A NOTE ON THE MAGNITUDE OF WALSH FOURIER COEFFICIENTS

B.L. GHODADRA AND J.R. PATADIA

Department of Mathematics
Faculty of Science
The Maharaja Sayajirao University of Baroda
Vadodara - 390002 (Gujarat), India.
EMail: bhikhu_ghodadra@yahoo.com jamanadaspat@gmail.com

Received:	11 March, 2008
Accepted:	07 May, 2008
Communicated by:	L. Leindler

2000 AMS Sub. Class.:
Key words:

Abstract:

42C10, 26D15
Functions of p-bounded variation, ϕ-bounded variation, $p-\Lambda$-bounded variation and of $\phi-\Lambda$-bounded variation, Walsh Fourier coefficients, Integral modulus continuity of order p.

In this note, the order of magnitude of Walsh Fourier coefficients for functions of the classes $B V^{(p)}(p \geq 1), \phi B V, \Lambda B V^{(p)}(p \geq 1)$ and $\phi \Lambda B V$ is studied. For the classes $B V^{(p)}$ and $\phi B V$, Taibleson-like technique for Walsh Fourier coefficients is developed.
However, for the classes $\Lambda B V^{(p)}$ and $\phi \Lambda B V$ this technique seems to be not working and hence classical technique is applied. In the case of $\Lambda B V$, it is also shown that the result is best possible in a certain sense.

Walsh Fourier Coefficients
B.L. Ghodadra and
J.R. Patadia
vol. 9, iss. 2, art. 44, 2008

Title Page
Contents

Page 1 of 15
Go Back

Full Screen

Close

> journal of inequalities in pure and applied mathematics
> issn: 1443-575b

Contents

1 Introduction 3
2 Results

Walsh Fourier Coefficients B.L. Ghodadra and J.R. Patadia
vol. 9, iss. 2, art. 44, 2008

Title Page
Contents

$\mathbf{4}$	
Page 2 of 15	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

It appears that while the study of the order of magnitude of the trigonometric Fourier coefficients for the functions of various classes of generalized variations such as $B V^{(p)}(p \geq 1)$ [9], $\phi B V$ [2], $\Lambda B V$ [8], $\Lambda B V^{(p)}(p \geq 1)$ [5], $\phi \Lambda B V$ [4], etc. has been carried out, such a study for the Walsh Fourier coefficients has not yet been done. The only result available is due to N.J. Fine [1], who proves, using the second mean value theorem that, if $f \in B V[0,1]$ then its Walsh Fourier coefficients $\hat{f}(n)=O\left(\frac{1}{n}\right)$. In this note we carry out this study. Interestingly, here, no use of the second mean value theorem is made. We also prove that for the class $\Lambda B V$, our result is best possible in a certain sense.

Definition 1.1. Let $I=[a, b], p \geq 1$ be a real number, $\left\{\lambda_{k}\right\}, k \in \mathbb{N}$, be a sequence of non-decreasing positive real numbers such that $\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}$ diverges and $\phi:[0, \infty) \rightarrow \mathbb{R}$, be a strictly increasing function. We say that:

1. $f \in B V^{(p)}(I)$ (that is, f is of p-bounded variation over I) if

$$
V(f, p, I)=\sup _{\left\{I_{k}\right\}}\left\{\left(\sum_{k}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|^{p}\right)^{\frac{1}{p}}\right\}<\infty,
$$

2. $f \in \phi B V(I)$ (that is, f is of ϕ - bounded variation over $I)$ if

$$
V(f, \phi, I)=\sup _{\left\{I_{k}\right\}}\left\{\sum_{k} \phi\left(\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|\right)\right\}<\infty
$$

J

Title Page
Contents

Page 3 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
3. $f \in \Lambda B V^{(p)}(I)$ (that is, f is of $p-\Lambda-$ bounded variation over $\left.I\right)$ if

$$
V_{\Lambda}(f, p, I)=\sup _{\left\{I_{k}\right\}}\left\{\left(\sum_{k} \frac{\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|^{p}}{\lambda_{k}}\right)^{\frac{1}{p}}\right\}<\infty
$$

4. $f \in \phi \Lambda B V(I)$ (that is, f is of $\phi-\Lambda$ - bounded variation over I) if

$$
V_{\Lambda}(f, \phi, I)=\sup _{\left\{I_{k}\right\}}\left\{\sum_{k} \frac{\phi\left(\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|\right)}{\lambda_{k}}\right\}<\infty
$$

in which $\left\{I_{k}=\left[a_{k}, b_{k}\right]\right\}$ is a sequence of non-overlapping subintervals of I.
In (2) and (4), it is customary to consider ϕ a convex function such that

$$
\phi(0)=0, \quad \frac{\phi(x)}{x} \rightarrow 0 \quad\left(x \rightarrow 0_{+}\right), \quad \frac{\phi(x)}{x} \rightarrow \infty \quad(x \rightarrow \infty) ;
$$

such a function is necessarily continuous and strictly increasing on $[0, \infty)$.
Let $\left\{\varphi_{n}\right\} \quad(n=0,1,2,3, \ldots)$ denote the complete orthonormal Walsh system [7], where the subscript denotes the number of zeros (that is, sign-changes) in the interior of the interval $[0,1]$. For a 1-periodic f in $L[0,1]$ its Walsh Fourier series is given by

$$
f(x) \sim \sum_{n=0}^{\infty} \hat{f}(n) \varphi_{n}(x)
$$

where the $n^{\text {th }}$ Walsh Fourier coefficient $\hat{f}(n)$ is given by

$$
\hat{f}(n)=\int_{0}^{1} f(x) \varphi_{n}(x) d x \quad(n=0,1,2,3, \ldots)
$$

Walsh Fourier Coefficients
B.L. Ghodadra and
J.R. Patadia
vol. 9, iss. 2, art. 44, 2008
J

Title Page
Contents

Page 4 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

The Walsh system can be realized [1] as the full set of characters of the dyadic group $G=Z_{2}^{\infty}$, in which $Z_{2}=\{0,1\}$ is the group under addition modulo 2 . We denote the operation of G by $\dot{+} .(G, \dot{+})$ is identified with $([0,1],+)$ under the usual convention for the binary expansion of elements of $[0,1][1]$.

Walsh Fourier Coefficients
B.L. Ghodadra and
J.R. Patadia
vol. 9, iss. 2, art. 44, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 5 of 15	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Results

We prove the following theorems. In Theorem 2.5 it is shown that Theorem 2.3 with $p=1$ is best possible in a certain sense.
Theorem 2.1. If $f \in B V^{(p)}[0,1]$ then $\hat{f}(n)=O\left(1 /\left(n^{\frac{1}{p}}\right)\right)$.

Note. Theorem 2.1 with $p=1$ gives the result of Fine [1, Theorem VI].
Theorem 2.2. If $f \in \phi B V[0,1]$ then $\hat{f}(n)=O\left(\phi^{-1}(1 / n)\right)$.
Theorem 2.3. If 1 -periodic $f \in \Lambda B V^{(p)}[0,1](p \geq 1)$ then

$$
\hat{f}(n)=O\left(1 /\left(\sum_{j=1}^{n} \frac{1}{\lambda_{j}}\right)^{\frac{1}{p}}\right) .
$$

Theorem 2.4. If 1 -periodic $f \in \phi \Lambda B V[0,1]$ then

$$
\hat{f}(n)=O\left(\phi^{-1}\left(1 /\left(\sum_{j=1}^{n} \frac{1}{\lambda_{j}}\right)\right)\right) .
$$

Walsh Fourier Coefficients
B.L. Ghodadra and
J.R. Patadia
vol. 9, iss. 2, art. 44, 2008

Title Page
Contents

Page 6 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof of Theorem 2.1. Let $n \in \mathbb{N}$. Let $k \in \mathbb{N} \cup\{0\}$ be such that $2^{k} \leq n<2^{k+1}$ and put $a_{i}=\left(i / 2^{k}\right)$ for $i=0,1,2,3, \ldots, 2^{k}$. Since φ_{n} takes the value 1 on one half of each of the intervals $\left(a_{i-1}, a_{i}\right)$ and the value -1 on the other half, we have

$$
\int_{a_{i-1}}^{a_{i}} \varphi_{n}(x) d x=0, \quad \text { for all } i=1,2,3, \ldots, 2^{k}
$$

Define a step function g by $g(x)=f\left(a_{i-1}\right)$ on $\left[a_{i-1}, a_{i}\right), i=1,2,3, \ldots, 2^{k}$. Then

$$
\int_{0}^{1} g(x) \varphi_{n}(x) d x=\sum_{i=1}^{2^{k}} f\left(a_{i-1}\right) \int_{a_{i-1}}^{a_{i}} \varphi_{n}(x) d x=0
$$

Walsh Fourier Coefficients
B.L. Ghodadra and
J.R. Patadia
vol. 9, iss. 2, art. 44, 2008

Title Page
Contents

Page 7 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Hence,

$$
\begin{aligned}
|\hat{f}(n)|^{p} & \leq \sum_{i=1}^{2^{k}} \int_{a_{i-1}}^{a_{i}}\left|f(x)-f\left(a_{i-1}\right)\right|^{p} d x \\
& \leq \sum_{i=1}^{2^{k}} \int_{a_{i-1}}^{a_{i}}\left(V\left(f, p,\left[a_{i-1}, a_{i}\right]\right)\right)^{p} d x \\
& =\sum_{i=1}^{2^{k}}\left(V\left(f, p,\left[a_{i-1}, a_{i}\right]\right)\right)^{p}\left(\frac{1}{2^{k}}\right) \\
& \leq\left(\frac{1}{2^{k}}\right)(V(f, p,[0,1]))^{p} \\
& \leq\left(\frac{2}{n}\right)(V(f, p,[0,1]))^{p}
\end{aligned}
$$

which completes the proof of Theorem 2.1.
Proof of Theorem 2.2. Let $c>0$. Using Jensen's inequality and proceeding as in Theorem 2.1, we get

$$
\begin{aligned}
\phi\left(c \int_{0}^{1}|f(x)-g(x)| d x\right) & \leq \int_{0}^{1} \phi(c|f(x)-g(x)|) d x \\
& =\sum_{i=1}^{2^{k}} \int_{a_{i-1}}^{a_{i}} \phi\left(c\left|f(x)-f\left(a_{i-1}\right)\right|\right) d x \\
& \leq \sum_{i=1}^{2^{k}} \int_{a_{i-1}}^{a_{i}} V\left(c f, \phi,\left[a_{i-1}, a_{i}\right]\right) d x
\end{aligned}
$$

Walsh Fourier Coefficients
B.L. Ghodadra and
J.R. Patadia
vol. 9, iss. 2, art. 44, 2008

Title Page
Contents

Page 8 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& =\sum_{i=1}^{2^{k}} V\left(c f, \phi,\left[a_{i-1}, a_{i}\right]\right)\left(\frac{1}{2^{k}}\right) \\
& \leq\left(\frac{2}{n}\right) V(c f, \phi,[0,1]) .
\end{aligned}
$$

Since ϕ is convex and $\phi(0)=0$, for sufficiently small $c \in(0,1), V(c f, \phi,[0,1])<$ $1 / 2$.

This completes the proof of Theorem 2.2 in view of (2.1).
Remark 1. If $\phi(x)=x^{p}, p \geq 1$, then the class $\phi B V$ coincides with the class $B V^{(p)}$ and Theorem 2.2 with Theorem 2.1.
Remark 2. Note that in the proof of Theorems 2.1 and 2.2, we have used the fact that if $a=a_{0}<a_{1}<\cdots<a_{n}=b$, then

$$
\sum_{i=1}^{n}\left(V\left(f, p,\left[a_{i-1}, a_{i}\right]\right)\right)^{p} \leq(V(f, p,[a, b]))^{p}
$$

and

$$
\sum_{i=1}^{n} V\left(f, \phi,\left[a_{i-1}, a_{i}\right]\right) \leq V(f, \phi,[a, b])
$$

for any $n \geq 2$ (see [2, 1.17, p. 15]). Such inequalities for functions of the class $\Lambda B V^{(p)}(p \geq 1)$ (resp., $\phi \Lambda B V$), which contain $B V^{(p)}$ (resp., $\phi B V$) properly, do not hold true.

In fact, the following proposition shows that the validity of such inequalities for the class $\Lambda B V^{(p)}$ (resp., $\phi \Lambda B V$) virtually reduces the class to $B V^{(p)}$ (resp., $\phi B V$). Hence we prove Theorem 2.3 and Theorem 2.4 applying a technique different from the Taibleson-like technique [6] which we have applied in proving Theorem 2.1 and Theorem 2.2.
J

Title Page
Contents

Page 9 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proposition 2.6. Let $f \in \phi \Lambda B V[a, b]$. If there is a constant C such that

$$
\left.\sum_{i=1}^{n} V_{\Lambda}\left(f, \phi,\left[a_{i-1}, a_{i}\right]\right) \leq C V_{\Lambda}(f, \phi,[a, b])\right)
$$

for any sequence of points $\left\{a_{i}\right\}_{i=0}^{n}$ with $a=a_{0}<a_{1}<\cdots<a_{n}=b$, then $f \in \phi B V[a, b]$.

Proof. For any partition $a=x_{0}<x_{1}<\cdots<x_{n}=b$ of $[a, b]$, we have

$$
\begin{aligned}
\sum_{i=1}^{n} \phi\left(\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|\right) & =\lambda_{1} \sum_{i=1}^{n} \frac{\phi\left(\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|\right)}{\lambda_{1}} \\
& \leq \lambda_{1} \sum_{i=1}^{n} V_{\Lambda}\left(f, \phi,\left[x_{i-1}, x_{i}\right]\right) \\
& \leq \lambda_{1} C V_{\Lambda}(f, \phi,[a, b])
\end{aligned}
$$

which shows that $f \in \phi B V[a, b]$.
Remark 3. $\phi(x)=x^{p}(p \geq 1)$ in this proposition will give an analogous result for $\Lambda B V^{(p)}$.

To prove Theorem 2.3 and Theorem 2.4, we need the following lemma.
Lemma 2.7. For any $n \in \mathbb{N},|\hat{f}(n)| \leq \omega_{p}(1 / n ; f)$, where $\omega_{p}(\delta ; f)(\delta>0, p \geq 1)$ denotes the integral modulus of continuity of order pof f given by

$$
\omega_{p}(\delta ; f)=\sup _{|h| \leq \delta}\left(\int_{0}^{1}|f(x+h)-f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

Title Page
Contents

Page 10 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. The inequality [1, Theorem IV, p. 382] $|\hat{f}(n)| \leq \omega_{1}(1 / n ; f)$ and the fact that $\omega_{1}(1 / n ; f) \leq \omega_{p}(1 / n ; f)$ for $p \geq 1$ immediately proves the lemma.
Proof of Theorem 2.3. For any $n \in \mathbb{N}$, put $\theta_{n}=\sum_{j=1}^{n} 1 / \lambda_{j}$. Let $f \in \Lambda B V^{(p)}[0,1]$. For $0<h \leq 1 / n$, put $k=[1 / h]$. Then for a given $x \in \mathbb{R}$, all the points $x+j h, j=$ $0,1, \ldots, k$ lie in the interval $[x, x+1]$ of length 1 and

$$
\int_{0}^{1}|f(x)-f(x+h)|^{p} d x=\int_{0}^{1}\left|f_{j}(x)\right|^{p} d x, \quad j=1,2, \ldots, k,
$$

where $f_{j}(x)=f(x+(j-1) h)-f(x+j h)$, for all $j=1,2, \ldots, k$. Since the left hand side of this equation is independent of j, multiplying both sides by $1 /\left(\lambda_{j} \theta_{k}\right)$ and summing over $j=1,2, \ldots, k$, we get

$$
\begin{aligned}
\int_{0}^{1}|f(x)-f(x+h)|^{p} d x & \leq\left(\frac{1}{\theta_{k}}\right) \int_{0}^{1} \sum_{j=1}^{k}\left(\frac{\left|f_{j}(x)\right|^{p}}{\lambda_{j}}\right) d x \\
& \leq \frac{\left(V_{\Lambda}(f, p,[0,1])\right)^{p}}{\theta_{k}} \\
& \leq \frac{\left(V_{\Lambda}(f, p,[0,1])\right)^{p}}{\theta_{n}}
\end{aligned}
$$

because $\left\{\lambda_{j}\right\}$ is non-decreasing and $0<h \leq 1 / n$. The case $-1 / n \leq h<0$ is similar and we get using Lemma 2.7,

$$
|\hat{f}(n)|^{p} \leq\left(\omega_{p}(1 / n ; f)\right)^{p} \leq \frac{\left(V_{\Lambda}(f, p,[0,1])\right)^{p}}{\theta_{n}}
$$

This proves Theorem 2.3.

Walsh Fourier Coefficients
B.L. Ghodadra and
J.R. Patadia
vol. 9, iss. 2, art. 44, 2008

Title Page
Contents

Page 11 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof of Theorem 2.4. Let $f \in \phi \Lambda B V[0,1]$. Then for h, k and $f_{j}(x)$ as in the proof of Theorem 2.3 and for $c>0$ by Jensen's inequality,

$$
\begin{aligned}
\left.\phi\left(c \int_{0}^{1}|f(x)-f(x+h)|\right) d x\right) & \leq \int_{0}^{1} \phi(c|f(x)-f(x+h)|) d x \\
& =\int_{0}^{1} \phi\left(c\left|f_{j}(x)\right|\right) d x, \quad j=1,2, \ldots, k
\end{aligned}
$$

Multiplying both sides by $1 /\left(\lambda_{j} \theta_{k}\right)$ and summing over $j=1,2, \ldots, k$, we get

$$
\begin{aligned}
\left.\phi\left(c \int_{0}^{1}|f(x)-f(x+h)|\right) d x\right) & \leq\left(\frac{1}{\theta_{k}}\right) \int_{0}^{1} \sum_{j=1}^{k}\left(\frac{\phi\left(c\left|f_{j}(x)\right|\right)}{\lambda_{j}}\right) d x \\
& \leq \frac{V_{\Lambda}(c f, \phi,[0,1])}{\theta_{k}} \\
& \leq \frac{V_{\Lambda}(c f, \phi,[0,1])}{\theta_{n}}
\end{aligned}
$$

Since ϕ is convex and $\phi(0)=0, \phi(\alpha x) \leq \alpha \phi(x)$ for $0<\alpha<1$. So we may choose c sufficiently small so that $V_{\Lambda}(c f, \phi,[0,1]) \leq 1$. But then we have

$$
\left.\int_{0}^{1}|f(x)-f(x+h)|\right) d x \leq \frac{1}{c} \phi^{-1}\left(\frac{1}{\theta_{n}}\right) .
$$

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
which proves Theorem 2.4.

$$
|\hat{f}(n)| \leq \omega_{1}(1 / n ; f) \leq \frac{1}{c} \phi^{-1}\left(\frac{1}{\theta_{n}}\right)
$$

Proof of Theorem 2.5. It is known [3] that if $\Gamma B V$ contains $\Lambda B V$ properly with $\Gamma=$ $\left\{\gamma_{n}\right\}$ then $\theta_{n} \neq O\left(\rho_{n}\right)$, where $\rho_{n}=\sum_{j=1}^{n} \frac{1}{\gamma_{j}}$ for each n. Also, if $c_{0}=0, c_{n+1}=1$ and $c_{1}<c_{2}<\cdots<c_{n}$ denote all the n points of $(0,1)$ where the function φ_{n} changes its sign in $(0,1), n_{0} \in \mathbb{N}$ is such that $\rho_{n} \geq \frac{1}{2}$ for all $n \geq n_{0}$ and $E=\{n \in$ $\mathbb{N}: n \geq n_{0}$ is even $\}$, then for each $n \in E$, for the function

$$
f_{n}=\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{4 \rho_{n}} \chi_{\left[c_{k-1}, c_{k}\right)}
$$

extended 1-periodically on \mathbb{R},

$$
V_{\Gamma}\left(f_{n},[0,1]\right)=\sum_{k=1}^{n+1} \frac{\left|f_{n}\left(c_{k}\right)-f_{n}\left(c_{k-1}\right)\right|}{\gamma_{k}}=\sum_{k=1}^{n} \frac{1}{\gamma_{k}} \cdot \frac{1}{2 \rho_{n}}=\frac{1}{2}
$$

because

$$
f_{n}\left(c_{n+1}\right)=f_{n}(1)=f_{n}(0)=\frac{1}{4 \rho_{n}}=f_{n}\left(c_{n}\right)
$$

as $\varphi_{n} \equiv 1$ on $\left[c_{0}, c_{1}\right)$. Hence $\left\|f_{n}\right\|=\frac{1}{4 \rho_{n}}+\frac{1}{2} \leq 1$ for each $n \in E$ in the Banach space $\Gamma B V[0,1]$ with $\|f\|=|f(0)|+V_{\Gamma}(f,[0,1])$. Observe that for $f \in \Gamma B V[0,1]$

$$
\|f\|_{1} \leq \int_{0}^{1}\left(\frac{|f(x)-f(0)|}{\gamma_{1}} \gamma_{1}+|f(0)|\right) d x \leq C\|f\|, \quad C=\max \left\{1, \gamma_{1}\right\}
$$

and hence, for each $n \in \mathbb{N}$ the linear map $T_{n}: \Gamma B V[0,1] \rightarrow \mathbb{R}$ defined by $T_{n}(f)=$ $\theta_{n} \hat{f}(n)$ is bounded as

$$
\left|T_{n}(f)\right|=\theta_{n}|\hat{f}(n)| \leq \theta_{n} \mid\|f\|_{1} \leq \theta_{n} C\|f\|, \quad \forall f \in \Gamma B V[0,1] .
$$

Walsh Fourier Coefficients B.L. Ghodadra and
J.R. Patadia
vol. 9, iss. 2, art. 44, 2008

Title Page
Contents

Page 13 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Next, for each $n \in E$ since $f_{n} \cdot \varphi_{n}=\frac{1}{4 \rho_{n}}$ on $[0,1)$, we see that

$$
T_{n}\left(f_{n}\right)=\theta_{n} \hat{f}_{n}(n)=\theta_{n} \int_{0}^{1} f_{n}(x) \varphi_{n}(x) d x=\frac{1}{4}\left(\frac{\theta_{n}}{\rho_{n}}\right) \neq O(1)
$$

and hence

$$
\sup \left\{\left\|T_{n}\right\|: n \in \mathbb{N}\right\} \geq \sup \left\{\left\|T_{n}\right\|: n \in E\right\} \geq \sup \left\{\left|T_{n}\left(f_{n}\right)\right|: n \in E\right\}=\infty
$$

Therefore, an application of the Banach-Steinhaus theorem gives an $f \in \Gamma B V[0,1]$ such that $\sup \left\{\left|T_{n}(f)\right|: n \in \mathbb{N}\right\}=\infty$. It follows that $\theta_{n} \hat{f}(n)=T_{n}(f) \neq O(1)$ and hence the theorem is proved.

Walsh Fourier Coefficients B.L. Ghodadra and J.R. Patadia vol. 9, iss. 2, art. 44, 2008

Title Page
Contents

Page 14 of 15

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] N.J. FINE, On the Walsh functions, Trans. Amer. Math. Soc., 65 (1949), 372414.
[2] J. MUSIELAK And W. ORLICZ, On generalized variations (I), Studia Math., 18 (1959), 11-41.
[3] S. PERLMAN AND D. WATERMAN, Some remarks on functions of Λ-bounded variation, Proc. Amer. Math. Soc., 74(1) (1979), 113-118.
[4] M. SCHRAMM AND D. WATERMAN, On the magnitude of Fourier coefficients, Proc. Amer. Math. Soc., 85 (1982), 407-410.
[5] M. SHIBA, On absolute convergence of Fourier series of function of class Λ $B V^{(p)}$, Sci. Rep. Fac. Ed. Fukushima Univ., 30 (1980), 7-12.
[6] M. TAIBLESON, Fourier coefficients of functions of bounded variation, Proc. Amer. Math. Soc., 18 (1967), 766.
[7] J.L. WALSH, A closed set of normal orthogonal functions, Amer. J. Math., 55 (1923), 5-24.
[8] D. WATERMAN, On convergence of Fourier series of functions of generalized bounded variation, Studia Math., 44 (1972), 107-117.
[9] N. WIENER, The quadratic variation of a function and and its Fourier coefficients, Mass. J. Math., 3 (1924), 72-94.
J

Title Page
Contents

Page 15 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

