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ABSTRACT. In this note, the order of magnitude of Walsh Fourier coefficients for functions of
the classe®8V ®)(p > 1), BV, ABV®) (p > 1) andgABV is studied. For the classé&/ (»)
and¢ BV, Taibleson-like technique for Walsh Fourier coefficients is developed.

However, for the classeABV () and pABV this technique seems to be not working and
hence classical technique is applied. In the cask®V/ it is also shown that the result is best
possible in a certain sense.

Key words and phrased-unctions ofp—bounded variationgp—bounded variationp — A—bounded variation and af —
A—bounded variation, Walsh Fourier coefficients, Integral modulus continuity of prder
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1. INTRODUCTION

It appears that while the study of the order of magnitude of the trigopnometric Fourier coeffi-
cients for the functions of various classes of generalized variations sugl &s (p > 1) [9],
¢BV [2], ABV [8], ABV® (p > 1) [B], pABV [4], etc. has been carried out, such a study
for the Walsh Fourier coefficients has not yet been done. The only result available is due to N.J.
Fine [1], who proves, using the second mean value theorem ttfag iBV[0, 1] then its Walsh
Fourier coefﬁcientgf(n) = O(%). In this note we carry out this study. Interestingly, here, no
use of the second mean value theorem is made. We also prove that for theldssur result
is best possible in a certain sense.

Definition 1.1. Let I = [a,b], p > 1 be a real numbeg\,}, k£ € N, be a sequence of non-
decreasing positive real numbers such fhat , i diverges and : [0,00) — R, be a strictly
increasing function. We say that:
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(1) f € BV®)(I) (thatis, f is of p—bounded variation ovef) if

VI(f.p. 1) ?}J%’{(Zf (bi) — ) }<oo,

(2) f € pBV(I) (thatis,f is of 9— bounded variation ovef) if

V(f.,1) = Sup {Z O(1.f (be) — f(ak)!)} < 00,

(3) f € ABV®(I) (thatis,f is of p — A— bounded variation ovef) if

Valf.p, ) ?}lg{@m >|> }m’

(4) f € pABV(I) (thatis,f is of » — A— bounded variation ovef) if

.61 _Sup{zmmkAk fla >r>}<oo7

{Ix}
in which {1, = [ay, by} is a sequence of non-overlapping subintervals. of

In (2) and (4), it is customary to consideérl convex function such that

s, 4D oo

—0 (2—04), —F—00 (z—00);
X
such a function is necessarily continuous and strictly increasirg,en).
Let {©,} (n =0,1,2,3,...) denote the complete orthonormal Walsh system [7], where the
subscript denotes the number of zeros (that is, sign-changes) in the interior of the iifterval
For a 1-periodicf in L0, 1] its Walsh Fourier series is given by

[e.o]

f(x) ~ ) f(n)en(e),

n=0
where then™ Walsh Fourier coefficienf (n) is given by
1
—/ f(x)on(x)dz (n=0,1,2,3,...).
0

The Walsh system can be realizéd [1] as the full set of characters of the dyadic@@reup
Z5°, inwhich Z, = {0, 1} is the group under addition modutoWe denote the operation 6f
by +. (G, +) is identified with(]0, 1], +) under the usual convention for the binary expansion
of elements of0, 1] [1].

2. REsuLTs

We prove the following theorems. In Theorém|2.5 it is shown that Theprem 2.3with
is best possible in a certain sense.

Theorem 2.1.1f f € BV®)[0,1] thenf(n) = O (1 /(n%)> :
Note. Theoren 2.]L witlp = 1 gives the result of Finé [1, Theorem VI].

Theorem 2.2.1f f € ¢BV[0,1] thenf(n) = O(¢~1(1/n)).
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Theorem 2.3.1f 1—periodic f € ABV®[0,1] (p > 1) then

fln)=0 (1/(?2%))

Theorem 2.4.1f 1—periodic f € pABV[0, 1] then

el (/(55)))

Theorem 2.5.1f I'BV[0,1] D ABV|0, 1] properly then

3f e 'BV[0,1] 3 f(n) (/(;)\>>

Proof of Theoremqi 2]1Let n € N. Let £ € N U {0} be such tha* < n < 2*! and put
= (i/2%) fori = 0,1,2,3,...,2%. Sincey, takes the valué on one half of each of the
intervals(a;_1, a;) and the value-1 on the other half, we have

/ on(x)dr =0, foralli=1,23,... 2"
a;—1

Define a step functiop by g(z) = f(a;_1) onfa;_1, a;),i =1,2,3,...,2% Then

a;

1 9(x)en(x)dr = i flaisy) [ pu(z)dz =0.
J NN

Therefore,
1

[f(n)] = [ f(@) = g(@)]n(x)dz

(2.1) / (@) — g(o)lda

< [1f = gllpl[1llq

= (Z / flai 1)pdx)p

by Holder’s inequality ag, g € BV ®[0, 1] and BV ™[0, 1] ¢ L?[0, 1].

Hence,

~ 2" a;

|f(n)|P < Z/ f(2) — flai_1)Pda.
i=1 v di-1
2k a;

= Z/ (V(f,p, ai-1, a;]))Pdx

=1 Y di-1
2k

=> (V(f,p,lai—1,a)))” (2_1k)

i=1
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< (5) vt 0y

2
< (2)wirpoay
which completes the proof of Theor¢m|2.1. O
Proof of Theorer 2]2Let ¢ > 0. Using Jensen’s inequality and proceeding as in Theprem 2.1,

we get
o (e [ 1)~ sl < [ otels @)~ owyis
—2/ o(elf () — f(ai1))da
<Z/ V(cf, b, lai 1, ail)dz

= Zv cf, ¢, a1, ai]) <21—k)

< (%) Vief, 6,10,1]).

Since¢ is convex and(0) = 0, for sufficiently smallc € (0,1), V(cf, ¢,[0,1]) < 1/2.
This completes the proof of Theor¢gm|2.2 in view|of [2.1). O

Remark 1. If ¢(z) = 2P, p > 1, then the clas®BV coincides with the clas®V ® and
Theoreni 2.2 with Theorem 2.1.

Remark 2. Note that in the proof of Theorems 2.1 gnd|2.2, we have used the fact that if
ag < ap < --- < a, =b, then

n

> (V(f.pair,a)) < (V(fp[a, b))

=1
and

ZV f7 al 1,@1]) Sv(f7¢7 [a7bD>
for anyn > 2 (seel[2, 1.17, p. 15]). Such inequalities for functions of the chaB3¥ ) (p > 1)
(resp.,oABV), which containBV ®) (resp.,¢BV) properly, do not hold true.

In fact, the following proposition shows that the validity of such inequalities for the class
ABV® (resp.,pABV) virtually reduces the class tBV®) (resp.,¢BV). Hence we prove
Theorem 2.3 and Theorém 2.4 applying a technique different from the Taibleson-like technique
[6] which we have applied in proving Theor¢m|[2.1 and Thedrefn 2.2.

Proposition 2.6. Let f € pABV [a, b]. If there is a constant’ such that
Z VA(f7 ¢7 [ai—la az]) S CVA(f» ¢, [CL, b]))u

for any sequence of poin{s; } , witha = ap < a; < --- < a, = b, thenf € ¢ BVa, b].
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Proof. For any partitiomn = 2y < z; < --- < x, = b 0f [a, b], we have

Z o(|f(xs) — fzic)]) =M Z o(|f (xi) ;lf($z‘—1)|)

<A Y Valf 6 [, @)

< NOVALT 6, a8,
which shows thaf € ¢BV[a, b]. O
Remark 3. ¢(x) = 2P (p > 1) in this proposition will give an analogous result ftoBV (?)

To prove Theorerp 2|3 and Theorgm|2.4, we need the following lemma.

Lemma 2.7. For anyn € N, |f(n)| < wy(1/n; f), wherew,(d; f) (6 > 0, p > 1) denotes the
integral modulus of continuity of orderof f given by

w, iu<pé(/ f(x+h) — ()\de)

Proof. The inequalityl, Theorem IV, p. 382] (n)| < w(1/n; f) and the fact thab, (1 /n; f) <
wy(1/n; f) for p > 1 immediately proves the lemma. O

Proof of Theorerfi 2|3For anyn € N, putd, = 7, 1/);. Let f € ABV®]0,1]. For0 <

h < 1/n,putk = [1/h]. Then for a givere € R, all the pointse + jh, j = 0,1,...,k liein
the interval[z, x + 1] of length1 and

/]f +h]pda:—/|fj )|Pdx, j=1,2...k,
wheref;(z) = f(z + (j — 1)h) — f(x + jh),forall j = 1,2,..., k. Since the left hand side

of this equation is independent ¢f multiplying both sides byl /(\;6;) and summing over
7=12,... k we get

[o—sienpa< () [ (457

_ (Al 0.1y
> 0,
< (VA(fal(;u [07 1]))1)’

becausd ), } is non-decreasing ariil< 4 < 1/n. The case-1/n < h < 0 is similar and we
get using Lemmp 27,

(Va(f,p, [0,1]))"
a :

This proves Theoren 2.3. O

[f )P < (wp(L/n; f))P <

J. Inequal. Pure and Appl. Matt9(2) (2008), Art. 44, 7 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 B. L. GHODADRA AND J. R. ATADIA

Proof of Theorem 2]4Let f € pABV[0, 1]. Then forh, k andf;(x) as in the proof of Theorem
[2.3 and forc > 0 by Jensen'’s inequality,

</|f fla+ b)) dx) /¢c|f o+ h)|)da

:/O (elf;(2))de, j=1,2,... .k

Multiplying both sides byi /();6;) and summing ovej = 1,2, ..., k, we get

o[ o-siemm) < (5) [ 3 (H42)

A(cf> ¢7 [ ) D

> Qk
VA(C.ﬂ ¢7 [07 1D
>~ 9n .

Since ¢ is convex andy(0) = 0, ¢(ax)
sufficiently small so thaVy (cf, ¢, [ 1]) <

/ £(&)  fa+ W) < o7 (Qi)

Thus it follows in view of Lemm&2]7 that

)] < wi(1m; f) < 27! (ei) |

C

< ag¢(x) for 0 < a < 1. So we may choose
1. But then we have

which proves Theorefn 3.4. O
Proof of Theorer 2]5lt is known [3] that if ' BV containsA BV properly withI" = {,} then

0, # O(pn), Wherep,, = Z};l Wi for eachn. Also, ifcg =0, ¢,.1 =1lande; < ey < --- < ¢,
denote all the: points of(0, 1) where the functiorp,, changes its sign if0, 1), ny € N is such
thatp, > ; foralln > ngandE = {n € N : n > ng is ever}, then for eachn € E, for the

function

fn = Z X[Ckfl,ck)

—  dp,
extended 1-periodically oR,
n+1 n
| fn(cr) fn Cr-1)] 1 1 1
s [0, 1]) = — .- =
because
1

asp, = 1 on[cy, c1). Hencel|f,|| = - +3 < 1foreachn € E in the Banach spadeB V[0, 1]
with || f|| = | f(0)] + Vi (f, [0, 1]). Observe that fof € ' BV[0, 1]

Il < | (W%;lf@”wrf(on) e <Clfll, € =max{1,n}.

J. Inequal. Pure and Appl. Matt9(2) (2008), Art. 44, 7 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

WALSH FOURIER COEFFICIENTS 7

and hence, for each € N the linear mag¥}, : TBV[0, 1] — R defined byT,,(f) = 6, f(n) is
bounded as

IT,.(f)] = 0a|f(n)] < 0alIf]11 < 0.CIIf]l,  VfelBV0,1].
Next, for eacm € E sincef, - ¢, = ﬁ on|0, 1), we see that
To(fn) = Onfn(n) = 6n /01 fa(2)pn(r)de = i (i—Z) £ 0(1)

and hence
sup{||T.|| : » € N} > sup{||T..|| : » € E} > sup{|T.(fn)| : n € E} = 0.

Therefore, an application of the Banach-Steinhaus theorem givgscai BV [0, 1] such that
sup{|T..(f)| : n € N} = 0. It follows thatd,, f(n) = T,,(f) # O(1) and hence the theorem is

proved. O
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