ON A FAMILY OF LINEAR AND POSITIVE OPERATORS IN WEIGHTED SPACES

AYŞEGÜL ERENÇÝN AND FATMA TAŞDELEN
Abant Ýzzet Baysal University
Faculty of Arts and Sciences
Department of Mathematics
14280 , BOLU, TURKEY
erencina@hotmail.com
Ankara University
Faculty of Science
Department of Mathematics
06100 Ankara, Turkey
tasdelen@science.ankara.edu.tr

Received 06 March, 2007; accepted 30 May, 2007
Communicated by T.M. Mills

Abstract

In this paper, we present a modification of the sequence of linear operators proposed by Lupaş [6] and studied by Agratini [1]. Some convergence properties of these operators are given in weighted spaces of continuous functions on positive semi-axis by using the same approach as in [4] and [5].

Key words and phrases: Linear positive operators, Weighted approximation, Rate of convergence.
2000 Mathematics Subject Classification. 41A25, 41A36.

1. Introduction

Lupaş in [6] studied the identity

$$
\frac{1}{(1-a)^{\alpha}}=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}}{k!} a^{k}, \quad|a|<1
$$

and letting $\alpha=n x$ and $x \geq 0$ considered the linear positive operators

$$
L_{n}^{*}(f ; x)=(1-a)^{n x} \sum_{k=0}^{\infty} \frac{(n x)_{k}}{k!} a^{k} f\left(\frac{k}{n}\right)
$$

with $f:[0, \infty) \rightarrow \mathbb{R}$. Imposing the condition $L_{n}(1 ; x)=1$ he found that $a=1 / 2$. Therefore Lupaş proposed the positive linear operators

$$
\begin{equation*}
L_{n}^{*}(f ; x)=2^{-n x} \sum_{k=0}^{\infty} \frac{(n x)_{k}}{2^{k} k!} f\left(\frac{k}{n}\right) \tag{1.1}
\end{equation*}
$$

Agratini [1] gave some quantitative estimates for the rate of convergence on the finite interval $[0, b]$ for any $b>0$ and also established a Voronovskaja-type formula for these operators.

We consider the generalization of the operators (1.1)

$$
\begin{equation*}
L_{n}(f ; x)=2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!} f\left(\frac{k}{b_{n}}\right), \quad x \in \mathbb{R}_{0}, n \in \mathbb{N}, \tag{1.2}
\end{equation*}
$$

where $\mathbb{R}_{0}=[0, \infty), \mathbb{N}:=\{1,2, \ldots\}$ and $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are increasing and unbounded sequences of positive numbers such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=0, \quad \frac{a_{n}}{b_{n}}=1+O\left(\frac{1}{b_{n}}\right) . \tag{1.3}
\end{equation*}
$$

In this work, we study the convergence properties of these operators in the weighted spaces of continuous functions on positive semi-axis with the help of a weighted Korovkin type theorem, proved by Gadzhiev in [2, 3]. For this purpose, we now recall the results of [2, 3].
B_{ρ} : The set of all functions f defined on the real axis satisfying the condition

$$
|f(x)| \leq M_{f} \rho(x),
$$

where M_{f} is a constant depending only on f and $\rho(x)=1+x^{2},-\infty<x<\infty$.
The space B_{ρ} is normed by

$$
\|f\|_{\rho}=\sup _{x \in \mathbb{R}} \frac{|f(x)|}{\rho(x)}, \quad f \in B_{\rho} .
$$

C_{ρ} : The subspace of all continuous functions belonging to B_{ρ}.
C_{ρ}^{*} : The subspace of all functions $f \in C_{\rho}$ for which

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{\rho(x)}=k
$$

where k is a constant depending on f.

Theorem $\mathbf{A}([2,3])$. Let $\left\{T_{n}\right\}$ be the sequence of linear positive operators which are mappings from C_{ρ} into B_{ρ} satisfying the conditions

$$
\lim _{n \rightarrow \infty}\left\|T_{n}\left(t^{\nu}, x\right)-x^{\nu}\right\|_{\rho}=0 \quad \nu=0,1,2
$$

Then, for any function $f \in C_{\rho}^{*}$,

$$
\lim _{n \rightarrow \infty}\left\|T_{n} f-f\right\|_{\rho}=0
$$

and there exists a function $f^{*} \in C_{\rho} \backslash C_{\rho}^{*}$ such that

$$
\lim _{n \rightarrow \infty}\left\|T_{n} f^{*}-f^{*}\right\|_{\rho} \geq 1
$$

2. AUXILIARY ReSUlTS

In this section we shall give some properties of the operators (1.2), which we shall use in the proofs of the main theorems.

Lemma 2.1. If the operators L_{n} are defined by (1.2), then for all $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$ the following identities are valid

$$
\begin{equation*}
L_{n}\left(t^{3} ; x\right)=\frac{a_{n}^{3}}{b_{n}^{3}} x^{3}+6 \frac{a_{n}^{2}}{b_{n}^{3}} x^{2}+6 \frac{a_{n}}{b_{n}^{3}} x \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}\left(t^{4} ; x\right)=\frac{a_{n}^{4}}{b_{n}^{4}} x^{4}+12 \frac{a_{n}^{3}}{b_{n}^{4}} x^{3}+36 \frac{a_{n}^{2}}{b_{n}^{4}} x^{2}+26 \frac{a_{n}}{b_{n}^{4}} x \tag{2.5}
\end{equation*}
$$

Proof. It is clear that (2.1) holds.
By using the recurrence relation $(\alpha)_{k}=\alpha(\alpha+1)_{k-1}, k \geq 1$ for the function $f(t)=t$ we have

$$
\begin{aligned}
L_{n}(t ; x) & =\frac{1}{b_{n}} 2^{-a_{n} x} \sum_{k=1}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k}(k-1)!} \\
& =\frac{a_{n}}{b_{n}} x 2^{-a_{n} x} \sum_{k=1}^{\infty} \frac{\left(a_{n} x+1\right)_{k-1}}{2^{k}(k-1)!} \\
& =\frac{a_{n}}{b_{n}} x 2^{-\left(a_{n} x+1\right)} \sum_{k=0}^{\infty} \frac{\left(a_{n} x+1\right)_{k}}{2^{k} k!} \\
& =\frac{a_{n}}{b_{n}} x
\end{aligned}
$$

In a similar way to that of 2.2 , we can prove 2.3$)-(2.5)$.
Lemma 2.2. If the operators L_{n} are defined by (1.2), then for all $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$

$$
\begin{align*}
& L_{n}\left((t-x)^{4} ; x\right)=\left(\frac{a_{n}}{b_{n}}-1\right)^{4} x^{4}+\left(12 \frac{a_{n}^{3}}{b_{n}^{4}}-24 \frac{a_{n}^{2}}{b_{n}^{3}}+12 \frac{a_{n}}{b_{n}^{2}}\right) x^{3} \tag{2.6}\\
&+\left(36 \frac{a_{n}^{2}}{b_{n}^{4}}-24 \frac{a_{n}}{b_{n}^{3}}\right) x^{2}+26 \frac{a_{n}}{b_{n}^{4}} x
\end{align*}
$$

Lemma 2.3. If the operators L_{n} are defined by (1.2), then for all $x \in \mathbb{R}_{0}$ and sufficiently large n

$$
\begin{equation*}
L_{n}\left((t-x)^{4} ; x\right)=O\left(\frac{1}{b_{n}}\right)\left(x^{4}+x^{3}+x^{2}+x\right) \tag{2.7}
\end{equation*}
$$

3. Main Result

In this part, we firstly prove the following theorem related to the weighted approximation of the operators in (1.2).
Theorem 3.1. Let L_{n} be the sequence of linear positive operators (1.2) acting from C_{ρ} to B_{ρ}. Then for each function $f \in C_{\rho}^{*}$,

$$
\lim _{n \rightarrow \infty}\left\|L_{n}(f ; x)-f(x)\right\|_{\rho}=0
$$

Proof. It is sufficient to verify the conditions of Theorem A which are

$$
\lim _{n \rightarrow \infty}\left\|L_{n}\left(t^{\nu}, x\right)-x^{\nu}\right\|_{\rho}=0 \quad \nu=0,1,2
$$

From (2.1) clearly we have

$$
\lim _{n \rightarrow \infty}\left\|L_{n}(1, x)-1\right\|_{\rho}=0
$$

By using (1.3) and (2.2) we can write

$$
\begin{aligned}
\left\|L_{n}(t, x)-x\right\|_{\rho} & =\sup _{x \in \mathbb{R}_{0}} \frac{\left|L_{n}(t, x)-x\right|}{1+x^{2}} \\
& =\left|\frac{a_{n}}{b_{n}}-1\right| \sup _{x \in \mathbb{R}_{0}} \frac{x}{1+x^{2}} \\
& =O\left(\frac{1}{b_{n}}\right) \sup _{x \in \mathbb{R}_{0}} \frac{x}{1+x^{2}} .
\end{aligned}
$$

This implies that

$$
\lim _{n \rightarrow \infty}\left\|L_{n}(t ; x)-x\right\|_{\rho}=0
$$

Similarly, by the equalities (1.3) and (2.3) we find that

$$
\begin{align*}
\left\|L_{n}\left(t^{2}, x\right)-x^{2}\right\|_{\rho} & =\sup _{x \in \mathbb{R}_{0}} \frac{\left|L_{n}\left(t^{2}, x\right)-x^{2}\right|}{1+x^{2}} \tag{3.1}\\
& \leq\left|\frac{a_{n^{2}}}{b_{n}^{2}}-1\right| \sup _{x \in \mathbb{R}_{0}} \frac{x^{2}}{1+x^{2}}+2 \frac{a_{n}}{b_{n}^{2}} \sup _{x \in \mathbb{R}_{0}} \frac{x}{1+x^{2}}
\end{align*}
$$

which gives

$$
\lim _{n \rightarrow \infty}\left\|L_{n}\left(t^{2} ; x\right)-x^{2}\right\|_{\rho}=0
$$

Thus all conditions of Theorem A hold and the proof is completed.
Now, we find the rate of convergence for the operators (1.2) in the weighted spaces by means of the weighted modulus of continuity $\Omega(f, \delta)$ which tends to zero as $\delta \rightarrow 0$ on an infinite interval, defined in [5]. We now recall the definition of $\Omega(f, \delta)$.

Let $f \in C_{\rho}^{*}$. The weighted modulus of continuity of f is denoted by

$$
\Omega(f, \delta)=\sup _{|h| \leq \delta, x \in \mathbb{R}_{0}} \frac{|f(x+h)-f(x)|}{\left(1+h^{2}\right)\left(1+x^{2}\right)}
$$

$\Omega(f, \delta)$ has the following properties [4, 5].
Let $f \in C_{\rho}^{*}$, then
(i) $\Omega(f, \delta)$ is a monotonically increasing function with respect to $\delta, \delta \geq 0$.
(ii) For every $f \in C_{\rho}^{*}, \lim _{\delta \rightarrow 0} \Omega(f, \delta)=0$.
(iii) For each positive value of λ

$$
\Omega(f, \lambda \delta) \leq 2(1+\lambda)\left(1+\delta^{2}\right) \Omega(f, \delta)
$$

(iv) For every $f \in C_{\rho}^{*}$ and $x, t \in \mathbb{R}_{0}$:

$$
|f(t)-f(x)| \leq 2\left(1+\frac{|t-x|}{\delta}\right)\left(1+\delta^{2}\right) \Omega(f, \delta)\left(1+x^{2}\right)\left(1+(t-x)^{2}\right)
$$

Theorem 3.2. Let $f \in C_{\rho}^{*}$. Then the inequality

$$
\sup _{x \in \mathbb{R}_{0}} \frac{\left|L_{n}(f, x)-f(x)\right|}{\left(1+x^{2}\right)^{3}} \leq M \Omega\left(f, b_{n}^{-1 / 4}\right)
$$

is valid for sufficiently large n, where M is a constant independent of a_{n} and b_{n}.
Proof. By the definition of L_{n} and the property (iv), we get

$$
\left|L_{n}(f, x)-f(x)\right| \leq 2\left(1+\delta_{n}^{2}\right) \Omega\left(f, \delta_{n}\right)\left(1+x^{2}\right) 2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!} A_{1}(x)
$$

where

$$
A_{1}(x)=\left(1+\frac{\left|\frac{k}{b_{n}}-x\right|}{\delta_{n}}\right)\left(1+\left(\frac{k}{b_{n}}-x\right)^{2}\right)
$$

Then for all $x, \frac{k}{b_{n}} \in \mathbb{R}_{0}$, by using the following inequality (see[5, p. 578])

$$
A_{1}(x) \leq 2\left(1+\delta_{n}^{2}\right)\left(1+\frac{\left(\frac{k}{b_{n}}-x\right)^{4}}{\delta_{n}^{4}}\right)
$$

we can write

$$
\begin{aligned}
\left|L_{n}(f, x)-f(x)\right| & \leq 16 \Omega\left(f, \delta_{n}\right)\left(1+x^{2}\right)\left(1+\frac{1}{\delta_{n}^{4}} 2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!}\left(\frac{k}{b_{n}}-x\right)^{4}\right) \\
& =16 \Omega\left(f, \delta_{n}\right)\left(1+x^{2}\right)\left(1+\frac{1}{\delta_{n}^{4}} L_{n}\left((t-x)^{4} ; x\right)\right)
\end{aligned}
$$

Thus by means of (2.7), we have

$$
\left|L_{n}(f, x)-f(x)\right| \leq 16 \Omega\left(f, \delta_{n}\right)\left(1+x^{2}\right)\left[1+\frac{1}{\delta_{n}^{4}} O\left(\frac{1}{b_{n}}\right)\left(x^{4}+x^{3}+x^{2}+x\right)\right] .
$$

If we choose $\delta_{n}=b_{n}^{-1 / 4}$ for sufficiently large n, then we find

$$
\sup _{x \in \mathbb{R}_{0}} \frac{\left|L_{n}(f, x)-f(x)\right|}{\left(1+x^{2}\right)^{3}} \leq M \Omega\left(f, b_{n}^{-1 / 4}\right),
$$

which is the desired result.

References

[1] O. AGRATINI, On a sequence of linear positive operators, Facta Universitatis (Nis), Ser. Math. Inform., 14 (1999), 41-48.
[2] A.D. GADZHIEV, The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P.P. Korovkin, Soviet Math. Dokl., 15(5) (1974), 1433-1436.
[3] A.D. GADZHIEV, On P.P. Korovkin type theorems, Math. Zametki, 20(5) (1976), $781-786$ (in Russian), Math. Notes, 20(5-6) (1976), 968-998 (in English).
[4] N. ÝSPÝR, On modified Baskakov operators on weighted spaces, Turkish J. Math., 25 (2001), 355365.
[5] N. ÝSPÝR AND Ç. ATAKUT, Approximation by modified Szasz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci.(Math. Sci), 112(4) (2002), 571-578.
[6] A. LUPAŞ, The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Müller et al.,eds.), Akademie Verlag, Berlin (1995), 201-209.

