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Abstract: In this note, the order of magnitude of Walsh Fourier coefficients for functions
of the classesBV (p)(p ≥ 1), φBV , ΛBV (p) (p ≥ 1) andφΛBV is studied.
For the classesBV (p) and φBV, Taibleson-like technique for Walsh Fourier
coefficients is developed.
However, for the classesΛBV (p) andφΛBV this technique seems to be not
working and hence classical technique is applied. In the case ofΛBV, it is also
shown that the result is best possible in a certain sense.
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1. Introduction

It appears that while the study of the order of magnitude of the trigonometric Fourier
coefficients for the functions of various classes of generalized variations such as
BV (p) (p ≥ 1) [9], φBV [2], ΛBV [8], ΛBV (p) (p ≥ 1) [5], φΛBV [4], etc.
has been carried out, such a study for the Walsh Fourier coefficients has not yet
been done. The only result available is due to N.J. Fine [1], who proves, using the
second mean value theorem that, iff ∈ BV [0, 1] then its Walsh Fourier coefficients
f̂(n) = O( 1

n
). In this note we carry out this study. Interestingly, here, no use of

the second mean value theorem is made. We also prove that for the classΛBV, our
result is best possible in a certain sense.

Definition 1.1. Let I = [a, b], p ≥ 1 be a real number,{λk}, k ∈ N, be a se-
quence of non-decreasing positive real numbers such that

∑∞
k=1

1
λk

diverges and
φ : [0,∞) → R, be a strictly increasing function. We say that:

1. f ∈ BV (p)(I) (that is,f is ofp−bounded variation overI) if

V (f, p, I) = sup
{Ik}


(∑

k

|f(bk)− f(ak)|p
) 1

p

 < ∞,

2. f ∈ φBV (I) (that is,f is ofφ− bounded variation overI) if

V (f, φ, I) = sup
{Ik}

{∑
k

φ(|f(bk)− f(ak)|)

}
< ∞,
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3. f ∈ ΛBV (p)(I) (that is,f is ofp− Λ− bounded variation overI) if

VΛ(f, p, I) = sup
{Ik}


(∑

k

|f(bk)− f(ak)|p

λk

) 1
p

 < ∞,

4. f ∈ φΛBV (I) (that is,f is ofφ− Λ− bounded variation overI) if

VΛ(f, φ, I) = sup
{Ik}

{∑
k

φ(|f(bk)− f(ak)|)
λk

}
< ∞,

in which{Ik = [ak, bk]} is a sequence of non-overlapping subintervals ofI.

In (2) and (4), it is customary to considerφ a convex function such that

φ(0) = 0,
φ(x)

x
→ 0 (x → 0+),

φ(x)

x
→∞ (x →∞);

such a function is necessarily continuous and strictly increasing on[0,∞).
Let {ϕn} (n = 0, 1, 2, 3, . . . ) denote the complete orthonormal Walsh system

[7], where the subscript denotes the number of zeros (that is, sign-changes) in the
interior of the interval[0, 1]. For a 1-periodicf in L[0, 1] its Walsh Fourier series is
given by

f(x) ∼
∞∑

n=0

f̂(n)ϕn(x),

where thenth Walsh Fourier coefficient̂f(n) is given by

f̂(n) =

∫ 1

0

f(x)ϕn(x)dx (n = 0, 1, 2, 3, . . . ).
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The Walsh system can be realized [1] as the full set of characters of the dyadic
groupG = Z∞

2 , in which Z2 = {0, 1} is the group under addition modulo2. We
denote the operation ofG by +̇. (G, +̇) is identified with([0, 1], +) under the usual
convention for the binary expansion of elements of[0, 1] [1].
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2. Results

We prove the following theorems. In Theorem2.5it is shown that Theorem2.3with
p = 1 is best possible in a certain sense.

Theorem 2.1. If f ∈ BV (p)[0, 1] thenf̂(n) = O
(
1
/(

n
1
p

))
.

Note. Theorem2.1with p = 1 gives the result of Fine [1, Theorem VI].

Theorem 2.2. If f ∈ φBV [0, 1] thenf̂(n) = O(φ−1(1/n)).

Theorem 2.3. If 1−periodicf ∈ ΛBV (p)[0, 1] (p ≥ 1) then

f̂(n) = O

1

/(
n∑

j=1

1

λj

) 1
p

 .

Theorem 2.4. If 1−periodicf ∈ φΛBV [0, 1] then

f̂(n) = O

(
φ−1

(
1

/(
n∑

j=1

1

λj

)))
.

Theorem 2.5. If ΓBV [0, 1] ⊇ ΛBV [0, 1] properly then

∃f ∈ ΓBV [0, 1] 3 f̂(n) 6= O

(
1

/(
n∑

j=1

1

λj

))
.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Walsh Fourier Coefficients
B.L. Ghodadra and

J.R. Patadia

vol. 9, iss. 2, art. 44, 2008

Title Page

Contents

JJ II

J I

Page 7 of 15

Go Back

Full Screen

Close

Proof of Theorem2.1. Let n ∈ N. Let k ∈ N ∪ {0} be such that2k ≤ n < 2k+1 and
put ai = (i/2k) for i = 0, 1, 2, 3, . . . , 2k. Sinceϕn takes the value1 on one half of
each of the intervals(ai−1, ai) and the value−1 on the other half, we have∫ ai

ai−1

ϕn(x)dx = 0, for all i = 1, 2, 3, . . . , 2k.

Define a step functiong by g(x) = f(ai−1) on [ai−1, ai), i = 1, 2, 3, . . . , 2k. Then∫ 1

0

g(x)ϕn(x)dx =
2k∑
i=1

f(ai−1)

∫ ai

ai−1

ϕn(x)dx = 0.

Therefore,

|f̂(n)| =
∣∣∣∣∫ 1

0

[f(x)− g(x)]ϕn(x)dx

∣∣∣∣
≤
∫ 1

0

|f(x)− g(x)|dx(2.1)

≤ ||f − g||p||1||q

=

 2k∑
i=1

∫ ai

ai−1

|f(x)− f(ai−1)|pdx

 1
p

by Hölder’s inequality asf, g ∈ BV (p)[0, 1] andBV (p)[0, 1] ⊂ Lp[0, 1].
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Hence,

|f̂(n)|p ≤
2k∑
i=1

∫ ai

ai−1

|f(x)− f(ai−1)|pdx.

≤
2k∑
i=1

∫ ai

ai−1

(V (f, p, [ai−1, ai]))
pdx

=
2k∑
i=1

(V (f, p, [ai−1, ai]))
p

(
1

2k

)
≤
(

1

2k

)
(V (f, p, [0, 1]))p

≤
(

2

n

)
(V (f, p, [0, 1]))p,

which completes the proof of Theorem2.1.

Proof of Theorem2.2. Let c > 0. Using Jensen’s inequality and proceeding as in
Theorem2.1, we get

φ

(
c

∫ 1

0

|f(x)− g(x)|dx

)
≤
∫ 1

0

φ(c|f(x)− g(x)|)dx

=
2k∑
i=1

∫ ai

ai−1

φ(c|f(x)− f(ai−1)|)dx

≤
2k∑
i=1

∫ ai

ai−1

V (cf, φ, [ai−1, ai])dx
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=
2k∑
i=1

V (cf, φ, [ai−1, ai])

(
1

2k

)
≤
(

2

n

)
V (cf, φ, [0, 1]).

Sinceφ is convex andφ(0) = 0, for sufficiently smallc ∈ (0, 1), V (cf, φ, [0, 1]) <
1/2.

This completes the proof of Theorem2.2 in view of (2.1).

Remark1. If φ(x) = xp, p ≥ 1, then the classφBV coincides with the classBV (p)

and Theorem2.2with Theorem2.1.
Remark2. Note that in the proof of Theorems2.1and2.2, we have used the fact that
if a = a0 < a1 < · · · < an = b, then

n∑
i=1

(V (f, p, [ai−1, ai]))
p ≤ (V (f, p, [a, b]))p

and
n∑

i=1

V (f, φ, [ai−1, ai]) ≤ V (f, φ, [a, b]),

for any n ≥ 2 (see [2, 1.17, p. 15]). Such inequalities for functions of the class
ΛBV (p) (p ≥ 1) (resp.,φΛBV ), which containBV (p) (resp.,φBV ) properly, do not
hold true.

In fact, the following proposition shows that the validity of such inequalities for
the classΛBV (p) (resp.,φΛBV ) virtually reduces the class toBV (p) (resp.,φBV ).
Hence we prove Theorem2.3and Theorem2.4applying a technique different from
the Taibleson-like technique [6] which we have applied in proving Theorem2.1and
Theorem2.2.
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Proposition 2.6. Letf ∈ φΛBV [a, b]. If there is a constantC such that

n∑
i=1

VΛ(f, φ, [ai−1, ai]) ≤ CVΛ(f, φ, [a, b])),

for any sequence of points{ai}n
i=0 with a = a0 < a1 < · · · < an = b, then

f ∈ φBV [a, b].

Proof. For any partitiona = x0 < x1 < · · · < xn = b of [a, b], we have

n∑
i=1

φ(|f(xi)− f(xi−1)|) = λ1

n∑
i=1

φ(|f(xi)− f(xi−1)|)
λ1

≤ λ1

n∑
i=1

VΛ(f, φ, [xi−1, xi])

≤ λ1CVΛ(f, φ, [a, b]),

which shows thatf ∈ φBV [a, b].

Remark3. φ(x) = xp (p ≥ 1) in this proposition will give an analogous result for
ΛBV (p).

To prove Theorem2.3and Theorem2.4, we need the following lemma.

Lemma 2.7. For anyn ∈ N, |f̂(n)| ≤ ωp(1/n; f), whereωp(δ; f) (δ > 0, p ≥ 1)
denotes the integral modulus of continuity of orderp of f given by

ωp(δ; f) = sup
|h|≤δ

(∫ 1

0

|f(x + h)− f(x)|pdx

) 1
p

.
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Proof. The inequality [1, Theorem IV, p. 382]|f̂(n)| ≤ ω1(1/n; f) and the fact that
ω1(1/n; f) ≤ ωp(1/n; f) for p ≥ 1 immediately proves the lemma.

Proof of Theorem2.3. For anyn ∈ N, put θn =
∑n

j=1 1/λj. Let f ∈ ΛBV (p)[0, 1].

For0 < h ≤ 1/n, putk = [1/h]. Then for a givenx ∈ R, all the pointsx + jh, j =
0, 1, . . . , k lie in the interval[x, x + 1] of length1 and∫ 1

0

|f(x)− f(x + h)|pdx =

∫ 1

0

|fj(x)|pdx, j = 1, 2, . . . , k,

wherefj(x) = f(x + (j − 1)h) − f(x + jh), for all j = 1, 2, . . . , k. Since the left
hand side of this equation is independent ofj, multiplying both sides by1/(λjθk)
and summing overj = 1, 2, . . . , k, we get∫ 1

0

|f(x)− f(x + h)|pdx ≤
(

1

θk

)∫ 1

0

k∑
j=1

(
|fj(x)|p

λj

)
dx

≤ (VΛ(f, p, [0, 1]))p

θk

≤ (VΛ(f, p, [0, 1]))p

θn

,

because{λj} is non-decreasing and0 < h ≤ 1/n. The case−1/n ≤ h < 0 is
similar and we get using Lemma2.7,

|f̂(n)|p ≤ (ωp(1/n; f))p ≤ (VΛ(f, p, [0, 1]))p

θn

.

This proves Theorem2.3.
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Proof of Theorem2.4. Let f ∈ φΛBV [0, 1]. Then forh, k andfj(x) as in the proof
of Theorem2.3and forc > 0 by Jensen’s inequality,

φ

(
c

∫ 1

0

|f(x)− f(x + h)|)dx

)
≤
∫ 1

0

φ(c|f(x)− f(x + h)|)dx

=

∫ 1

0

φ(c|fj(x)|)dx, j = 1, 2, . . . , k.

Multiplying both sides by1/(λjθk) and summing overj = 1, 2, . . . , k, we get

φ

(
c

∫ 1

0

|f(x)− f(x + h)|)dx

)
≤
(

1

θk

)∫ 1

0

k∑
j=1

(
φ(c|fj(x)|)

λj

)
dx

≤ VΛ(cf, φ, [0, 1])

θk

≤ VΛ(cf, φ, [0, 1])

θn

.

Sinceφ is convex andφ(0) = 0, φ(αx) ≤ αφ(x) for 0 < α < 1. So we may choose
c sufficiently small so thatVΛ(cf, φ, [0, 1]) ≤ 1. But then we have∫ 1

0

|f(x)− f(x + h)|)dx ≤ 1

c
φ−1

(
1

θn

)
.

Thus it follows in view of Lemma2.7that

|f̂(n)| ≤ ω1(1/n; f) ≤ 1

c
φ−1

(
1

θn

)
,

which proves Theorem2.4.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Walsh Fourier Coefficients
B.L. Ghodadra and

J.R. Patadia

vol. 9, iss. 2, art. 44, 2008

Title Page

Contents

JJ II

J I

Page 13 of 15

Go Back

Full Screen

Close

Proof of Theorem2.5. It is known [3] that if ΓBV containsΛBV properly withΓ =
{γn} thenθn 6= O(ρn), whereρn =

∑n
j=1

1
γj

for eachn. Also, if c0 = 0, cn+1 = 1

and c1 < c2 < · · · < cn denote all then points of (0, 1) where the functionϕn

changes its sign in(0, 1), n0 ∈ N is such thatρn ≥ 1
2

for all n ≥ n0 andE = {n ∈
N : n ≥ n0 is even}, then for eachn ∈ E, for the function

fn =
n+1∑
k=1

(−1)k−1

4ρn

χ[ck−1,ck)

extended 1-periodically onR,

VΓ(fn, [0, 1]) =
n+1∑
k=1

|fn(ck)− fn(ck−1)|
γk

=
n∑

k=1

1

γk

· 1

2ρn

=
1

2

because

fn(cn+1) = fn(1) = fn(0) =
1

4ρn

= fn(cn)

asϕn ≡ 1 on [c0, c1). Hence||fn|| = 1
4ρn

+ 1
2
≤ 1 for eachn ∈ E in the Banach

spaceΓBV [0, 1] with ||f || = |f(0)|+ VΓ(f, [0, 1]). Observe that forf ∈ ΓBV [0, 1]

||f ||1 ≤
∫ 1

0

(
|f(x)− f(0)|

γ1

γ1 + |f(0)|
)

dx ≤ C||f ||, C = max{1, γ1},

and hence, for eachn ∈ N the linear mapTn : ΓBV [0, 1] → R defined byTn(f) =

θnf̂(n) is bounded as

|Tn(f)| = θn|f̂(n)| ≤ θn||f ||1 ≤ θnC||f ||, ∀f ∈ ΓBV [0, 1].
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Next, for eachn ∈ E sincefn · ϕn = 1
4ρn

on [0, 1), we see that

Tn(fn) = θnf̂n(n) = θn

∫ 1

0

fn(x)ϕn(x)dx =
1

4

(
θn

ρn

)
6= O(1)

and hence

sup{||Tn|| : n ∈ N} ≥ sup{||Tn|| : n ∈ E} ≥ sup{|Tn(fn)| : n ∈ E} = ∞.

Therefore, an application of the Banach-Steinhaus theorem gives anf ∈ ΓBV [0, 1]

such thatsup{|Tn(f)| : n ∈ N} = ∞. It follows thatθnf̂(n) = Tn(f) 6= O(1) and
hence the theorem is proved.
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