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ABSTRACT. We prove the existence and uniqueness of a continuous Green function for the par-
abolic operatol. = 0/t — div(A(z,t)Vg) + v - V, + u with the initial Dirichlet boundary
condition on aC'*!-cylindrical domainQ c R"™ x R, n > 1, satisfying lower and upper es-
timates, wherer = (v1,...,v,), v; andp are in general classes of signed Radon measures
covering the well known parabolic Kato classes.
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1. INTRODUCTION

In this paper we are interested in the parabolic operator
L:LO—FV'VI‘{‘/.L,

whereLy = 9/0t —div(A(z,t)V,) onQ = Dx]0,T[, D is a bounded*-!-domain inR", n >

1 and0 < T < oo. The matrixA is assumed to be real, symmetric, uniformly elliptic with
Lipschitz continuous coefficients, = (v4,...,v,), v; andpu are signed Radon measures on

2. Recall that Zhang studied the perturbatidns+ B(z,t) - V, [37,[40] andL, + V (z,1)
[38,139] of L, with B and V' in some parabolic Kato classes. Using the well known results
by Aronson [1] for parabolic operators with coefficients/it?-spaces and an approximation
argument, he proved, in both cases, the existence and uniqueness of a Green fuhatitre
initial-Dirichlet problem o). The existence of the Green function allowed him to solve some
initial boundary value problems. In [28] and [31], we have established two-sided pointwise
estimates for the Green functions describing, completely, their behavior near the boundary.
These estimates are used to prove some potential-theoretic results, namely, the equivalence of
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harmonic measures [B1], the coincidence of the Martin boundary and the parabolic boundary
[27]; and they simplify proofs of certain known results such as the Harnack inequality, the
boundary Harnack principles [28], etc. In the elliptic setting, similar estimates are well known
(seel3,8, 11, 12, 43]) and have played a major role in potential analysis; for instance they were
used to prove the well knowstz-Theorems and the comparability of perturbed Green functions
(seel10, 13, 26, 29, 30, 32,143]).

Our aim in this paper is to introduce general conditions on the measgares,, which guar-
antee the existence and uniqueness of a continie@szen functior for the initial-Dirichlet
problem on(? satisfying two-sided estimates like the ones in the unperturbed case. In fact, we
establish the existence 6f whenv andp are in general classes covering the parabolic Kato
classes used by Zharig [37]/=[40]. Some partial counterpart results in the elliptic setting have
recently been proved in [13, 30] and are based on 3@wW heorems which cover the classical
ones due to Chung and Zhao [3], Cranston and Zhao [4] and Zhao [43]. In the parabolic set-
ting it is not clear whether versions of these theorems hold. Here we establish basic inequalities
(Lemmas 3.]L £ 3]3 below) which imply the elliptic né&-Theorems for all dimensions > 1,
and which are a key in proving the existence result. The paper is organized as follows.

In Sectior| 2, we give some notations and state some known results. In Section 3, we prove
some useful inequalities that will be used in the next sections. Parabolic versions of the elliptic
3G-Theorems|[[13, 26, 29, 30, 32] are proved. In Sedtion 4, we introduce general classes of
drift termsv and potentialg: denoted byCloc(Q) andPlo¢(Q2), respectively, and we study some
of their properties. In Sectidn 5, we prove the existence and uniqueness of a contiruous
Green functionz for the initial-Dirichlet problem o) satisfying lower and upper estimates
as in the unperturbed case, whemnd i are in the classek!*¢(Q) and P¢(2), with small
norms M¢(v) and N¢(n~), respectively (see Theoredm .6 and Corollary 5.7). In particular,
these results extend the ones proved in[14, 28, 31, 37, 38] to a more general class of parabolic
operators. In Sectidr 6, we consider the time-independenttasel(z), v = 0, p = V(z)dx
and we establish global-time estimates for Schrodinger heat kernels.

Throughout the paper the letters C’ . .. denote positive constants which may vary in value
from line to line.

2. NOTATIONS AND KNOWN RESULTS

We consider the parabolic operator

L= % —div(A(z,)V,) +v -V, +pu

onQ = Dx]0,T[, whereD is aC'!-bounded domain iR”, n > 1 and0 < T < co. By
a domain we mean an open connected set.7Fer 1, D =a,b[ with a,b € R,a < b. We
assume that the matrig is real, symmetric, uniformly elliptic, i.e. there s > 1 such that
ATHIEN? < (A(z, 1), &) < M[E|1%, forall (z,t) € Q and allé € R™ with A-Lipschitz continuous
coefficients orf2, v = (v1,...,v,), v; andyu are signed Radon measures. Wher- 0 and
u = 0, we denotel by L,. We denote by, the L,-Green function for the initial-Dirichlet
problem or2. In the time-independent case, we denotgdfresp.g_») the Green function of
Ly = —div(A(z)V,) (resp.—A) with the Dirichlet boundary condition ofy. By [12], there
exists a constant’ = C'(n, A\, D) > 0 suchthatC~'g_A < gy < Cg_a. Using this comparison
and the estimates an A proved in [8/ 11} 43] forn > 3, in [3] for n = 2 and the formula

(b—zVy)zAy—a)
b—a

g-a(z,y) = for n=1,

we have the following.
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Theorem 2.1. There exists a constant = C'(n, A, D) > 0 such that, for allz, y € D,
C_l\IJ(x7y) S gO(xv y) S C\I’(Z’,y),

where .
( d(z)d(y)|lz—y[>—" ; .
d@d(y) 2o ifn = 3;
U(z,y) =< Log (1 + Cﬂf};ﬁ?) if n=2;

d(z)d(y) _—
_d@dw)
| oyt e

with d(z) = d(x,0D), the distance from: to the boundary oD.

Fora >0, z, y € D ands < t, let

1 x — y|?
Lo(z,t;y,8) = meXP (—a| | ) ;

t—s
Yo(z,t;9,5) = min <1, \/d%) min (1, \/d%) La(z, 8y, s),

and

d a y L3 Y,
Vo(z,t;y,8) = ¥l (y,t; 2, 5) = min (17 t<y_)5> r (xtt_ys s)'

The following estimates on thiy-Green functiornz, were recently proved in [31].

Theorem 2.2. There exist constants), ¢, ¢c; > 0 depending only on, A, D and7 such that
forall z, ye Dand0 < s <t <T,

() ko 've,(z,t5y,8) < Go(z, b1y, ) < ko e, (2,159, ),
(i) [V.Gol|(z.t;y,s) < kotpe, (7, 8y, 5) and
(”I) |vyG0|(x7tay7 S) S k0¢:1 (-T,t,y, S)'

3. BASIC INEQUALITIES

In this section we prove some basic inequalities which are a key in obtaining the existence
results.

Lemma 3.1(3vy-Inequality) Let0 < a < b. Then for any) < ¢ < min(a, b — a), there exists a
constantCy = Cy(a, b, c) > 0 such that, for allz, y, z € D, s < 7 < t,

a2 I T8) o [38 vel@, 2, 7) + %w,r;y,s)} -

Ya(@, Y, 5)
Proof. We may assume = 0. Letx, y, z € D, 0 < 7 < t. We have
(3.1) Ya(®, 82, 7)W(2, 739, 0) = wla(z, b5 2, 7)1 (2, 759, 0),
where

w = min (1, jﬁ_>) tmin <1, %) min ( kf) min (1, Kj)) |

Let p €]0, 1] which will be fixed later.

Case 1.7 €]0, pt]. We have
1 1

G= = =P
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Combining with the inequality

e O EE

forall 7 €]0,1¢],

- I

t—T T
we obtain
(3.2) Va(w, 62, 7)T(2, 759, 0) < s To-a(z 759, O)La(@, £, 0).
Moreover, using the inequalities
of : of
< <2

for o, 8 > 0, and|d(z) — d(y)| < |z — y|, we have

IMDO,i%L)S §3mm(ng?; O+{2§ﬂ)

2 d(z) .( ﬂ@)( V—yo
3.3 < ———Lmin (1, — 1+
(3-3) 1— pd(y) t VT
Combining [(3.1) -{(3]3), we obtain, for all€]0, pt],
2 d(z)
o(@, 6 2, T)W(2, 73y, 0) < e (2,739, 0)7 (2, Y, 0
Ya( (2,759, 0) u—m%ﬂw” Y, 0)7a(2, 259, 0)

x (1 + "7%”') exp (—(b _a— ok _Ty|2> .

Using the inequality1 + 6) exp(—af?) < 1+ a~1/2, for all o, § > 0, it follows that

d(z
(34) ’Ya(l', ta Z, T)Vb(za Y, 0) < COQ’YC(Za 7Y, O)'}/a(l', tv Y, 0)7

d(y)
whereCy = Cy(a, b, ¢, p) > 0.

Case 2.7 € [pt,t[. If |z —y| > (%)1/2|5U -y

2 a2
(3.5) exp (—blz vl ) < exp (—a|x vl ) )
T

t

, then

If |z — y| < ()22 — y|, then

ezt (1 (5) -
which yields
o (=)
oo (-(43) =)= (- (59 = 0-6)))
(- (5) =) (59500 0))
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Now takingp so that

we obtain

— |2 .12 2
(3.6) exp <—a|x ?| ) < exp (— (CH—C) [z — 2] ) exp (—a|m Yl ) )
t—T1 2 t—T1 t
From [3.5) and[(3]6), we have

1
WF(LT-I—C(I', t, Z, T)Fa<x7 t? y? 0)

Note that[(3.]7) is similar to the inequalify (8.2). Then by the same method used to prgve (3.4),
we obtain
(3.8) Yal@, 152, 7) (2, 759, 0) < Co%%(% t;z,7)va(@, 1y, 0).

Combining [3.4).[(3]8) and using the fact that

1\ 2
(a—c) <1 — (%F)
2a(1 — p) -
we get the inequality of Lemnja 3.1 with, = Cy(a, b, ¢) > 0. O
Lemma 3.2. Let0 < a < b. Then for any0 < ¢ < min(a,b — a), there exists a constant
Cy = Ci(a,b,c) > 0suchthat, foralle, y, z € D, s < 7 < t,

PYa(xa t; Z, T)wb(za Y, 8)

S C(1 [¢c($at; Z7T) + ¢:(za7;ya S)] .

Ya(, 15y, )
Proof. We may assume that= 0. Lettingz, y, z € D, 0 < 7 < t, we have
(3.9) Ya(@, 12, T)Yu(2, 739, 0) = wly(x, t; 2, 7)) (2, 73y, 0),

where

1
w = min (1, \/d%) min (1, dt(i)r) min (1, %) F
Let p €]0, 1] that will be fixed later.
Case 1.7 €]0, pt]. Asin (3.2), we have

Loz, t;2,7)Ts(2, 73 9,0) < Lp—a(z,719,0)Da(, t;y,0)

1
(1—p)r
1
(3.10) < mrc<z>7’§y>0)ra(%t§y70)

Moreover, by using the same inequalities as in|(3.3), we obtain
4 d(x)) | ( d(y)) . ( d(z))( \z—y\)2 !
3.11 < — 1, — 1, —= L,—= |1+ —F —.
( )w_(l_p)3/2m1n<,ﬁ min v min - + 7 =
Combining [3.9) —{(3.111) and using the inequality
1 2
2 —af?) < ot
(14 0)= exp( 049)_2(1—1—\/&) ,

forall o, 6 > 0, it follows that
Yal@, b5 2, )by (2, 75, 0) < C1} (2, 75y, 0)va(, £y, 0),
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with

Cp =8 <1+ﬁ) (1—p) 2.
Case 2.7 € [pt, t[. If |z — y| > (%)'/2|z — y], then
(3.12) exp (—b@) < exp (—QM) .

If |z — y| < (4)'/2]z — y|, then|z — 2| > (1 — (£)/?)|z — y|, which yields

o () 2o o o2 o))

Now takingp so that

we obtain

— |2 L2 2
(3.13) exp (—a|w | ) < exp (—c|x i ) exp (—au> i
t—T1 t—1T7 t
Combining [3.1IR) and (3.13), we have
(3.14) Loz, t;2,7)h(2,739,0) <

1
WFC(Z., t, zZ, T)Fa(ma ta Y, O)

, (1 d(z) > 1 < 1. (1 d(x)) 1
min — < — min —
’\/t—T T \/p ’ \/E t—T
and so

1mim M min M min d(z) !
(315) v (1’ \/¥> ( ﬁ) <1’\/t—7) Vit
Combining [3.9),[(3.14) andl (3.]15), we obtain

1
7&(377 t? Z, T)wb(zv Y, 0) S ch('ra tu 2, T)’}/a(.l’, tv Y, 0)7

Moreover,

which ends the proof. O
Replacingy, by ¢, in Lemmg 3.2 and following the same manner of proof, we also obtain

Lemma 3.3. Let0 < a < b. Then for any0 < ¢ < min(a,b — a), there exists a constant
Cy = Cy(a,b,c) > 0suchthatforalle, y, z € D, s <7 <,

¢a($, tv Z, 7)%(% Y, S)
Vo, Y, 5)
By simple computations we also have the following inequalities.

< Gy [l 52,7) + Uiz 50, )|

Lemma 3.4.For 0 < a < b < ¢, there exists a constant; = Cs(a, b, ¢) > 0 such that, for all
x,y € Dands < t,
d*(y)

(. Ey) d(y) .
-1 . < . <
C5 " min <1, ; > Co(z,t;y,8) < d(m)%(x,t,y, s) < C3min (1, .

) Loz, ty,s).
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4. THE CLASSESK¢(Q) AND P¢(Q)

In this section we introduce general classes of drift tetms (v4,...,v,) and potentials
1 which guarantee the existence and uniqueness of a continfu@reen function for the
initial-Dirichlet problem on() satisfying two-sided estimates like the ones in the unperturbed
case (Theorem 2.2).

Definition 4.1 (see [37] 40]) Let B be a locally integrabl®™-valued function orf2. We say
that B is in the parabolic Kato class if it satisfies, for some 0,

‘ Le(z,t;2,7) ,T)
lim ¢ sup / / ————"|B(z,7)|dzdT
r—0 {(m eQJi—r JDN{|z—2|<yry  VI—T

Le(2, 739, 8)
+ sup / / ——="2|B(z,7)|dzdT p = 0.
(y,8)€Q Dn{|z—y|<y/T} VT —S

Remark 4.1.

(1) Clearly, by the compactness @f if B is in the parabolic Kato class then

t;
sup // (z,t27) ——_"|B(z,7)|dzdT
(z,t)eQ

2,7y, 8
+ sup / / B(z,7)|dzdT < oc0.
A A = L

(2) In the time-independent case, the parabolic Kato class is identified to the elliptic Kato
classK, 1 (seel[4], forn > 3), i.e. the class of locally integrablg”-valued functions
B = B(z) on D satisfying

lim sup / oz, 2)|B(2)|dz = 0,
Dn{|z—z|<y/T}

r=02eD

— if n>2
plz,z) =4 " |
1\/Logﬁ if n=1.

where

Note that if B € K,,,1, then
Sup/ oz, 2)|B(2)|dz < .
ze€DJD

Definition 4.2. Letc > 0 andv = (v, ..., v,) With v; a signed Radon measure 8n We say
thatv is in the classClo¢(Q) if it satisfies

4.1) M¢(v) := sup / / Ve, t; 2, 7)|v|(dzdT)

(z,t)eQ

+ sup / /@D 2,7y, s)|v|(dzdr) < oo,

(y,8)€Q
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and, for any compact subsetc 2,

t
(4.2) lim sup/ / Ve, t; 2, 7)|v|(dzdr)
r=0 | @neE Ji—r J Dn{lz—z|<vr)

S+r
+ sup L/" J/ (o, 8) vl (dzdr) b = 0,
(y,s)eE Js Dn{|z—y|<{/T}

Remark 4.2.
(1) From Definitiond 4.1} 4]2 and Remdrk 4.1.1, the cli&s((2) contains the parabolic
Kato class.
(2) In the time-independent cad€l*c(0) is identified to the clask'>°( D) of signed Radon
measures = (v, ..., 1,) on D satisfying
(4.3) sup [ (a2l (d) < .
zeD JD
and, for any compact subsetc D,
(4.4 lim Sup/ Y(z, 2)|v|(dz) =0,
=0 2eB JDn{|z—2|<\/r}
where
min <1, |i(_zi|> W if n>2,
Uz, 2) =
Log (1 + Is:l(jil) if n=1.

Forn > 3, the classCl°(D) was recently introduced in [13] to study the existence and
uniqueness of a continuous Green function for the elliptic operaterB(z) - V,. with
the Dirichlet boundary condition ob.

Proposition 4.3. For all a €]1, 2], the drift term

1
| Ba(2)| = € K°°(D) \ Kny1,

d(z) <L0g (ff;(f;)) o

whered(D) is the diameter oD.

Proof. Case 1 n = 1. We will prove thatB, is in the classC'*(D). Clearly|B,| € L.(D)
and so it satisfiegt.4)). We will show thatB, satisfies[4.3). We have

d d
/ Y(x, 2)|Ba(z)]dz :/ Log (1 + | (2) |) i NG
T —z
D D d(z) (Log (W))
:/ ...dz—i—/ ...dz
DN(|z—z|<d(2)/2) DN(|lz—=z|>d(2)/2)

(4.5) =1 + 1.
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In the caséz — z| < d(z)/2, we haveid(z) < d(z) < 2d(x), and so
1 3 / ( 2d(z) >
I < : Log [ 1+ dz
' = (Log 2)* 2d(x) |o—z|<d(z) |z — 2|

% / » Log <1 + 20&?) dr

1
(4.6) = 2C / Log (1 + %) dt = C".
0

Moreover, by using the inequalifyog(1 + t) < ¢, for allt > 0, we have

<

7Z|

(D) d )
(4.7) gc/o T(Log (Z(_D)»a —C

Combining([4.5) — , we obtain thai3, satisfieg[.3).
Now we prove thaB does not belong to the class, ;. Without loss of generality, we may

assume thab =0, 1[. We have

sup /D oz, 2)| Ba(2)|dz = sup / 1 (Log ! ) (Lo gd(lz)»_adz

z€D 16[071] 0

1/2 1 1 11—«
> / - (Log (—)) dz = o0.
0o 2 z

Case 2:n > 2. We will prove thatB, is in the classC'¢(D). Clearly|B,| € L. (D) and so it
satisfieq4.4). We will show thatB,, satisfies|4.3)). We have

[ ensimtotas= Lo (1725) e @)

:/ ...dz+/ ... dz
DN(|z—z|<d(z)/2) D(|lz—z]>d(z)/2)

(48) = Jl + Jz.

In the casezr — z| < d(z)/2, we haved(

I < dz
e (uos (22))
x — z| (Log z

d(z) < 2d(z ) and so

) <
3
Jy < 2(7)

(Log lo—2|<d(z Il“—ZI" !
(4.9) < df) / dr —
Moreover,
dz
& /D |z — 2| <L0g <‘ (Dz)‘>> «
4.10) <C / “w dr =
’ by

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 36, 24 pp. http://jipam.vu.edu.au/
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Combining([4.8) — , we obtain thaf3,, satisfieg[4.3).

Now we prove thaB does not belong to the class, ;. Without loss of generality, we may
assume that € 9D. D is aC"'-domain and so there exists > 0 such that
DN B(0,r) = B(0,r0) N {x = (2,2,) : 2 € R", z, > f(a)},

and

0D N B(0,79) = B(0,70) N {z = (z/, f(2)) : 2’ € R},
wheref is aC*!-function. For somey, > 0 small (seel[30, p. 220]) the set

Vo={z=(Z,z,) : || < po, and 0 < z,, — f(2') < ro/4}
satisfies

DN B(0,p0) C Vo € DN B(0,ry/2)

and for allz € Vg, d(z) < 2, — f(2') < Cd(z) and|f(z")| < C’|#'|, whereC andC’ depend
only on theC''-constant. From these observations, we have

sup/D o(x, 2)|Ba(2)|dz

z€D

/ / (12 + | 2n)? ) ) dz,dz'
|2'|<po 4 0<zn—f(2")<ro/4 z
1 —Q
1 —n (LOg (zn— 2! >)
> —,/ / (122 + 20 — f'(2)*) M)z
|2'|<po JO<zn—f(2")<r0/4

Zn — f(Z/)
L / /TO/4 (|2']* +r?) 5 —( 8(;) drdz’
|2|<po /O
7"0/4 1 - P0 =2
L ()
C o T r 0o (2+1r2)z
1 ro/4 1 1 —a  ppo/r n—2
= —”/ — <Log (—)) / S—Mdsdr
o P menE

1 [ro/t )"
0
O

Definition 4.3 (see[[38/°39]) Let V' be a potential ir.;. .(Q2). We say thal/ is in the parabolic
Kato class if it satisfies, for some> 0,

lim < sup / / Co(z,t; 2, 7)|V (2, 7)|dzdT
=0 | (2,)eQ Jt—r J DN{|z—2|</7}

+ sup / / Le(z, 759, 9)|V(2,7)|dzdr p = 0.
(y,8)EQ Dn{|z—z|<\/T}
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Remark 4.4.
(1) If V is in the parabolic Kato class, then, by the compactnes$k afe have

sup / / (x,t;2,7)|V (2, 7)|dzdT
(z,t)eQ

+ sup / / (2,739, 8)|V(z,7)|dzdT < 0.

(y,5)€Q

(2) In the time-independent case the parabolic Kato class is identified to the elliptic Kato
classK,, i.e. the class of functiong = V' (z) € L}, (D) satisfying

lim sup/ O (z,2)|V(z)|dz =0,
DA(fe—21<y/F)

r—=0zeD
where
m if n>3;
O(z,2) = 1vLogﬁ if n=2;
1 if n=1.

Note that, ifV € K, then

sup/ O(xz, 2)|V(2)|dz < 0.
xeD J D

In particulark,, ¢ L'(D).
Definition 4.4. Let ¢ > 0 andy a signed Radon measure On We say thaj is in the class
Plc(Q) if it satisfies

(4.11) N¢(p) := sup / / ?) % x,t; 2, 7)|pu|(dzdT)
(z,t)eQ iL’
d (2)
+ sup (2,739, 8)|pul(dzdr) < oo,
(y,8)€N y

and, for any compact subsgtc ¢,

(4.12) lim< sup / / Co(z,t; 2, 7)|p|(dzdT)
=0 |\ (zpeE Ji—r Dn{|z—z|<\/T}

T sup / y Dz, 7 9, )l (dzdr) = 0.
(y,5)€F DOjz—yl< v}
Remark 4.5.

(1) From Definitiong 4.5, 4/4, Remark 4.4.1 and Lenjma 3.4, the @4s§) contains the

parabolic Kato class.
(2) In the time-independent casgl*¢(Q) is identified to the clas®'>°( D) of signed Radon
measureg on D satisfying

(4.13) Jull = sup [ %gowm(dz) < oo,
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and, for any compact subsetc D,

(4.14) lim sup / go(z, ) ul(dz) = 0.
r=02eE J pn{|z—2|< 7}
This is clear by integrating with respect to time and using The¢remn 2.1 BoB, the
classP°¢(D) is introduced in[[30] to study the existence and uniqueness of a continuous
Green function with the Dirichlet boundary condition for the Schrédinger equatien
1 = 0 on bounded Lipschitz domains. Far= 2, the same results hold on regular
bounded Jordan domains (s2el[29]).

Proposition 4.6. For a € [1, 2[, the potential
Vo(z) = d(2)™* € P°(D) \ K,.

Proof. Forn > 3, this is done in[[30, Corollary 4.8]. We will give the proof fare {1,2}.
Note that fora. > 1,V,, ¢ L'(D) (see[30, Proposition 4.7]) and $§ ¢ K,,. We will prove
thatV,, € P°(D).

Case 1in = 1. V, € L2 (D) and so it satisfies (4.14). We show that satisfies[(4.13). By

loc

Theorenm 2.1, we have

@ T,z z z dQ_OC(Z) z
/Dd(x)g(’( AlValellds <€ D ]:c—z|—|—«/d(a:)d(z)d

:C(/ ...dz+/ ...dz)
D(|ja—2/<d(2)/2) DA(ja—21>d(2)/2)

(4.15) = C(I + I).

In the caséz — z| < d(z)/2, we haveid(z) < d(z) < 2d(x), and so

I < C’dl_a(ac)/ dz

lo—2|<d(z)

(4.16) < 2Cd* (D) < oo.

Moreover,

‘I _ 2’2—01
[2 < C/ dz
DN(je—z>d(z)/2) [T — 2| + /d(z)d(2)

< C/ |z — 2| dz
D
(4.17) < C'd* (D) < oo.

Combining [(4.1F) -{(4.17), we obtaljfi/, || < cc.
Case 2:n = 2. V, € L2 (D) and so it satisfieg (4.14). We show that satisfies|(4.13). By

loc

Theorenj 2.1, we have

/D%go(x, 2)|Va(2)|dz < C/D dd_(o;c()z) Log (1 + —c‘i;xzd;z?)) dz

(/ ...dz+/ ...dz>
DN(lz—z|<d(2)/2) DN(|z—z]|>d(2)/2)

—C
(4.18) = C(Jy + Jo).
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Recalling that in the case: — z| < d(z)/2, we haveZd(z) < d(z) < 2d(z), and using the
inequalityLog(1 + t) < t, forallt > 0, we have

Log (1 | @) )2 dz

|z = 2|

J < C’do‘(x)/

lo—2|<d(x)

<4Cd'(x) / dz

|z—2z|<d() |z — 2|
= C'd**(z)
(4.19) < C'd* (D) < oo.
Moreover, by using the inequalityog(1 + ¢) < t, for allt > 0, we also have

d2fa
Jp < C / (Zi dz
DN(|z—z|>d(z)/2) |z — 2|

< C/ |z — z|7%dz
D
d(D)
< C”/ ri=edr
0
(4.20) = C"d®*(D) < co.
Combining [(4.1B) -{(4.20), we obtajji/, || < occ. O

5. THE L-GREEN FUNCTION FOR THE INITIAL DIRICHLET PROBLEM

In this section we fix a positive constank ¢; /8, wherec; is the constant in Theore.2,
and we study the existence and uniqueness of a continlgbgeen function for the initial-
Dirichlet problem on2 whenv andy are in the classek!*c(Q2) andP¢(Q), respectively. A
Borel measurable functio& : 2 x Q —]0, oo] is called anL-Green function for the initial-
Dirichlet problem if, for all(y, s) € Q, G(-,-;y,s) € Li.(Q) and satisfies

loc
LG<> S Y, S) - 5(y,s)
(*) G('?';yﬁg) =0 on 9D x [S’T[
hmt_)er G(ZE, t, Y, S) = 897

in the distributional sense, whetg, ;) ande, are the Dirac measures @, s) andy, respec-
tively. In particular, for allf € L'(D x [s, T]) andug € Cy(D), the initial Dirichlet problem

Lu=f onDx][sT]|
u=0 on 90D x[s,T]
u(z,s) =up(x), € D

admits a unigue weak solution (sé€el[37] —/[40]) given by

u(x,t):/DG(a:,t;y, s)uo(y)dy—l-/:/DG(x,t;z,T)f(z,T)dsz.

We say that the Green functi@nis continuousf it is continuous outside the diagonal. Our first
result is the following.
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Theorem 5.1. Let v be in the classCloc(Q) with M¢(v) < ¢, for some suitable constan.
Then, there exists a unique continudus + v - V,)-Green functiorg for the initial-Dirichlet
problem on satisfying the estimates:

C (@, 15y, 8) < G(x, 1y, 5) < Cyg (o, 8y, 5),

forall x, y € D and0 < s <t < T, whereC, c3 are positive constants dependingon\, D
andT.

To prove the theorem we need the following lemma.

Lemma 5.2. Let©® = {(z,t;y,8) € QA x Q : ¢t > s}, f : © — R continuous, satisfying
|f| < Cye, for some positive constaatandv be in the classClo(Q). Then, the function

p(x,t;y,s) //fthTVGO(ZTy,)V(dsz)

is continuous orv.
Proof of Lemma 5]2For simplicity we use the notatioX = (z,t), Y = (y,s), Z = (z,7)
anddZ = dzdr. By Lemmd 3.2, we have, for allX;Y) € O,
t
plxy) < [ [ iz zy)piez)
s D

<Or (67 [ [ 13:2) 4 sz ) iaz)
< OM Wy (XY,
and sop is a real finite valued function. LétXy; Yo) := (zo, to; yo, So) € O be fixed and let
ro := 0(Xo, Q) A §(Yy, 00Q) A §(Xo; Yo) > 0,

where
1
d(Xo, Yo) = |zo — yo| V |to — sol?

is the parabolic distance betweay andY;. Consider the compact subséfs = B; (X, %)
andE, = B; (Y;,2). Sincev € K°¢(2), fore > 0, there isr € |0, 2 [ such that

sw [ [ wz)pliz) <
X€eE Bs(X,r)

swp [ [ wzvplaz) <
YeR, Bs(Y;r)
ForX € B; (Xo,%),Y € B; (Yo,%), we have

and

pxiy) = [ [ 106 2)9.6u(z V) td2)

//Bé(XO //_B(;(YO ) //C X() OBC Y()

—pl(X Y)+p2(X Y)+p3 X Y
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Clearly, forZ € B§(Xo,%) N Bs (Y5,%), the function(X;Y) — f(X;2)V.Go(Z;Y) is
continuous omB; (X, %) x Bjs (Yo, £) and satisfies

[F1(X; 2)|V.Gol(Z;Y) < Cryea (Xo + (0,72/8); Z)
< Cd(D)ey (Xo + (0,1/8); 2),
for someC' = C'(kog, c1,7,Yy) > 0 with

to+12/8
/ / ey (Xo + (0,72/8); Z)|v](dZ) < M(v) < oc.
0 D
It then follows from the dominated convergence theoremjthat continuous orB; (XO, g) X
Bs (Yo, %). Moreover, forX € B; (Xo, %), Z € Bs (Xo,%) andY € Bs (Y, %), we have
fI(X; 2)IV.Gol(Z;Y) < Crya (X5 2),

for someC = C(ko, c1,79) > 0. So, for allX € Bs (X,, %) andY € B; (Yo, %),
pleeyy<c [ [ agzl@z)
Bs(Xo,3)

<can) [ [ vqi2plaz)
Bs(Xr) °
< Cd(D)e.
In the same way, foX € Bs(Xo, 7), Z € B;s(Yy, 5) andY € Bs(Y), 7), we have
for someC = C(ko, c1,79) > 0. So, forallX € Bs(Xo, ;) andY € Bs(Ys, §),

<o f [ vy i@

<C / /B M)

< Ce.
Thusp is continuous at Xy; Yp). O
Proof of Theorerp 5]1Fora > 0 let
B, ={f:0 — R, continuous : |f| < C~,, for some C € R}.

For f € B, we put

11 = sup .
e 7

«

Clearly, (B, || - [|) is a Banach space. Let us define the operaton B« by

Af(z,t;y,s) = /t/Df(x,t; 2, T)V.Go(z,7;y,s) - v(dzdr),

forall f € B: . By the estimate (i) ofTheore@.Z, Lem@?;.z and Leiﬁa bounded
linear operator fromB% into B% with [|A]| < kyC1M(v). Assume that,C,M¢(v) < 1 and
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defineg by
(I —=AN)'Golz, t;y,8) =Y ,,50 A"Golz, t;y,s)  for (x,t;y,s) € O
G(z,ty,s) = B
Go(z,t;y,s) for (z,t), (y,s) € Q,t < s.
Thusg satisfies the integral equation:
Gz, t;y,s) = Go(z, t;y, s) //gthTVGO(ZTy, s) - v(dzdr),

forall (z,t), (y,s) € , and itis continuous outside the diagonal. This integral equation implies
thatg is a solution of the problerfl|). Moreover by Theorein 2.2 and Lemfnal3.2, we have, for
all (z,t;y,s) € ©,

G(,t;y,8) = Golw, t:y,5)| < ko D (keC1M ()" yey (, 8y, 5)

m>1
k2Cy Me(v)
(5'1) 1 _k001Mc< ) (x7t7y7 S)'
By taking
1 1
c - < -
RoCiM*(v) < 2k2ecz + 2

and recalling that
k:()_I’VCQ S GO S k0'7017
we get from|(5.11),
G(z,t;y,s) < 2kover (2, 15y, 5),
forall (z,t;y,s) € ©, and

(5.2) G(z, by, s) > 6%0 min <1, Ci@g) min (1, j&) 0 —13)3

for all (z,t;y,s) € © with % < 1. Using ) and the reproducing property of the Green
function G (which follows from the reproducing property ¢f;,) we obtain, as in[[31], the
existence of constants, c; > 0 such that

1
g(l‘7 ta Y, S) > 5763 (.T, tu Y, 5)7
forall (z,t;y,s) € ©. O

Corollary 5.3. Letv € K°(Q) with M¢(v) < ¢y andG be the(Ly + v - V,.)-Green function
for the initial-Dirichlet problem orf2. Then,

VaGl(z, sy, 8) < 2ko ey (2,4 y, 5)
forall z, ye Dand0 < s <t <T.
Proof. By using the inequality (ii) of Theoren 2.2 and Lemima| 3.3, we obtain by induction,
[N (VaGo)l(x, t1y, 5) < ko(koCLM (v)) ey (z, 85y, 5),

forallz,y € D,0 < s <t <Tandm € N. Assumek,C,M(v) < 1/2, the derivative with
respect tar of the Green functiog = > ., A™G) is given by

V.G =) A"(V.Go)

m2>0
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and satisfies
‘ng| <I7 t) Y, S) S Qkow% (IL” t7 Y, S)u
forallz,y e D,0<s<t<T. O

Theorem 5.4. Let v be in the classC¢(Q) with M¢(v) < ¢, G be the(Ly + v.V,)-Green
function for the initial-Dirichlet problem orf2 and ;» be a nonnegative measure in the class
Plc(Q). Then, there exists a unique continudusSreen functionG for the initial-Dirichlet
problem on(} satisfying the estimates—!v,, < G < CV% on ©, for some positive constants
C andc;y.

To prove the theorem we need the following lemma.

Lemma 5.5. Let f : © — R be a continuous function satisfying| < Cv, for some positive
constant” and . be a nonnegative measure in the cld@$°(Q2). Then, the function

q(z,t;y,s) //Qa:tZT (z, 73y, $)u(dzdT)

is continuous orv.
Proof of Lemma 5]5For simplicity we use the notatioN = (z,t), Y = (y,s), Z = (z,7)
anddZ = dzdr. By Lemmd 3.1, we have, for allX;Y) € O,
t
munwsq//vqxzwwzmmw>

< Cva XY//[ ; Z) + %%(Z;Y) p(dZ)
<CNC( )’}/q X Y

and soq is a real finite valued function. LétX; Yy) := (o, to; Yo, So) € O be fixed and let
o = 0(Xo, 0Q) A §(Yp, 00Q) A 6(Xo, Yy) > 0.

Consider the compact subséis = B (Xo, %) andE; = B; (Y5, %2). Sincep € P°(Q), for
e > 0, there isr € |0, 22| such that

sup // F(X;2)u(dZ) < e
XeE B,;(X,?“)

sup // F(Z;Y)u(dZ) < e
YekE, Bs(Y,r)
For X € Bs (Xo,%), we have

«xnzf/ngmzwmw>

\//B;(; Xo,% 2 /\/B;(g Yo,% 2 //c XO )ch ﬁ

For Z € B§(Xo,%) N By (YO, 5), the functlon(X;Y) — g(X;Z)f(Z;Y) is continuous on
Bs (Xo,%) x Bs (Yo, &) with

G(X; 2)|fI(Z;Y) < Cyep (Xo + (0,7°/8); Z)ye (Z; Yo — (0,7°/8)),

and
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for someC' = C'(ko, c1, 7, X, Yy) > 0 and by Lemma 3]1,

t0+
/. ,/wxﬁmﬂm>wwzm (0,72/8))u(dZ)

sof—

< CON“(u)yes (Xo + (0,7/8): Yo — (0.1%/8)) < oo

It then follows, from the dominated convergence theorem ghistcontinuous orBs (XO, g) X
Bs (Yo, %). Moreover, forZ € B; (Xo,%), X € Bs (Xo,%), Y € Bs (Yo,%), we have

G(X; 2)|f1(Z;Y) < CTe(X; Z),
for someC = C(kg, c1,79) > 0 and so

@ (X:;Y) < C// [.(X; Z)u(dZ) < Ce.
Bs(X,r
In the same way,
R(X;Y) < C// L(Z,Y)u(dZ) < Ce.
Bs(Y,r)

Thusg is continuous atX; Yy). O

Proof of Theorerfi 5]4Let 1 be a nonnegative measure in the cl&%(Q2) and define the op-
erator7* on B% by

THf(z,t;y,s) //gthT (z,7;y, s)u(dzdr),

forall f € B-.. By LemmarE]l and Lemn@.ﬂiﬂ is a bounded linear operator frofh, into

B o with
I = | < 2C0koN*(1).

Its spectral radius is given by

T“’y%

1
m

rge, (T") = lim [[(T")™|[ = inf[|(T%)"
a m—

"= inf H(T”)mv«i

Note that if N°(u) < Qcik , then||T#|| < 1 and sol + T* is invertible onB< with ||(I +

4
TH)~1|| < 1. Thus, for a nonnegative measurén the classPoc(Q) with N¢(o) < we
have

1
2Coko’?

T+THo =T+TH+T% = +TH[+ (I+T")'T7)
with ||(I +T*)~'T?|| < ||T°|| < 1 and sof + T#*7 is invertible onBe . From this observation

we deduce that for any nonnegative meaguie P°¢(Q2), the operatod + T* is invertible on
Be . Letus then define the functigs by

(I+T")7'G(x,t;y,5) for (z,t;y,s) €O
G(z,ty,s) =
Gz, t;y, s) for (z,t), (y,s) € Q,t < s.

ThenG € B% and satisfies the integral equation:

G(z,t;y,s) = G(z,t;y,s) //g:r;tZT (z, 75y, s)u(dzdT),

for all (z,%), (y,s) € Q. In particular,G is continuous outside the diagonal, a solution of the
problem and satisfiegrs < ny% on ©. Moreover, by using this upper estimate, the integral
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equation and the arguments as in the proof of Thegrejm 5.1, we obtain a positive constant
such that; > C~1,, on®. O

Theorem 5.6. Let v be in the clasClo¢(Q) with M¢(v) < ¢, G be the(Ly + v - V,)-Green
function for the initial-Dirichlet problem o2 and . be in the clas*¢(Q).
Assume that,, [(I + T+")~'T*"] < 1, then there exists a unique continuolisGreen
4

functionG for the initial-Dirichlet problem o satisfying the estimates—!4., < G < CV%
ono.

Conversely, assume that there exists a unique continlig@eeen function for the initial-
Dirichlet problem on(2 satisfying the estimateS—'v,, < G < Cye on 6, thenrs, [(1 +

TR < 1.

Proof. For simplicity letS = (I+7#")~'T*". Sincerp., () < 1,forall f € Bey, > ., S™"f €
' 4 =

B%. Let us then definé; by

Zmzo Sm[([ +T“+)_1g](x,t;y7s) for (.T,t;y, 8) €0

G(z,t;y,s) =
Gz, t;y,s) for (z,t), (y,s) € Q,t < s.
Thus
G=(I+T")"'G+S5SG on0,
which yields
I+T")G=G+T" G on®
and so

G(z,t;y,s) = G(z,t;y,s) //gthT (z, 75y, s)u(dzdT),

forall (z,%), (y,s) € . Using this integral equation and the same arguments as in the proof of
Theoren] 5.4(7 is a solution of the problerk), continuous outside the diagonal and satisfies
the estimate§’ ', < G < CW% ono.

Conversely, assume that there exists a unique contingbgeen functiorG for the initial-
Dirichlet problem o} satisfying the estimateS—'v,, < G < CW% on ©, then we have

G=(+T")"'G+SG on®,
which implies that
G=> S"[(I+T")7'G] one.
m>0
By recalling that( 7 +7*")~'G is the(Lo + v - V, + u*)-Green function for the initial-Dirichlet
problem onQ which satisfies the lower bour{d + 7*")~'G > C~'~,, on ©, it follows that
T8, (S) < 1. O

Corollary 5.7. Letrv andy be in the classek°¢(Q) and P°¢(Q), respectively, with\/¢(v) <

co and N¢(u~) < ¢, for some suitable constantg and ¢,. Then, there exists a unique con-
tinuous L-Green functionG for the initial-Dirichlet problem on{2 satisfying the estimates
C v, <G< Cve ONO.

Proof. It suffices to note that far, < we have||T* || < 1 which yields

2koCo C ’
I+~ | < |7 < 1,
and sorg,, [(I +T+)~'T# ] < 1. O
4
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Remark 5.8.

(1) Note that the conditiofi7* | < 1 is sufficient for the existence of the Green function
and not necessary. More precisely, we may find a negative measarg'*c(2) with
| T+ as large as we wish, however its spectral radids *) < 1 (see[[10]).

(2) As in [31], from the estimate€ !4, < G < Cye 0n O, we may deduce two-sided
estimates for thé.-Poisson kernel of2 which |mply the equivalence of the-harmonic
measure and the surface measure on the lateral bouadaxyo, 7’| of €.

6. GLOBAL ESTIMATES FOR DIRICHLET SCHRODINGER HEAT KERNELS

Despite the wide study of the behavior of Schrédinger semigroups over the last three decades
(see for example [2]] [5] +£17],.[14] +117], [20] - [25], [33, 34,136,141 42]), global pointwise
estimates for certain Schrodinger heat kernels on bounded smooth domains remain unknown.
In this section, we are concerned ourselves with this problem and obtained global-time esti-
mates for heat kernels of certain subcritical Schrodinger operators on boGhdetbmains.

In particular, we rectify the heat kernel estimates given by Zhang for the Dirichlet Laplacian
[42, Theorem 1.1 (b)] with an incomplete proof. We will use the notafion h to mean that
C~th < f < Ch for some positive constant.

Let A = A(x) be a real, symmetric, uniformly elliptic matrix with-Lipschitz continuous
coefficients onD. Let £, = —div(A(z)V,) andg, be the Green function with the Dirichlet
boundary condition orD. By integrating the inequality in Lemnja 3.1 with respecttand
next with respect te and using the fact that

/ Ve, t;y, 0)dt ~ V(x,y) ~ go(z,y),
0

we obtain the following3go-Theorem valid for all dimensions > 1 (see [29] forn = 2,
[9, 26, 30] and[[32] fom > 3).

Lemma 6.1(3go-Theorem) There exists’, = Cy(n, A\, D) > 0 such that for allz, y, z € D,

go(ﬂv,Z)go(z,y)<C4 {d(Z)go(x ) d(z)

7z, 9) () y2) + @go(% Y)

LetV = V(z) be afunction in the clasB'(D) defined in Remark 4}5.2 and plt= Lo+ V
with the Dirichlet boundary condition oP. By Lemma 6.1 and Theorem 9.1 [n [10], we know
that when||V || < 1/4C,, the Schrodinger operatdl admits a continuous Green functign
on D comparable tgy. In particular,C is subcritical in the sense of [18,119,/44]. Letbe the
first eigenvalue of on D which is strictly positive and~ be the Dirichlet heat kernel af on
D (the existence of7 follows from Corollary[5.F and the reproducing property). We have the
following global-time estimates of.

Theorem 6.2. Let V be in the classP'¢(D) with ||[V~|| < ¢, for some suitable constant
¢, Then the Dirichlet heat kerngl for the Schrodinger operataf = £, + V satisfies the
following estimates: there exist constantscs, ¢s > 0 depending only om, A, D and onV
only in terms of the quantityV/||, such that for allz, y € D and¢ > 0,

C™le ™ pey (2, £y, 0) < G2, 1;y,0) < C e g, (2, 1;y,0),

where

¢a(7,t;9,0) = min < d(z) ) min (1 d(y) ) exp (ﬂL@)

1AVE 1A tn/2 ’

a > 0.
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Proof. Let hq be the first eigenfunction normalized B¥,||. = 1. Clearly by the comparability
g ~ go and Theorerh 2|1, it follows tha# () ~ d(z). From the reproducing property 6fand
the estimates

C™ e, (2, t:9,0) < Gz, t5y,0) < Cyep (2,89, 0),

forz,y € D, t €]0, 1] (Corollary[5.7), we have
Cd(x)d(y) < G(x,t;y,0) < Cld(x)d(y),

forall¢t > 0 and allz, y € D; and so the semigroup** of £ is intrinsically ultracontractive in
the sense of [2,/5, 6] 7]. Thus, for aty> 1, there existd” > 1 such that

C7ld(z)d(y)e " < G(z,t;y,0) < Cd(x)d(y)e ™",
forall x,y € D andt > T. Combining these estimates with the finite-time estimates
C™ e, (2,59, 0) < G, 15, 0) < Cyer (2, 8y, 0),
forz,y € D, t €]0, T, we clearly obtain the global-time estimates stated in Theprem 6.2.

Corollary 6.3. Let \q be the bottom eigenvalue 6f on D. Then, the Dirichlet heat kernél,
of £, on D satisfies the following estimates: there exist constants;, ¢s > 0 depending only
onn, A andD, such that for allz, y € D andt > 0,

(6.1) C e ™ (7, t;y,0) < Go(z,t;y,0) < Ce g, (z,;y,0),
and

(6.2) IV.Gol(z,t;y,0) < Ce M, (2,ty,0),

where

a > 0.

dy) \ P (—a"”;y' >
1AVE) 1At/ 7
Proof. The estimated[6.1)) are given by Theorerh 6.2. We will proy{.2). From the re-
producing property of, the finite-time inequality (ii) in Theorern 2.2 and the inequality
Gy < Ce My, c5 < c1, we have, for alt > 2,

O, (x,t;y,0) = min (1,

V.Go(z,t;y,0) = / V.Go(z,t; 2,6t — 1)Go(2,t — 1;y,0)dz,
D
and so

\V.Gol(x,t;y,0) S/ |V.Gol(z,1;2,0)Go(2,t — 1;,0)dz
D

< k2e”°“‘”/ Veu (7,15 2,0)pc (2,6 — 15y, 0)d2
D

2
< k2 Mo(t=1) min(l, d(y)) / e—c1|:r:—z|2€—c5 ‘Zt_yl‘ dz
D

)2
< Ce M min(1d(y) [ el
D

2
< Ce ™ min(1,d(y)) exp <—c5lx tyl )

= Ce ', (z,1;y,0).
This inequality combined with the finite-time inequality (ii) of Theorem 2.2 yields the estimate

©.2). O
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The following inequalities extend the ones, provedin [13}for 3, to all dimensions > 1.

Corollary 6.4. There exists a constant = C(n, A\, D) > 0 such that, for allke,y, z € D,

gO(z’Z>|vz90|(zay) *
(6.) L) < Ol )+ ()
and
|Vx90|(x72)|v290|(2ay) *
6.5) o < O, 2) + ¥ (2, y)),
where

min<1 d(z))w if n > 2

! |z—2]

Log (1—1— d(z)) if n=1.

|z—2|

Proof. Inequality(6.3) holds by integrating6.2)) of Corollary{6.3 with respect to time and using
the fact that

/ o, (z,t5y,0)dt ~ P(z,y).
0

Inequality (6.4) (resp. [(6.5)) holds by integrating the inequality of Lenmd 3.2 (resp. Lemma
[3.3) with respect to- and next with respect t using the facts that

and

[1]

2]

[3]

[4]

[5]

[6]
[7]

[8]

/0 Ve(z,t;y,0)dt ~ Y(z,y)

/ Ye(@, t;y,0)dt ~ V(z,y) ~ go(,y).
0
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