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ABSTRACT. We prove the existence and uniqueness of a continuous Green function for the par-
abolic operatorL = ∂/∂t − div(A(x, t)∇x) + ν · ∇x + µ with the initial Dirichlet boundary
condition on aC1,1-cylindrical domainΩ ⊂ Rn × R, n ≥ 1, satisfying lower and upper es-
timates, whereν = (ν1, . . . , νn), νi andµ are in general classes of signed Radon measures
covering the well known parabolic Kato classes.
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1. I NTRODUCTION

In this paper we are interested in the parabolic operator

L = L0 + ν · ∇x + µ,

whereL0 = ∂/∂t−div(A(x, t)∇x) onΩ = D×]0, T [,D is a boundedC1,1-domain inRn, n ≥
1 and0 < T < ∞. The matrixA is assumed to be real, symmetric, uniformly elliptic with
Lipschitz continuous coefficients,ν = (ν1, . . . , νn), νi andµ are signed Radon measures on
Ω. Recall that Zhang studied the perturbationsL0 + B(x, t) · ∇x [37, 40] andL0 + V (x, t)
[38, 39] of L0 with B andV in some parabolic Kato classes. Using the well known results
by Aronson [1] for parabolic operators with coefficients inLp,q-spaces and an approximation
argument, he proved, in both cases, the existence and uniqueness of a Green functionG for the
initial-Dirichlet problem onΩ. The existence of the Green function allowed him to solve some
initial boundary value problems. In [28] and [31], we have established two-sided pointwise
estimates for the Green functions describing, completely, their behavior near the boundary.
These estimates are used to prove some potential-theoretic results, namely, the equivalence of
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harmonic measures [31], the coincidence of the Martin boundary and the parabolic boundary
[27]; and they simplify proofs of certain known results such as the Harnack inequality, the
boundary Harnack principles [28], etc. In the elliptic setting, similar estimates are well known
(see [3, 8, 11, 12, 43]) and have played a major role in potential analysis; for instance they were
used to prove the well known3G-Theorems and the comparability of perturbed Green functions
(see [10, 13, 26, 29, 30, 32, 43]).

Our aim in this paper is to introduce general conditions on the measuresν andµ which guar-
antee the existence and uniqueness of a continuousL-Green functionG for the initial-Dirichlet
problem onΩ satisfying two-sided estimates like the ones in the unperturbed case. In fact, we
establish the existence ofG whenν andµ are in general classes covering the parabolic Kato
classes used by Zhang [37] – [40]. Some partial counterpart results in the elliptic setting have
recently been proved in [13, 30] and are based on new3G-Theorems which cover the classical
ones due to Chung and Zhao [3], Cranston and Zhao [4] and Zhao [43]. In the parabolic set-
ting it is not clear whether versions of these theorems hold. Here we establish basic inequalities
(Lemmas 3.1 – 3.3 below) which imply the elliptic new3G-Theorems for all dimensionsn ≥ 1,
and which are a key in proving the existence result. The paper is organized as follows.

In Section 2, we give some notations and state some known results. In Section 3, we prove
some useful inequalities that will be used in the next sections. Parabolic versions of the elliptic
3G-Theorems [13, 26, 29, 30, 32] are proved. In Section 4, we introduce general classes of
drift termsν and potentialsµ denoted byKloc

c (Ω) andP loc
c (Ω), respectively, and we study some

of their properties. In Section 5, we prove the existence and uniqueness of a continuousL-
Green functionG for the initial-Dirichlet problem onΩ satisfying lower and upper estimates
as in the unperturbed case, whenν andµ are in the classesKloc

c (Ω) andP loc
c (Ω), with small

normsM c(ν) andN c(µ−), respectively (see Theorem 5.6 and Corollary 5.7). In particular,
these results extend the ones proved in [14, 28, 31, 37, 38] to a more general class of parabolic
operators. In Section 6, we consider the time-independent caseA = A(x), ν = 0, µ = V (x)dx
and we establish global-time estimates for Schrödinger heat kernels.

Throughout the paper the lettersC, C ′ . . . denote positive constants which may vary in value
from line to line.

2. NOTATIONS AND K NOWN RESULTS

We consider the parabolic operator

L =
∂

∂t
− div(A(x, t)∇x) + ν · ∇x + µ

on Ω = D×]0, T [, whereD is aC1,1-bounded domain inRn, n ≥ 1 and0 < T < ∞. By
a domain we mean an open connected set. Forn = 1, D =]a, b[ with a, b ∈ R, a < b. We
assume that the matrixA is real, symmetric, uniformly elliptic, i.e. there isλ ≥ 1 such that
λ−1‖ξ‖2 ≤ 〈A(x, t)ξ, ξ〉 ≤ λ‖ξ‖2, for all (x, t) ∈ Ω and allξ ∈ Rn with λ-Lipschitz continuous
coefficients onΩ, ν = (ν1, . . . , νn), νi andµ are signed Radon measures. Whenν = 0 and
µ = 0, we denoteL by L0. We denote byG0 theL0-Green function for the initial-Dirichlet
problem onΩ. In the time-independent case, we denote byg0 (resp.g−∆) the Green function of
L0 = − div(A(x)∇x) (resp.−∆) with the Dirichlet boundary condition onD. By [12], there
exists a constantC = C(n, λ,D) > 0 such thatC−1g−∆ ≤ g0 ≤ Cg−∆. Using this comparison
and the estimates ong−∆ proved in [8, 11, 43] forn ≥ 3, in [3] for n = 2 and the formula

g−∆(x, y) =
(b− x ∨ y)(x ∧ y − a)

b− a
for n = 1,

we have the following.
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Theorem 2.1.There exists a constantC = C(n, λ,D) > 0 such that, for allx, y ∈ D,

C−1Ψ(x, y) ≤ g0(x, y) ≤ CΨ(x, y),

where

Ψ(x, y) =



d(x)d(y)|x−y|2−n

d(x)d(y)+|x−y|2 if n ≥ 3;

Log
(
1 + d(x)d(y)

|x−y|2

)
if n = 2;

d(x)d(y)

|x−y|+
√

d(x)d(y)
if n = 1,

with d(x) = d(x, ∂D), the distance fromx to the boundary ofD.

Fora > 0, x, y ∈ D ands < t, let

Γa(x, t; y, s) =
1

(t− s)n/2
exp

(
−a |x− y|2

t− s

)
,

γa(x, t; y, s) = min

(
1,

d(x)√
t− s

)
min

(
1,

d(y)√
t− s

)
Γa(x, t; y, s),

and

ψa(x, t; y, s) = ψ∗a(y, t;x, s) = min

(
1,

d(y)√
t− s

)
Γa(x, t; y, s)√

t− s
.

The following estimates on theL0-Green functionG0 were recently proved in [31].

Theorem 2.2.There exist constantsk0, c1, c2 > 0 depending only onn, λ, D andT such that
for all x, y ∈ D and0 ≤ s < t ≤ T ,

(i) k−1
0 γc2(x, t; y, s) ≤ G0(x, t; y, s) ≤ k0 γc1(x, t; y, s),

(ii) |∇xG0|(x, t; y, s) ≤ k0ψc1(x, t; y, s) and
(iii) |∇yG0|(x, t; y, s) ≤ k0ψ

∗
c1

(x, t; y, s).

3. BASIC I NEQUALITIES

In this section we prove some basic inequalities which are a key in obtaining the existence
results.

Lemma 3.1(3γ-Inequality). Let0 < a < b. Then for any0 < c < min(a, b− a), there exists a
constantC0 = C0(a, b, c) > 0 such that, for allx, y, z ∈ D, s < τ < t,

γa(x, t; z, τ)γb(z, τ ; y, s)

γa(x, t; y, s)
≤ C0

[
d(z)

d(x)
γc(x, t; z, τ) +

d(z)

d(y)
γc(z, τ ; y, s)

]
.

Proof. We may assumes = 0. Letx, y, z ∈ D, 0 < τ < t. We have

(3.1) γa(x, t; z, τ)γb(z, τ ; y, 0) = wΓa(x, t; z, τ)Γb(z, τ ; y, 0),

where

w = min

(
1,

d(x)√
t− τ

)
min

(
1,

d(z)√
t− τ

)
min

(
1,
d(z)√
τ

)
min

(
1,
d(y)√
τ

)
.

Let ρ ∈]0, 1[ which will be fixed later.

Case 1.τ ∈]0, ρt]. We have
1

(t− τ)n/2
≤ 1

((1− ρ)t)n/2
.
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Combining with the inequality

|x− z|2

t− τ
+
|z − y|2

τ
≥ |x− y|2

t
, for all τ ∈]0, t[,

we obtain

(3.2) Γa(x, t; z, τ)Γb(z, τ ; y, 0) ≤ 1

(1− ρ)n/2
Γb−a(z, τ ; y, 0)Γa(x, t; y, 0).

Moreover, using the inequalities

αβ

α+ β
≤ min(α, β) ≤ 2

αβ

α+ β
,

for α, β > 0, and|d(z)− d(y)| ≤ |z − y|, we have

min

(
1,

d(z)√
t− τ

)
≤ 2

d(z)

d(y)
min

(
1,

d(y)√
t− τ

)(
1 +

|z − y|√
t− τ

)
≤ 2

1− ρ

d(z)

d(y)
min

(
1,
d(y)√
t

)(
1 +

|z − y|√
τ

)
(3.3)

Combining (3.1) – (3.3), we obtain, for allτ ∈]0, ρt],

γa(x, t; z, τ)γb(z, τ ; y, 0) ≤ 2

(1− ρ)
n+3

2

d(z)

d(y)
γc(z, τ ; y, 0)γa(x, t; y, 0)

×
(

1 +
|z − y|√

τ

)
exp

(
−(b− a− c)

|z − y|2

τ

)
.

Using the inequality(1 + θ) exp(−αθ2) ≤ 1 + α−1/2, for all α, θ ≥ 0, it follows that

(3.4) γa(x, t; z, τ)γb(z, τ ; y, 0) ≤ C0
d(z)

d(y)
γc(z, τ ; y, 0)γa(x, t; y, 0),

whereC0 = C0(a, b, c, ρ) > 0.

Case 2.τ ∈ [ρt, t[. If |z − y| ≥ (a
b
)1/2|x− y|, then

(3.5) exp

(
−b |z − y|2

τ

)
≤ exp

(
−a |x− y|2

t

)
.

If |z − y| ≤ (a
b
)1/2|x− y|, then

|x− z| ≥ |x− y| − |z − y| ≥
(

1−
(a
b

) 1
2

)
|x− y|,

which yields

exp

(
−a |x− z|2

t− τ

)
≤ exp

(
−
(
a+ c

2

)
|x− z|2

t− τ

)
exp

(
−
(
a− c

2

)
|x− y|2

t− τ

(
1−

(a
b

) 1
2

)2
)

≤ exp

(
−
(
a+ c

2

)
|x− z|2

t− τ

)
exp

(
−
(
a− c

2

)
|x− y|2

(1− ρ)t

(
1−

(a
b

) 1
2

)2
)
.
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Now takingρ so that

(a− c)
(
1−

(
a
b

) 1
2

)2

2a(1− ρ)
= 1,

we obtain

(3.6) exp

(
−a |x− z|2

t− τ

)
≤ exp

(
−
(
a+ c

2

)
|x− z|2

t− τ

)
exp

(
−a |x− y|2

t

)
.

From (3.5) and (3.6), we have

(3.7) Γa(x, t; z, τ)Γb(z, τ ; y, 0) ≤ 1

ρn/2
Γa+c

2
(x, t; z, τ)Γa(x, t; y, 0).

Note that (3.7) is similar to the inequality (3.2). Then by the same method used to prove (3.4),
we obtain

(3.8) γa(x, t; z, τ)γb(z, τ ; y, 0) ≤ C0
d(z)

d(x)
γc(x, t; z, τ)γa(x, t; y, 0).

Combining (3.4), (3.8) and using the fact that

(a− c)
(
1−

(
a
b

) 1
2

)2

2a(1− ρ)
= 1,

we get the inequality of Lemma 3.1 withC0 = C0(a, b, c) > 0. �

Lemma 3.2. Let 0 < a < b. Then for any0 < c < min(a, b − a), there exists a constant
C1 = C1(a, b, c) > 0 such that, for allx, y, z ∈ D, s < τ < t,

γa(x, t; z, τ)ψb(z, τ ; y, s)

γa(x, t; y, s)
≤ C1 [ψc(x, t; z, τ) + ψ∗c (z, τ ; y, s)] .

Proof. We may assume thats = 0. Lettingx, y, z ∈ D, 0 < τ < t, we have

(3.9) γa(x, t; z, τ)ψb(z, τ ; y, 0) = wΓa(x, t; z, τ)Γb(z, τ ; y, 0),

where

w = min

(
1,

d(x)√
t− τ

)
min

(
1,

d(z)√
t− τ

)
min

(
1,
d(y)√
τ

)
1√
τ
.

Let ρ ∈]0, 1[ that will be fixed later.

Case 1.τ ∈]0, ρt]. As in (3.2), we have

Γa(x, t; z, τ)Γb(z, τ ; y, 0) ≤ 1

(1− ρ)n/2
Γb−a(z, τ ; y, 0)Γa(x, t; y, 0)

≤ 1

(1− ρ)n/2
Γc(z, τ ; y, 0)Γa(x, t; y, 0)(3.10)

Moreover, by using the same inequalities as in (3.3), we obtain

(3.11) w ≤ 4

(1− ρ)3/2
min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
min

(
1,
d(z)√
τ

)(
1 +

|z − y|√
τ

)2
1√
τ
.

Combining (3.9) – (3.11) and using the inequality

(1 + θ)2 exp(−αθ2) ≤ 2

(
1 +

1√
α

)2

,

for all α, θ ≥ 0, it follows that

γa(x, t; z, τ)ψb(z, τ ; y, 0) ≤ C1ψ
∗
c (z, τ ; y, 0)γa(x, t; y, 0),
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with

C1 = 8

(
1 +

1√
b− a− c

)
(1− ρ)−

n+3
2 .

Case 2.τ ∈ [ρt, t[. If |z − y| ≥ (a
b
)1/2|x− y|, then

(3.12) exp

(
−b |z − y|2

τ

)
≤ exp

(
−a |x− y|2

t

)
.

If |z − y| ≤ (a
b
)1/2|x− y|, then|x− z| ≥ (1− (a

b
)1/2)|x− y|, which yields

exp

(
−a |x− z|2

t− τ

)
≤ exp

(
−c |x− z|2

t− τ

)
exp

(
−(a− c)

|x− y|2

(1− ρ)t

(
1−

(a
b

)1/2
)2
)
.

Now takingρ so that

(a− c)
(
1−

(
a
b

)1/2
)2

a(1− ρ)
= 1,

we obtain

(3.13) exp

(
−a |x− z|2

t− τ

)
≤ exp

(
−c |x− z|2

t− τ

)
exp

(
−a |x− y|2

t

)
.

Combining (3.12) and (3.13), we have

(3.14) Γa(x, t; z, τ)Γb(z, τ ; y, 0) ≤ 1

ρn/2
Γc(x, t; z, τ)Γa(x, t; y, 0).

Moreover,

min

(
1,

d(x)√
t− τ

)
1√
τ
≤ 1
√
ρ

min

(
1,
d(x)√
t

)
1√
t− τ

and so

(3.15) w ≤ 1

ρ
min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
min

(
1,

d(z)√
t− τ

)
1√
t− τ

.

Combining (3.9), (3.14) and (3.15), we obtain

γa(x, t; z, τ)ψb(z, τ ; y, 0) ≤ 1

ρn/2+1
ψc(x, t; z, τ)γa(x, t; y, 0),

which ends the proof. �

Replacingγa by ψa in Lemma 3.2 and following the same manner of proof, we also obtain

Lemma 3.3. Let 0 < a < b. Then for any0 < c < min(a, b − a), there exists a constant
C2 = C2(a, b, c) > 0 such that for allx, y, z ∈ D, s < τ < t,

ψa(x, t; z, τ)ψb(z, τ ; y, s)

ψa(x, t; y, s)
≤ C2

[
ψc(x, t; z, τ) + ψ∗c (z, τ ; y, s)

]
.

By simple computations we also have the following inequalities.

Lemma 3.4. For 0 < a < b < c, there exists a constantC3 = C3(a, b, c) > 0 such that, for all
x, y ∈ D ands < t,

C−1
3 min

(
1,
d2(y)

t− s

)
Γc(x, t; y, s) ≤

d(y)

d(x)
γb(x, t; y, s) ≤ C3 min

(
1,
d2(y)

t− s

)
Γa(x, t; y, s).
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4. THE CLASSESKloc
c (Ω) AND P loc

c (Ω)

In this section we introduce general classes of drift termsν = (ν1, . . . , νn) and potentials
µ which guarantee the existence and uniqueness of a continuousL-Green functionG for the
initial-Dirichlet problem onΩ satisfying two-sided estimates like the ones in the unperturbed
case (Theorem 2.2).

Definition 4.1 (see [37, 40]). Let B be a locally integrableRn-valued function onΩ. We say
thatB is in the parabolic Kato class if it satisfies, for somec > 0,

lim
r→0

{
sup

(x,t)∈Ω

∫ t

t−r

∫
D∩{|x−z|≤

√
r}

Γc(x, t; z, τ)√
t− τ

|B(z, τ)|dzdτ

+ sup
(y,s)∈Ω

∫ s+r

s

∫
D∩{|z−y|≤

√
r}

Γc(z, τ ; y, s)√
τ − s

|B(z, τ)|dzdτ

}
= 0.

Remark 4.1.

(1) Clearly, by the compactness ofΩ, if B is in the parabolic Kato class then

sup
(x,t)∈Ω

∫ t

0

∫
D

Γc(x, t; z, τ)√
t− τ

|B(z, τ)|dzdτ

+ sup
(y,s)∈Ω

∫ T

s

∫
D

Γc(z, τ ; y, s)√
τ − s

|B(z, τ)|dzdτ <∞.

(2) In the time-independent case, the parabolic Kato class is identified to the elliptic Kato
classKn+1 (see [4], forn ≥ 3), i.e. the class of locally integrableRn-valued functions
B = B(x) onD satisfying

lim
r→0

sup
x∈D

∫
D∩{|x−z|<

√
r}
ϕ(x, z)|B(z)|dz = 0,

where

ϕ(x, z) =

{ 1
|x−z|n−1 if n ≥ 2

1 ∨ Log 1
|x−z| if n = 1.

Note that ifB ∈ Kn+1, then

sup
x∈D

∫
D

ϕ(x, z)|B(z)|dz <∞.

Definition 4.2. Let c > 0 andν = (ν1, . . . , νn) with νi a signed Radon measure onΩ. We say
thatν is in the classKloc

c (Ω) if it satisfies

(4.1) M c(ν) := sup
(x,t)∈Ω

∫ t

0

∫
D

ψc(x, t; z, τ)|ν|(dzdτ)

+ sup
(y,s)∈Ω

∫ T

s

∫
D

ψ∗c (z, τ ; y, s)|ν|(dzdτ) <∞,
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and, for any compact subsetE ⊂ Ω,

(4.2) lim
r→0

{
sup

(x,t)∈E

∫ t

t−r

∫
D∩{|x−z|≤

√
r}
ψc(x, t; z, τ)|ν|(dzdτ)

+ sup
(y,s)∈E

∫ s+r

s

∫
D∩{|z−y|≤

√
r}
ψ∗c (z, τ ; y, s)|ν|(dzdτ)

}
= 0.

Remark 4.2.

(1) From Definitions 4.1, 4.2 and Remark 4.1.1, the classKloc
c (Ω) contains the parabolic

Kato class.
(2) In the time-independent case,Kloc

c (Ω) is identified to the classKloc(D) of signed Radon
measuresν = (ν1, . . . , νn) onD satisfying

(4.3) sup
x∈D

∫
D

ψ(x, z)|ν|(dz) <∞,

and, for any compact subsetE ⊂ D,

(4.4) lim
r→0

sup
x∈E

∫
D∩{|x−z|<

√
r}
ψ(x, z)|ν|(dz) = 0,

where

ψ(x, z) =


min

(
1, d(z)

|x−z|

)
1

|x−z|n−1 if n ≥ 2,

Log
(
1 + d(z)

|x−z|

)
if n = 1.

Forn ≥ 3, the classKloc(D) was recently introduced in [13] to study the existence and
uniqueness of a continuous Green function for the elliptic operator∆ +B(x) · ∇x with
the Dirichlet boundary condition onD.

Proposition 4.3. For all α ∈]1, 2], the drift term

|Bα(z)| = 1

d(z)
(
Log

(
d(D)
d(z)

))
α
∈ Kloc(D) \Kn+1,

whered(D) is the diameter ofD.

Proof. Case 1: n = 1. We will prove thatBα is in the classKloc(D). Clearly |Bα| ∈ L∞loc(D)
and so it satisfies(4.4). We will show thatBα satisfies(4.3). We have∫

D

ψ(x, z)|Bα(z)|dz =

∫
D

Log

(
1 +

d(z)

|x− z|

)
dz

d(z)
(
Log

(
d(D)
d(z)

))α

=

∫
D∩(|x−z|≤d(z)/2)

. . . dz +

∫
D∩(|x−z|≥d(z)/2)

. . . dz

:= I1 + I2.(4.5)
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In the case|x− z| ≤ d(z)/2, we have2
3
d(x) ≤ d(z) ≤ 2d(x), and so

I1 ≤
1

(Log 2)α
· 3

2d(x)

∫
|x−z|≤d(x)

Log

(
1 +

2d(x)

|x− z|

)
dz

≤ C

d(x)

∫
|r|≤d(x)

Log

(
1 +

2d(x)

|r|

)
dr

= 2C

∫ 1

0

Log

(
1 +

2

t

)
dt = C ′.(4.6)

Moreover, by using the inequalityLog(1 + t) ≤ t, for all t ≥ 0, we have

I2 ≤
∫

D

dz

|x− z|
(
Log

(
d(D)
|x−z|

))α

≤ C

∫ d(D)

0

dr

r
(
Log

(
d(D)

r

))α = C ′.(4.7)

Combining(4.5)− (4.7), we obtain thatBα satisfies(4.3).
Now we prove thatBα does not belong to the classKn+1. Without loss of generality, we may

assume thatD =]0, 1[. We have

sup
x∈D

∫
D

ϕ(x, z)|Bα(z)|dz = sup
x∈[0,1]

∫ 1

0

(
Log

1

|x− z|

) (Log
(

1
d(z)

))−α

d(z)
dz

≥
∫ 1/2

0

1

z

(
Log

(
1

z

))1−α

dz = ∞.

Case 2:n ≥ 2. We will prove thatBα is in the classKloc(D). Clearly|Bα| ∈ L∞loc(D) and so it
satisfies(4.4). We will show thatBα satisfies(4.3). We have∫

D

ψ(x, z)|Bα(z)|dz =

∫
D

min

(
1,

d(z)

|x− z|

)
1

|x− z|n−1

dz

d(z)
(
Log

(
d(D)
d(z)

))α

=

∫
D∩(|x−z|≤d(z)/2)

. . . dz +

∫
D∩(|x−z|≥d(z)/2)

. . . dz

:= J1 + J2.(4.8)

In the case|x− z| ≤ d(z)/2, we have2
3
d(x) ≤ d(z) ≤ 2d(x), and so

J1 ≤
1

(Log 2)α

3

2d(x)

∫
|x−z|≤d(x)

dz

|x− z|n−1

≤ C

d(x)

∫ d(x)

0

dr = C.(4.9)

Moreover,

J2 ≤
∫

D

dz

|x− z|n
(
Log

(
d(D)
|x−z|

))
α

≤ C

∫ d(D)

0

dr

r
(
Log

(
d(D)

r

))α = C ′.(4.10)
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Combining(4.8)− (4.10), we obtain thatBα satisfies(4.3).
Now we prove thatBα does not belong to the classKn+1. Without loss of generality, we may

assume that0 ∈ ∂D. D is aC1,1-domain and so there existsr0 > 0 such that

D ∩B(0, r0) = B(0, r0) ∩ {x = (x′, xn) : x′ ∈ Rn−1, xn > f(x′)},
and

∂D ∩B(0, r0) = B(0, r0) ∩ {x = (x′, f(x′)) : x′ ∈ Rn−1},
wheref is aC1,1-function. For someρ0 > 0 small (see [30, p. 220]) the set

V0 = {z = (z′, zn) : |z′| < ρ0, and 0 < zn − f(z′) < r0/4}
satisfies

D ∩B(0, ρ0) ⊂ V0 ⊂ D ∩B(0, r0/2)

and for allz ∈ V0, d(z) ≤ zn − f(z′) ≤ Cd(z) and|f(z′)| ≤ C ′|z′|, whereC andC ′ depend
only on theC1,1-constant. From these observations, we have

sup
x∈D

∫
D

ϕ(x, z)|Bα(z)|dz

≥
∫

V0

ϕ(0, z)|Bα(z)|dz

=

∫
V0

|z|1−n

(
Log

(
1

d(z)

))−α

d(z)
dz

≥ 1

C

∫
|z′|<ρ0

∫
0<zn−f(z′)<r0/4

(|z′|2 + |zn|2)
1−n

2

(
Log

(
1

zn−f(z′)

))−α

zn − f(z′)
dzndz

′

≥ 1

C ′

∫
|z′|<ρ0

∫
0<zn−f(z′)<r0/4

(|z′|2 + |zn − f ′(z)|2)
1−n

2

(
Log

(
1

zn−f(z′)

))−α

zn − f(z′)
dzndz

′

=
1

C ′

∫
|z′|<ρ0

∫ r0/4

0

(|z′|2 + r2)
1−n

2
(Log(1

r
))−α

r
drdz′

=
1

C ′′

∫ r0/4

0

1

r

(
Log

(
1

r

))−α ∫ ρ0

0

tn−2

(t2 + r2)
n−1

2

dtdr

=
1

C ′′

∫ r0/4

0

1

r

(
Log

(
1

r

))−α ∫ ρ0/r

0

sn−2

(s2 + 1)
n−1

2

dsdr

≥ 1

C ′′

∫ r0/4

0

1

r

(
Log

(
1

r

))1−α

dr = ∞.

�

Definition 4.3 (see [38, 39]). Let V be a potential inL1
loc(Ω). We say thatV is in the parabolic

Kato class if it satisfies, for somec > 0,

lim
r→0

{
sup

(x,t)∈Ω

∫ t

t−r

∫
D∩{|x−z|<

√
r}

Γc(x, t; z, τ)|V (z, τ)|dzdτ

+ sup
(y,s)∈Ω

∫ s+r

s

∫
D∩{|x−z|<

√
r}

Γc(z, τ ; y, s)|V (z, τ)|dzdτ

}
= 0.
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Remark 4.4.

(1) If V is in the parabolic Kato class, then, by the compactness ofΩ, we have

sup
(x,t)∈Ω

∫ t

0

∫
D

Γc(x, t; z, τ)|V (z, τ)|dzdτ

+ sup
(y,s)∈Ω

∫ T

s

∫
D

Γc(z, τ ; y, s)|V (z, τ)|dzdτ <∞.

(2) In the time-independent case the parabolic Kato class is identified to the elliptic Kato
classKn, i.e. the class of functionsV = V (x) ∈ L1

loc(D) satisfying

lim
r→0

sup
x∈D

∫
D∩(|x−z|<

√
r)

Φ(x, z)|V (z)|dz = 0,

where

Φ(x, z) =


1

|x−z|n−2 if n ≥ 3;

1 ∨ Log 1
|x−z| if n = 2;

1 if n = 1.

Note that, ifV ∈ Kn, then

sup
x∈D

∫
D

Φ(x, z)|V (z)|dz <∞.

In particularKn ⊂ L1(D).

Definition 4.4. Let c > 0 andµ a signed Radon measure onΩ. We say thatµ is in the class
P loc

c (Ω) if it satisfies

(4.11) N c(µ) := sup
(x,t)∈Ω

∫ t

0

∫
D

d(z)

d(x)
γc(x, t; z, τ)|µ|(dzdτ)

+ sup
(y,s)∈Ω

∫ T

s

∫
D

d(z)

d(y)
γc(z, τ ; y, s)|µ|(dzdτ) <∞,

and, for any compact subsetE ⊂ Ω,

(4.12) lim
r→0

{
sup

(x,t)∈E

∫ t

t−r

∫
D∩{|x−z|≤

√
r}

Γc(x, t; z, τ)|µ|(dzdτ)

+ sup
(y,s)∈E

∫ s+r

s

∫
D∩{|z−y|≤

√
r}

Γc(z, τ ; y, s)|µ|(dzdτ)

}
= 0.

Remark 4.5.

(1) From Definitions 4.3, 4.4, Remark 4.4.1 and Lemma 3.4, the classP loc
c (Ω) contains the

parabolic Kato class.
(2) In the time-independent case,P loc

c (Ω) is identified to the classP loc(D) of signed Radon
measuresµ onD satisfying

(4.13) ‖µ‖ := sup
x∈D

∫
D

d(z)

d(x)
g0(x, z)|µ|(dz) <∞,
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and, for any compact subsetE ⊂ D,

(4.14) lim
r→0

sup
x∈E

∫
D∩{|x−z|<

√
r}
g0(x, z)|µ|(dz) = 0.

This is clear by integrating with respect to time and using Theorem 2.1. Forn ≥ 3, the
classP loc(D) is introduced in [30] to study the existence and uniqueness of a continuous
Green function with the Dirichlet boundary condition for the Schrödinger equation∆−
µ = 0 on bounded Lipschitz domains. Forn = 2, the same results hold on regular
bounded Jordan domains (see [29]).

Proposition 4.6. For α ∈ [1, 2[, the potential

Vα(z) = d(z)−α ∈ P loc(D) \Kn.

Proof. For n ≥ 3, this is done in [30, Corollary 4.8]. We will give the proof forn ∈ {1, 2}.
Note that forα ≥ 1, Vα /∈ L1(D) (see [30, Proposition 4.7]) and soVα /∈ Kn. We will prove
thatVα ∈ P loc(D).

Case 1:n = 1. Vα ∈ L∞loc(D) and so it satisfies (4.14). We show thatVα satisfies (4.13). By
Theorem 2.1, we have∫

D

d(z)

d(x)
g0(x, z)|Vα(z)|dz ≤ C

∫
D

d2−α(z)

|x− z|+
√
d(x)d(z)

dz

= C

(∫
D∩(|x−z|≤d(z)/2)

. . . dz +

∫
D∩(|x−z|≥d(z)/2)

. . . dz

)
:= C(I1 + I2).(4.15)

In the case|x− z| ≤ d(z)/2, we have2
3
d(x) ≤ d(z) ≤ 2d(x), and so

I1 ≤ Cd1−α(x)

∫
|x−z|≤d(x)

dz

≤ 2Cd2−α(D) <∞.(4.16)

Moreover,

I2 ≤ C

∫
D∩(|x−z|≥d(z)/2)

|x− z|2−α

|x− z|+
√
d(x)d(z)

dz

≤ C

∫
D

|x− z|1−αdz

≤ C ′d2−α(D) <∞.(4.17)

Combining (4.15) – (4.17), we obtain‖Vα‖ <∞.

Case 2:n = 2. Vα ∈ L∞loc(D) and so it satisfies (4.14). We show thatVα satisfies (4.13). By
Theorem 2.1, we have∫

D

d(z)

d(x)
g0(x, z)|Vα(z)|dz ≤ C

∫
D

d1−α(z)

d(x)
Log

(
1 +

d(x)d(z)

|x− z|2

)
dz

= C

(∫
D∩(|x−z|≤d(z)/2)

. . . dz +

∫
D∩(|x−z|≥d(z)/2)

. . . dz

)
:= C(J1 + J2).(4.18)
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Recalling that in the case|x − z| ≤ d(z)/2, we have2
3
d(x) ≤ d(z) ≤ 2d(x), and using the

inequalityLog(1 + t) ≤ t, for all t ≥ 0, we have

J1 ≤ Cd−α(x)

∫
|x−z|≤d(x)

Log

(
1 +

2d(x)

|x− z|

)2

dz

≤ 4Cd1−α(x)

∫
|x−z|≤d(x)

dz

|x− z|
= C ′d2−α(x)

≤ C ′d2−α(D) <∞.(4.19)

Moreover, by using the inequalityLog(1 + t) ≤ t, for all t ≥ 0, we also have

J2 ≤ C

∫
D∩(|x−z|≥d(z)/2)

d2−α(z)

|x− z|2
dz

≤ C

∫
D

|x− z|−αdz

≤ C ′
∫ d(D)

0

r1−αdr

= C ′′d2−α(D) <∞.(4.20)

Combining (4.18) – (4.20), we obtain‖Vα‖ <∞. �

5. THE L-GREEN FUNCTION FOR THE I NITIAL DIRICHLET PROBLEM

In this section we fix a positive constantc < c1/8, wherec1 is the constant in Theorem 2.2,
and we study the existence and uniqueness of a continuousL-Green function for the initial-
Dirichlet problem onΩ whenν andµ are in the classesKloc

c (Ω) andP loc
c (Ω), respectively. A

Borel measurable functionG : Ω × Ω →]0,∞] is called anL-Green function for the initial-
Dirichlet problem if, for all(y, s) ∈ Ω, G(·, ·; y, s) ∈ L1

loc(Ω) and satisfies

(*)


LG(·, ·; y, s) = ε(y,s)

G(·, ·; y, s) = 0 on ∂D × [s, T [

limt→s+ G(x, t; y, s) = εy,

in the distributional sense, whereε(y,s) andεy are the Dirac measures at(y, s) andy, respec-
tively. In particular, for allf ∈ L1(D × [s, T [) andu0 ∈ C0(D), the initial Dirichlet problem

Lu = f on D × [s, T [

u = 0 on ∂D × [s, T [

u(x, s) = u0(x), x ∈ D

admits a unique weak solution (see [37] – [40]) given by

u(x, t) =

∫
D

G(x, t; y, s)u0(y)dy +

∫ t

s

∫
D

G(x, t; z, τ)f(z, τ)dzdτ.

We say that the Green functionG is continuousif it is continuous outside the diagonal. Our first
result is the following.
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Theorem 5.1. Let ν be in the classKloc
c (Ω) with M c(ν) ≤ c0 for some suitable constantc0.

Then, there exists a unique continuous(L0 + ν · ∇x)-Green functionG for the initial-Dirichlet
problem onΩ satisfying the estimates:

C−1γc3(x, t; y, s) ≤ G(x, t; y, s) ≤ C γ c1
2
(x, t; y, s),

for all x, y ∈ D and0 ≤ s < t ≤ T , whereC, c3 are positive constants depending onn, λ,D
andT .

To prove the theorem we need the following lemma.

Lemma 5.2. Let Θ = {(x, t; y, s) ∈ Ω × Ω : t > s}, f : Θ → R continuous, satisfying
|f | ≤ Cγ c1

2
, for some positive constantC andν be in the classKloc

c (Ω). Then, the function

p(x, t; y, s) =

∫ t

s

∫
D

f(x, t; z, τ)∇zG0(z, τ ; y, s) · ν(dzdτ)

is continuous onΘ.

Proof of Lemma 5.2.For simplicity we use the notationX = (x, t), Y = (y, s), Z = (z, τ)
anddZ = dzdτ . By Lemma 3.2, we have, for all(X;Y ) ∈ Θ,

|p|(X;Y ) ≤ C

∫ t

s

∫
D

γ c1
2
(X;Z)ψc1(Z;Y )|ν|(dZ)

≤ Cγ c1
2
(X;Y )

∫ t

s

∫
D

[ψc(X;Z) + ψ∗c (Z;Y )] |ν|(dZ)

≤ CM c(ν)γ c1
2
(X;Y ),

and sop is a real finite valued function. Let(X0;Y0) := (x0, t0; y0, s0) ∈ Θ be fixed and let

r0 := δ(X0, ∂Ω) ∧ δ(Y0, ∂Ω) ∧ δ(X0;Y0) > 0,

where

δ(X0, Y0) = |x0 − y0| ∨ |t0 − s0|
1
2

is the parabolic distance betweenX0 andY0. Consider the compact subsetsE1 = Bδ

(
X0,

r0

2

)
andE2 = Bδ

(
Y0,

r0

2

)
. Sinceν ∈ Kloc

c (Ω), for ε > 0, there isr ∈
]
0, r0

2

[
such that

sup
X∈E1

∫ ∫
Bδ(X,r)

ψc(X;Z)|ν|(dZ) < ε,

and

sup
Y ∈E2

∫ ∫
Bδ(Y,r)

ψ∗c (Z;Y )|ν|(dZ) < ε.

ForX ∈ Bδ

(
X0,

r
4

)
, Y ∈ Bδ

(
Y0,

r
4

)
, we have

p(X;Y ) =

∫ t

s

∫
D

f(X;Z)∇zG0(Z;Y ).ν(dZ)

=

∫ ∫
Bδ(X0, r

2
)

+

∫ ∫
Bδ(Y0, r

2
)

+

∫ ∫
Bc

δ(X0, r
2
)∩Bc

δ(Y0, r
2
)

:= p1(X;Y ) + p2(X;Y ) + p3(X;Y ).
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Clearly, forZ ∈ Bc
δ

(
X0,

r
2

)
∩ Bc

δ

(
Y0,

r
2

)
, the function(X;Y ) → f(X;Z)∇zG0(Z;Y ) is

continuous onBδ

(
X0,

r
4

)
×Bδ

(
Y0,

r
4

)
and satisfies

|f |(X;Z)|∇zG0|(Z;Y ) ≤ Cγ c1
4
(X0 + (0, r2/8);Z)

≤ Cd(D)ψ c1
4
(X0 + (0, r2/8);Z),

for someC = C(k0, c1, r, Y0) > 0 with∫ t0+r2/8

0

∫
D

ψ c1
4
(X0 + (0, r2/8);Z)|ν|(dZ) ≤M c(ν) <∞.

It then follows from the dominated convergence theorem thatp3 is continuous onBδ

(
X0,

r
4

)
×

Bδ

(
Y0,

r
4

)
. Moreover, forX ∈ Bδ

(
X0,

r
4

)
, Z ∈ Bδ

(
X0,

r
2

)
andY ∈ Bδ

(
Y0,

r
4

)
, we have

|f |(X;Z)|∇zG0|(Z;Y ) ≤ Cγ c1
2
(X;Z),

for someC = C(k0, c1, r0) > 0. So, for allX ∈ Bδ

(
X0,

r
4

)
andY ∈ Bδ

(
Y0,

r
4

)
,

|p1|(X;Y ) ≤ C

∫ ∫
Bδ(X0, r

2
)

γ c1
2
(X;Z)|ν|(dZ)

≤ Cd(D)

∫ ∫
Bδ(X,r)

ψ c1
2
(X;Z)|ν|(dZ)

≤ Cd(D)ε.

In the same way, forX ∈ Bδ(X0,
r
4
), Z ∈ Bδ(Y0,

r
2
) andY ∈ Bδ(Y0,

r
4
), we have

|f |(X;Z)|∇zG0|(Z;Y ) ≤ Cψc1(Z;Y ),

for someC = C(k0, c1, r0) > 0. So, for allX ∈ Bδ(X0,
r
4
) andY ∈ Bδ(Y0,

r
4
),

|p2|(X;Y ) ≤ C

∫ ∫
Bδ(Y0, r

2
)

ψc1(Z;Y )|ν|(dZ)

≤ C ′
∫ ∫

Bδ(Y,r)

ψ∗c1(Z;Y )|ν|(dZ)

≤ C ′ε.

Thusp is continuous at(X0;Y0). �

Proof of Theorem 5.1.Forα > 0 let

Bα = {f : Θ → R, continuous : |f | ≤ C γα, for some C ∈ R}.

Forf ∈ Bα we put

‖f‖ = sup
Θ

|f |
γα

.

Clearly,(Bα, ‖ · ‖) is a Banach space. Let us define the operatorΛ onB c1
2

by

Λf(x, t; y, s) =

∫ t

s

∫
D

f(x, t; z, τ)∇zG0(z, τ ; y, s) · ν(dzdτ),

for all f ∈ B c1
2

. By the estimate (ii) of Theorem 2.2, Lemma 3.2 and Lemma 5.2,Λ is a bounded
linear operator fromB c1

2
into B c1

2
with ‖Λ‖ ≤ k0C1M

c(ν). Assume thatk0C1M
c(ν) < 1 and
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defineG by

G(x, t; y, s) =

 (I − Λ)−1G0(x, t; y, s) =
∑

m≥0 ΛmG0(x, t; y, s) for (x, t; y, s) ∈ Θ

G0(x, t; y, s) for (x, t), (y, s) ∈ Ω, t ≤ s.

ThusG satisfies the integral equation:

G(x, t; y, s) = G0(x, t; y, s)−
∫ t

s

∫
D

G(x, t; z, τ)∇zG0(z, τ ; y, s) · ν(dzdτ),

for all (x, t), (y, s) ∈ Ω, and it is continuous outside the diagonal. This integral equation implies
thatG is a solution of the problem(∗). Moreover by Theorem 2.2 and Lemma 3.2, we have, for
all (x, t; y, s) ∈ Θ,

|G(x, t; y, s)−G0(x, t; y, s)| ≤ k0

∑
m≥1

(k0C1M
c(ν))mγ c1

2
(x, t; y, s)

=
k2

0C1M
c(ν)

1− k0C1M c(ν)
γ c1

2
(x, t; y, s).(5.1)

By taking

k0C1M
c(ν) ≤ 1

2k2
0e

c2 + 1
≤ 1

2

and recalling that
k−1

0 γc2 ≤ G0 ≤ k0γc1 ,

we get from (5.1),
G(x, t; y, s) ≤ 2k0γ c1

2
(x, t; y, s),

for all (x, t; y, s) ∈ Θ, and

(5.2) G(x, t; y, s) ≥ e−c2

2k0

min

(
1,

d(x)√
t− s

)
min

(
1,

d(y)√
t− s

)
1

(t− s)
n
2

,

for all (x, t; y, s) ∈ Θ with |x−y|2
t−s

≤ 1. Using (5.2) and the reproducing property of the Green
function G (which follows from the reproducing property ofG0) we obtain, as in [31], the
existence of constantsC, c3 > 0 such that

G(x, t; y, s) ≥ 1

C
γc3(x, t; y, s),

for all (x, t; y, s) ∈ Θ. �

Corollary 5.3. Let ν ∈ Kloc
c (Ω) withM c(ν) ≤ c0 andG be the(L0 + ν · ∇x)-Green function

for the initial-Dirichlet problem onΩ. Then,

|∇xG|(x, t; y, s) ≤ 2k0 ψ c1
2
(x, t; y, s)

for all x, y ∈ D and0 ≤ s < t ≤ T .

Proof. By using the inequality (ii) of Theorem 2.2 and Lemma 3.3, we obtain by induction,

|Λm(∇xG0)|(x, t; y, s) ≤ k0(k0C1M
c(ν))mψ c1

2
(x, t; y, s),

for all x, y ∈ D, 0 ≤ s < t ≤ T andm ∈ N. Assumek0C1M
c(ν) ≤ 1/2, the derivative with

respect tox of the Green functionG =
∑

m≥0 ΛmG0 is given by

∇xG =
∑
m≥0

Λm(∇xG0)
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and satisfies
|∇xG|(x, t; y, s) ≤ 2k0ψ c1

2
(x, t; y, s),

for all x, y ∈ D, 0 ≤ s < t ≤ T . �

Theorem 5.4. Let ν be in the classKloc
c (Ω) with M c(ν) ≤ c0, G be the(L0 + ν.∇x)-Green

function for the initial-Dirichlet problem onΩ and µ be a nonnegative measure in the class
P loc

c (Ω). Then, there exists a unique continuousL-Green functionG for the initial-Dirichlet
problem onΩ satisfying the estimatesC−1γc4 ≤ G ≤ Cγ c1

4
on Θ, for some positive constants

C andc4.

To prove the theorem we need the following lemma.

Lemma 5.5. Let f : Θ → R be a continuous function satisfying|f | ≤ Cγ c1
4

for some positive

constantC andµ be a nonnegative measure in the classP loc
c (Ω). Then, the function

q(x, t; y, s) =

∫ t

s

∫
D

G(x, t; z, τ)f(z, τ ; y, s)µ(dzdτ)

is continuous onΘ.

Proof of Lemma 5.5.For simplicity we use the notationX = (x, t), Y = (y, s), Z = (z, τ)
anddZ = dzdτ . By Lemma 3.1, we have, for all(X;Y ) ∈ Θ,

|q|(X;Y ) ≤ C

∫ t

s

∫
D

γ c1
2
(X;Z)γ c1

4
(Z;Y )µ(dZ)

≤ Cγ c1
4
(X;Y )

∫ t

s

∫
D

[
d(z)

d(x)
γc(X;Z) +

d(z)

d(y)
γc(Z;Y )

]
µ(dZ)

≤ CN c(µ)γ c1
4
(X;Y ),

and soq is a real finite valued function. Let(X0;Y0) := (x0, t0; y0, s0) ∈ Θ be fixed and let

r0 := δ(X0, ∂Ω) ∧ δ(Y0, ∂Ω) ∧ δ(X0, Y0) > 0.

Consider the compact subsetsE1 = Bδ

(
X0,

r0

2

)
andE2 = Bδ

(
Y0,

r0

2

)
. Sinceµ ∈ P loc

c (Ω), for
ε > 0, there isr ∈

]
0, r0

2

[
such that

sup
X∈E1

∫ ∫
Bδ(X,r)

Γc(X;Z)µ(dZ) < ε,

and

sup
Y ∈E2

∫ ∫
Bδ(Y,r)

Γc(Z;Y )µ(dZ) < ε.

ForX ∈ Bδ

(
X0,

r
4

)
, we have

q(X;Y ) =

∫ t

s

∫
D

G(X;Z)f(Z;Y )µ(dZ)

=

∫ ∫
Bδ(X0, r

2
)

+

∫ ∫
Bδ(Y0, r

2
)

+

∫ ∫
Bc

δ(X0, r
2
)∩Bc

δ(Y0, r
2
)

:= q1(X;Y ) + q2(X;Y ) + q3(X;Y ).

For Z ∈ Bc
δ

(
X0,

r
2

)
∩ Bc

δ

(
Y0,

r
2

)
, the function(X;Y ) → G(X;Z)f(Z;Y ) is continuous on

Bδ

(
X0,

r
4

)
×Bδ

(
Y0,

r
4

)
with

G(X;Z)|f |(Z;Y ) ≤ Cγ c1
4
(X0 + (0, r2/8);Z)γ c1

8
(Z;Y0 − (0, r2/8)),
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for someC = C(k0, c1, r,X0, Y0) > 0 and by Lemma 3.1,∫ t0+ r2

8

s0− r2

8

∫
D

γ c1
4
(X0 + (0, r2/8);Z)γ c1

8
(Z;Y0 − (0, r2/8))µ(dZ)

≤ C0N
c(µ)γ c1

8
(X0 + (0, r2/8);Y0 − (0, r2/8)) <∞.

It then follows, from the dominated convergence theorem, thatq3 is continuous onBδ

(
X0,

r
4

)
×

Bδ

(
Y0,

r
4

)
. Moreover, forZ ∈ Bδ

(
X0,

r
2

)
, X ∈ Bδ

(
X0,

r
4

)
, Y ∈ Bδ

(
Y0,

r
4

)
, we have

G(X;Z)|f |(Z;Y ) ≤ CΓc(X;Z),

for someC = C(k0, c1, r0) > 0 and so

q1(X;Y ) ≤ C

∫ ∫
Bδ(X,r)

Γc(X;Z)µ(dZ) ≤ Cε.

In the same way,

q2(X;Y ) ≤ C

∫ ∫
Bδ(Y,r)

Γc(Z, Y )µ(dZ) ≤ Cε.

Thusq is continuous at(X0;Y0). �

Proof of Theorem 5.4.Let µ be a nonnegative measure in the classP loc
c (Ω) and define the op-

eratorT µ onB c1
4

by

T µf(x, t; y, s) =

∫ t

s

∫
D

G(x, t; z, τ)f(z, τ ; y, s)µ(dzdτ),

for all f ∈ B c1
4

. By Lemma 3.1 and Lemma 5.5,T µ is a bounded linear operator fromB c1
4

into
B c1

4
with

‖T µ‖ =
∥∥∥T µγ c1

4

∥∥∥ ≤ 2C0k0N
c(µ).

Its spectral radius is given by

rB c1
4

(T µ) = lim
m→∞

‖(T µ)m‖
1
m = inf

m
‖(T µ)m‖

1
m = inf

m

∥∥∥(T µ)mγ c1
4

∥∥∥ 1
m
.

Note that ifN c(µ) < 1
2C0k0

, then‖T µ‖ < 1 and soI + T µ is invertible onB c1
4

with ‖(I +

T µ)−1‖ ≤ 1. Thus, for a nonnegative measureσ in the classP loc
c (Ω) with N c(σ) < 1

2C0k0
, we

have
I + T µ+σ = I + T µ + T σ = (I + T µ)[I + (I + T µ)−1T σ]

with ‖(I +T µ)−1T σ‖ ≤ ‖T σ‖ < 1 and soI +T µ+σ is invertible onB c1
4

. From this observation

we deduce that for any nonnegative measureµ in P loc
c (Ω), the operatorI + T µ is invertible on

B c1
4

. Let us then define the functionG by

G(x, t; y, s) =

 (I + T µ)−1G(x, t; y, s) for (x, t; y, s) ∈ Θ

G(x, t; y, s) for (x, t), (y, s) ∈ Ω, t ≤ s.

ThenG ∈ B c1
4

and satisfies the integral equation:

G(x, t; y, s) = G(x, t; y, s)−
∫ t

s

∫
D

G(x, t; z, τ)G(z, τ ; y, s)µ(dzdτ),

for all (x, t), (y, s) ∈ Ω. In particular,G is continuous outside the diagonal, a solution of the
problem(∗) and satisfiesG ≤ Cγ c1

4
onΘ. Moreover, by using this upper estimate, the integral
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equation and the arguments as in the proof of Theorem 5.1, we obtain a positive constantc4 > 0
such thatG ≥ C−1γc4 onΘ. �

Theorem 5.6. Let ν be in the classKloc
c (Ω) with M c(ν) ≤ c0, G be the(L0 + ν · ∇x)-Green

function for the initial-Dirichlet problem onΩ andµ be in the classP loc
c (Ω).

Assume thatrB c1
4

[(I + T µ+
)−1T µ−

] < 1, then there exists a unique continuousL-Green

functionG for the initial-Dirichlet problem onΩ satisfying the estimatesC−1γc4 ≤ G ≤ Cγ c1
4

onΘ.
Conversely, assume that there exists a unique continuousL-Green functionG for the initial-

Dirichlet problem onΩ satisfying the estimatesC−1γc4 ≤ G ≤ Cγ c1
4

on Θ, thenrBc4
[(I +

T µ+
)−1T µ−

] < 1.

Proof. For simplicity letS = (I+T µ+
)−1T µ−

. SincerB c1
4

(S) < 1, for all f ∈ B c1
4
,
∑

m≥0 S
mf ∈

B c1
4

. Let us then defineG by

G(x, t; y, s) =


∑

m≥0 S
m[(I + T µ+

)−1G](x, t; y, s) for (x, t; y, s) ∈ Θ

G(x, t; y, s) for (x, t), (y, s) ∈ Ω, t ≤ s.

Thus
G = (I + T µ+

)−1G + SG on Θ,

which yields
(I + T µ+

)G = G + T µ−
G on Θ

and so

G(x, t; y, s) = G(x, t; y, s)−
∫ t

s

∫
D

G(x, t; z, τ)G(z, τ ; y, s)µ(dzdτ),

for all (x, t), (y, s) ∈ Ω. Using this integral equation and the same arguments as in the proof of
Theorem 5.4,G is a solution of the problem(∗), continuous outside the diagonal and satisfies
the estimatesC−1γc4 ≤ G ≤ Cγ c1

4
onΘ.

Conversely, assume that there exists a unique continuousL-Green functionG for the initial-
Dirichlet problem onΩ satisfying the estimatesC−1γc4 ≤ G ≤ Cγ c1

4
onΘ, then we have

G = (I + T µ+

)−1G + SG on Θ,

which implies that
G =

∑
m≥0

Sm[(I + T µ+

)−1G] on Θ.

By recalling that(I+T µ+
)−1G is the(L0 +ν ·∇x +µ+)-Green function for the initial-Dirichlet

problem onΩ which satisfies the lower bound(I + T µ+
)−1G ≥ C−1γc4 on Θ, it follows that

rBc4
(S) < 1. �

Corollary 5.7. Let ν andµ be in the classesKloc
c (Ω) andP loc

c (Ω), respectively, withM c(ν) ≤
c0 andN c(µ−) ≤ c′0 for some suitable constantsc0 and c′0. Then, there exists a unique con-
tinuousL-Green functionG for the initial-Dirichlet problem onΩ satisfying the estimates
C−1γc4 ≤ G ≤ Cγ c1

4
onΘ.

Proof. It suffices to note that forc′0 ≤ 1
2k0C0

, we have‖T µ−‖ < 1 which yields

‖(I + T µ+

)−1T µ−‖ ≤ ‖T µ−‖ < 1,

and sorB c1
4

[(I + T µ+
)−1T µ−

] < 1. �
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Remark 5.8.

(1) Note that the condition‖T µ−‖ < 1 is sufficient for the existence of the Green function
and not necessary. More precisely, we may find a negative measureµ ∈ P loc

c (Ω) with
‖T−µ‖ as large as we wish, however its spectral radiusr(T−µ) < 1 (see [10]).

(2) As in [31], from the estimatesC−1γc4 ≤ G ≤ Cγ c1
4

on Θ, we may deduce two-sided
estimates for theL-Poisson kernel onΩ which imply the equivalence of theL-harmonic
measure and the surface measure on the lateral boundary∂D×]0, T [ of Ω.

6. GLOBAL ESTIMATES FOR DIRICHLET SCHRÖDINGER HEAT K ERNELS

Despite the wide study of the behavior of Schrödinger semigroups over the last three decades
(see for example [2], [5] – [7], [14] – [17], [20] – [25], [33, 34, 36, 41, 42]), global pointwise
estimates for certain Schrödinger heat kernels on bounded smooth domains remain unknown.
In this section, we are concerned ourselves with this problem and obtained global-time esti-
mates for heat kernels of certain subcritical Schrödinger operators on boundedC1,1-domains.
In particular, we rectify the heat kernel estimates given by Zhang for the Dirichlet Laplacian
[42, Theorem 1.1 (b)] with an incomplete proof. We will use the notationf ∼ h to mean that
C−1h ≤ f ≤ Ch for some positive constantC.

Let A = A(x) be a real, symmetric, uniformly elliptic matrix withλ-Lipschitz continuous
coefficients onD. Let L0 = − div(A(x)∇x) andg0 be the Green function with the Dirichlet
boundary condition onD. By integrating the inequality in Lemma 3.1 with respect toτ and
next with respect tot and using the fact that∫ ∞

0

γc(x, t; y, 0)dt ∼ Ψ(x, y) ∼ g0(x, y),

we obtain the following3g0-Theorem valid for all dimensionsn ≥ 1 (see [29] forn = 2,
[9, 26, 30] and [32] forn ≥ 3).

Lemma 6.1(3g0-Theorem). There existsC4 = C4(n, λ,D) > 0 such that for allx, y, z ∈ D,

g0(x, z)g0(z, y)

g0(x, y)
≤ C4

[
d(z)

d(x)
g0(x, z) +

d(z)

d(y)
g0(z, y)

]
.

LetV = V (x) be a function in the classP loc(D) defined in Remark 4.5.2 and putL = L0+V
with the Dirichlet boundary condition onD. By Lemma 6.1 and Theorem 9.1 in [10], we know
that when‖V −‖ ≤ 1/4C4, the Schrödinger operatorL admits a continuous Green functiong
onD comparable tog0. In particular,L is subcritical in the sense of [18, 19, 44]. Letσ0 be the
first eigenvalue ofL onD which is strictly positive andG be the Dirichlet heat kernel ofL on
D (the existence ofG follows from Corollary 5.7 and the reproducing property). We have the
following global-time estimates onG.

Theorem 6.2. Let V be in the classP loc(D) with ‖V −‖ ≤ c′0 for some suitable constant
c′0. Then the Dirichlet heat kernelG for the Schrödinger operatorL = L0 + V satisfies the
following estimates: there exist constantsC, c5, c6 > 0 depending only onn, λ, D and onV
only in terms of the quantity‖V ‖, such that for allx, y ∈ D andt > 0,

C−1e−σ0tϕc6(x, t; y, 0) ≤ G(x, t; y, 0) ≤ C e−σ0tϕc5(x, t; y, 0),

where

ϕa(x, t; y, 0) = min

(
1,

d(x)

1 ∧
√
t

)
min

(
1,

d(y)

1 ∧
√
t

) exp
(
−a |x−y|2

t

)
1 ∧ tn/2

, a > 0.
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Proof. Let h0 be the first eigenfunction normalized by‖h0‖2 = 1. Clearly by the comparability
g ∼ g0 and Theorem 2.1, it follows thath0(x) ∼ d(x). From the reproducing property ofG and
the estimates

C−1γc4(x, t; y, 0) ≤ G(x, t; y, 0) ≤ Cγ c1
4
(x, t; y, 0),

for x, y ∈ D, t ∈]0, 1[ (Corollary 5.7), we have

C−td(x)d(y) ≤ G(x, t; y, 0) ≤ Ctd(x)d(y),

for all t > 0 and allx, y ∈ D; and so the semigroupe−tL of L is intrinsically ultracontractive in
the sense of [2, 5, 6, 7]. Thus, for anyC > 1, there existsT > 1 such that

C−1d(x)d(y)e−σ0t ≤ G(x, t; y, 0) ≤ Cd(x)d(y)e−σ0t,

for all x, y ∈ D andt ≥ T . Combining these estimates with the finite-time estimates

C−1γc4(x, t; y, 0) ≤ G(x, t; y, 0) ≤ Cγ c1
4
(x, t; y, 0),

for x, y ∈ D, t ∈]0, T [, we clearly obtain the global-time estimates stated in Theorem 6.2.�

Corollary 6.3. Letλ0 be the bottom eigenvalue ofL0 onD. Then, the Dirichlet heat kernelG0

ofL0 onD satisfies the following estimates: there exist constantsC, c5, c6 > 0 depending only
onn, λ andD, such that for allx, y ∈ D andt > 0,

(6.1) C−1e−λ0tϕc6(x, t; y, 0) ≤ G0(x, t; y, 0) ≤ C e−λ0tϕc5(x, t; y, 0),

and

(6.2) |∇xG0|(x, t; y, 0) ≤ C e−λ0tΦc5(x, t; y, 0),

where

Φa(x, t; y, 0) = min

(
1,

d(y)

1 ∧
√
t

) exp
(
−a |x−y|2

t

)
1 ∧ t(n+1)/2

, a > 0.

Proof. The estimates(6.1) are given by Theorem 6.2. We will prove(6.2). From the re-
producing property ofG0, the finite-time inequality (ii) in Theorem 2.2 and the inequality
G0 ≤ Ce−λ0tϕc5 , c5 < c1, we have, for allt > 2,

∇xG0(x, t; y, 0) =

∫
D

∇xG0(x, t; z, t− 1)G0(z, t− 1; y, 0)dz,

and so

|∇xG0|(x, t; y, 0) ≤
∫

D

|∇xG0|(x, 1; z, 0)G0(z, t− 1; y, 0)dz

≤ k2e−λ0(t−1)

∫
D

ψc1(x, 1; z, 0)ϕc5(z, t− 1; y, 0)dz

≤ k2e−λ0(t−1) min(1, d(y))

∫
D

e−c1|x−z|2e−c5
|z−y|2

t−1 dz

≤ Ce−λ0t min(1, d(y))

∫
D

e−c5(|x−z|2+
|z−y|2

t−1
)dz

≤ Ce−λ0t min(1, d(y)) exp

(
−c5

|x− y|2

t

)
= Ce−λ0tΦc5(x, t; y, 0).

This inequality combined with the finite-time inequality (ii) of Theorem 2.2 yields the estimate
(6.2). �
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The following inequalities extend the ones, proved in [13] forn ≥ 3, to all dimensionsn ≥ 1.

Corollary 6.4. There exists a constantC = C(n, λ,D) > 0 such that, for allx, y, z ∈ D,

(6.3) |∇xg0|(x, y) ≤ Cψ(x, y),

(6.4)
g0(x, z)|∇zg0|(z, y)

g0(x, y)
≤ C[ψ(x, z) + ψ∗(z, y)]

and

(6.5)
|∇xg0|(x, z)|∇zg0|(z, y)

ψ(x, y)
≤ C[ψ(x, z) + ψ∗(z, y)],

where

ψ(x, z) = ψ∗(z, x) =


min

(
1, d(z)

|x−z|

)
1

|x−z|n−1 if n ≥ 2

Log
(
1 + d(z)

|x−z|

)
if n = 1.

Proof. Inequality(6.3) holds by integrating(6.2) of Corollary 6.3 with respect to time and using
the fact that ∫ ∞

0

Φc5(x, t; y, 0)dt ∼ ψ(x, y).

Inequality(6.4) (resp. (6.5)) holds by integrating the inequality of Lemma 3.2 (resp. Lemma
3.3) with respect toτ and next with respect tot, using the facts that∫ ∞

0

ψc(x, t; y, 0)dt ∼ ψ(x, y)

and ∫ ∞

0

γc(x, t; y, 0)dt ∼ Ψ(x, y) ∼ g0(x, y).

�
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