is super-
solution.

If t0 = 0, assume that(x0, 0) is a maximum point ofw − ϕ. Setul,r = limx→x0∓ u(x, 0+).
Then

w(x, t) = w(x0, 0) + (x− x0)ul − tH(ul),

whereσ = (x−x0)/t and(x, t) is sufficiently close to(x0, 0). Now, using (3.7) as before gives
the conclusion. Note that this also demonstrates the solution of the Riemann problem (3.1).

Next we show the stability estimate (3.5). This is a consequence of Proposition 1.4 in [12],
which in our context says that

sup
(x,y)∈Dε

{|w(x, t)− w(y, t)|+ 3Rβε(x− y)}

≤ sup
(x,y)∈Dε

{|w0(x)− w0(y)|+ 3Rβε(x− y)}+ t sup
|u|≤M

|H(u)−H(u)|,

whereβε(x−y) = β(x/ε) for someC∞
c functionβ(x) with β(0) = 1 andβ(x) = 0 for |x| > 1.

Furthermore,R = max(||w||, ||w||). Consequently,

||w(·, t)− w(·, t)||L∞(R) + sup
(x,y)∈Dε

{3Rβε(x− y)− |w(x, t)− w(y, t)}

≤ ||w0 − wh
0 ||L∞(R) + 3R + t sup

|u|≤M

|H(u)−H(u)|.

The inequality of the lemma now follows by noting thatw is in BUC(R × [0, T ]), and taking
the limit asε → 0 on the left side. �

Now we are able to explicitly construct a viscosity solution to all problems of the type (3.1)
whereH andu0 are piecewise linear and Lipschitz continuous with a finite number of break-
points. In the next subsection we extend the result to the more general case.

J. Inequal. Pure and Appl. Math., 7(2) Art. 64, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 M. AAIBID AND A. SAYAH

3.2. The general case.Now we pass to the general case. We assume that

H ∈ C2 andw0 ∈ BUC(R).

First, we construct a piecewise linear continuous HamiltonianHδ defined as follows:

(3.9) Hδ(u) = H(iδ) + (u− iδ)
H((i + 1)δ)−H(iδ)

δ
, for iδ ≤ u < (i + 1)δ.

and let

(3.10) wh
0 = w0(ih) + (x− ih)

w0((i + 1)h)− w0(ih)

h
, for ih ≤ x < (i + 1)h.

Setwδ,h to be the viscosity solution of

wδ,h
t + Hδ(wδ,h

x ) = 0, wδ,h(x, 0) = wh
0 (x).

Then forη > δ > 0 andh > l > 0,

||wδ,h(·, T )− wη,l(·, T )||L∞(R) ≤ ||wh
0 − wl

0||L∞(R) + T sup
|u|≤M

∣∣Hδ(u)−Hη(u)
∣∣

≤ h||w0||Lip + η||H||Lip.

Thus, the sequencewδ,h is a Cauchy sequence inL∞. SinceHδ converges uniformly toH on
[−M, M ], we can use the stability result of the Hamiltonians in [3] to conclude that

w(x, t) = lim
(δ,h)→0

wδ,h(x, t)

is a viscosity solution of

(3.11) wt + H(wx) = 0, w(x, 0) = w0(x).

Now we can state the main result.

Theorem 3.2. Let w be the unique viscosity solution of the Hamilton-Jacobi equation (3.11),
wherew0 is in BUC(R), and letu be the unique entropy solution to the conservation law

(3.12) ut + H(u)x = 0, u(x, 0) = u0(x),

with initial data

u0(x) =
d

dx
w0(x).

Then fort > 0, wx(x, t) = u(x, t) almost everywhere.

Proof. Fix z, by construction we have that

wδ,h(x, t) = wδ,h(z, t) +

∫ x

z

uδ,h(y, t)dy

as(δ, h) → 0, we have

wδ,h(x, t) → w(x, t),

wδ,h(z, t) → w(z, t),

uδ,h(y, t) → u(y, t),

by the Lebesgue convergence theorem. Hence the theorem holds. �
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