MEROMORPHIC FUNCTION THAT SHARES ONE SMALL FUNCTION WITH ITS DERIVATIVE

QINGCAI ZHANG

School of Information
Renmin University of China
Beijing 100872, P.R. China
qingcaizhang@yahoo.com.cn

Received 14 March, 2005; accepted 03 September, 2005
 Communicated by H.M. Srivastava

Abstract

In this paper we study the problem of meromorphic function sharing one small function with its derivative and improve the results of K.-W. Yu and I. Lahiri and answer the open questions posed by K.-W. Yu.

Key words and phrases: Meromorphic function; Shared value; Small function.
2000 Mathematics Subject Classification 30D35.

1. Introduction and Main Results

By a meromorphic function we shall always mean a function that is meromorphic in the open complex plane \mathbb{C}. It is assumed that the reader is familiar with the notations of Nevanlinna theory such as $T(r, f), m(r, f), N(r, f), \bar{N}(r, f), S(r, f)$ and so on, that can be found, for instance, in [2], [5].
Let f and g be two non-constant meromorphic functions, $a \in \mathbb{C} \cup\{\infty\}$, we say that f and g share the value $a \mathbf{I M}$ (ignoring multiplicities) if $f-a$ and $g-a$ have the same zeros, they share the value $a \mathbf{C M}$ (counting multiplicities) if $f-a$ and $g-a$ have the same zeros with the same multiplicities. When $a=\infty$ the zeros of $f-a$ means the poles of f (see [5]).
Let l be a non-negative integer or infinite. For any $a \in \mathbb{C} \cup\{\infty\}$, we denote by $E_{l}(a, f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq l$ and $l+1$ times if $m>l$. If $E_{l}(a, f)=E_{l}(a, g)$, we say f and g share the value a with weight l (see [3], [4]).
f and g share a value a with weight l means that z_{0} is a zero of $f-a$ with multiplicity $m(\leq l)$ if and only if it is a zero of $g-a$ with the multiplicity $m(\leq l)$, and z_{0} is a zero of $f-a$ with multiplicity $m(>l)$ if and only if it is a zero of $g-a$ with the multiplicity $n(>l)$, where m is not necessarily equal to n.

[^0]We write f and g share (a, l) to mean that f and g share the value a with weight l. Clearly, if f and g share (a, l), then f and g share (a, p) for all integers $p, 0 \leq p \leq l$. Also we note that f and g share a value a IM or CM if and only if f and g share $(a, 0)$ or (a, ∞) respectively (see [3], [4]).

A function $a(z)$ is said to be a small function of f if $a(z)$ is a meromorphic function satisfying $T(r, a)=S(r, f)$, i.e. $T(r, a)=o(T(r, f))$ as $r \rightarrow+\infty$ possibly outside a set of finite linear measure. Similarly, we define that f and g share a small function $a \mathrm{IM}$ or CM or with weight l by $f-a$ and $g-a$ sharing the value 0 IM or CM or with weight l respectively.

Brück [1] first considered the uniqueness problems of an entire function sharing one value with its derivative and proved the following result.

Theorem A. Let f be an entire function which is not constant. If f and f^{\prime} share the value 1 $C M$ and if $N\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$, then $\frac{f^{\prime}-1}{f-1} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.

Brück [1] further posed the following conjecture.
Conjecture 1.1. Let f be an entire function which is not constant, $\rho_{1}(f)$ be the first iterated order of f. If $\rho_{1}(f)<+\infty$ and $\rho_{1}(f)$ is not a positive integer, and if f and f^{\prime} share one value $a C M$, then $\frac{f^{\prime}-a}{f-a} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.

Yang [7] proved that the conjecture is true if f is an entire function of finite order. Zhang [9] extended Theorem A to meromorphic functions. Yu [8] recently considered the problem of an entire or meromorphic function sharing one small function with its derivative and proved the following two theorems.

Theorem B ([8]). Let f be a non-constant entire function and $a \equiv a(z)$ be a meromorphic function such that $a \not \equiv 0, \infty$ and $T(r, a)=o\left(T(r, f)\right.$ as $r \rightarrow+\infty$. If $f-a$ and $f^{(k)}-a$ share the value $0 C M$ and $\delta(0, f)>\frac{3}{4}$, then $f \equiv f^{(k)}$.

Theorem C ([8]). Let f be a non-constant, non-entire meromorphic function and $a \equiv a(z)$ be a meromorphic function such that $a \not \equiv 0, \infty$ and $T(r, a)=o(T(r, f)$ as $r \rightarrow+\infty$. If
(i) f and a have no common poles,
(ii) $f-a$ and $f^{(k)}-a$ share the value $0 C M$,
(iii) $4 \delta(0, f)+2 \Theta(\infty, f)>19+2 k$,
then $f \equiv f^{(k)}$, where k is a positive integer.
In the same paper $\mathrm{Yu}[8]$ further posed the following open questions:
(1) Can a CM shared be replaced by an IM shared value?
(2) Can the condition $\delta(0, f)>\frac{3}{4}$ of Theorem be further relaxed?
(3) Can the condition (iii) of Theorem C be further relaxed?
(4) Can, in general, the condition (i) of TheoremCbe dropped?

Let p be a positive integer and $a \in \mathbb{C} \cup\{\infty\}$. We use $N_{p}\left(r, \frac{1}{f}\right)$ to denote the counting function of the zeros of $f-a$ (counted with proper multiplicities) whose multiplicities are not greater than $p, N_{(p+1}\left(r, \frac{1}{f}\right)$ to denote the counting function of the zeros of $f-a$ whose multiplicities are not less than $p+1$. And $\bar{N}_{p)}\left(r, \frac{1}{f}\right)$ and $\bar{N}_{(p+1}\left(r, \frac{1}{f}\right)$ denote their corresponding reduced counting functions (ignoring multiplicities) respectively. We also use $N_{p}\left(r, \frac{1}{f}\right)$ to denote the counting function of the zeros of $f-a$ where a zero of multiplicity m is counted m
times if $m \leq p$ and p times if $m>p$. Clearly $N_{1}\left(r, \frac{1}{f}\right)=\bar{N}\left(r, \frac{1}{f}\right)$. Define

$$
\delta_{p}(a, f)=1-\limsup _{r \rightarrow+\infty} \frac{N_{p}\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
$$

Obviously $\delta_{p}(a, f) \geq \delta(a, f)$.
Lahiri [4] improved the results of Zhang [9] with weighted shared value and obtained the following two theorems

Theorem \mathbf{D} ([4]). Let f be a non-constant meromorphic function and k be a positive integer. If f and $f^{(k)}$ share $(1,2)$ and

$$
2 \bar{N}(r, f)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+N_{2}\left(r, \frac{1}{f}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)
$$

for $r \in I$, where $0<\lambda<1$ and I is a set of infinite linear measure, then $\frac{f^{(k)}-1}{f-1} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.

Theorem \mathbf{E} ([4]). Let f be a non-constant meromorphic function and k be a positive integer. If f and $f^{(k)}$ share $(1,1)$ and

$$
2 \bar{N}(r, f)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+2 \bar{N}\left(r, \frac{1}{f}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)
$$

for $r \in I$, where $0<\lambda<1$ and I is a set of infinite linear measure, then $\frac{f^{(k)}-1}{f-1} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.

In the same paper Lahiri [4] also obtained the following result which is an improvement of Theorem C

Theorem \mathbf{F} ([4]). Let f be a non-constant meromorphic function and k be a positive integer. Also, let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic function such that $T(r, a)=S(r, f)$. If
(i) a has no zero (pole) which is also a zero (pole) of f or $f^{(k)}$ with the same multiplicity.
(ii) $f-a$ and $f^{(k)}-a$ share $(0,2) C M$,
(iii) $2 \delta_{2+k}(0, f)+(4+k) \Theta(\infty, f)>5+k$,
then $f \equiv f^{(k)}$.
In this paper, we still study the problem of a meromorphic or entire function sharing one small function with its derivative and obtain the following two results which are the improvement and complement of the results of Yu [8] and Lahiri [4] and answer the four open questions of Yu in [8].

Theorem 1.2. Let f be a non-constant meromorphic function and $k(\geq 1), l(\geq 0)$ be integers. Also, let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic function such that $T(r, a)=S(r, f)$. Suppose that $f-a$ and $f^{(k)}-a$ share $(0, l)$. If $l \geq 2$ and

$$
\begin{equation*}
2 \bar{N}(r, f)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+N_{2}\left(r, \frac{1}{(f / a)^{\prime}}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right), \tag{1.1}
\end{equation*}
$$

or $l=1$ and

$$
\begin{equation*}
2 \bar{N}(r, f)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+2 \bar{N}\left(r, \frac{1}{(f / a)^{\prime}}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right) \tag{1.2}
\end{equation*}
$$

or $l=0$, i.e. $f-a$ and $f^{(k)}-a$ share the value 0 IM and

$$
\begin{equation*}
4 \bar{N}(r, f)+3 N_{2}\left(r, \frac{1}{f^{(k)}}\right)+2 \bar{N}\left(r, \frac{1}{(f / a)^{\prime}}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right) \tag{1.3}
\end{equation*}
$$

for $r \in I$, where $0<\lambda<1$ and I is a set of infinite linear measure, then $\frac{f^{(k)}-a}{f-a} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.
Theorem 1.3. Let f be a non-constant meromorphic function and $k(\geq 1), l(\geq 0)$ be integers. Also, let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic function such that $T(r, a)=S(r, f)$. Suppose that $f-a$ and $f^{(k)}-a$ share $(0, l)$. If $l \geq 2$ and

$$
\begin{equation*}
(3+k) \Theta(\infty, f)+2 \delta_{2+k}(0, f)>k+4 \tag{1.4}
\end{equation*}
$$

or $l=1$ and

$$
\begin{equation*}
(4+k) \Theta(\infty, f)+3 \delta_{2+k}(0, f)>k+6 \tag{1.5}
\end{equation*}
$$

or $l=0$, i.e. $f-a$ and $f^{(k)}-a$ share the value $0 I M$ and

$$
\begin{equation*}
(6+2 k) \Theta(\infty, f)+5 \delta_{2+k}(0, f)>2 k+10 \tag{1.6}
\end{equation*}
$$

then $f \equiv f^{(k)}$.
Clearly Theorem 1.2 extends the results of Lahiri (Theorem D and E) to small functions. Theorem 1.3 gives the improvements of Theorem C and F, which removes the restrictions on the zeros (poles) of $a(z)$ and $f(z)$ and relaxes other conditions, which also includes a result of meromorphic function sharing one value or small function IM with its derivative, so it answers the four open questions of Yu [8].

From Theorem 1.2 we have the following corollary which is the improvement of Theorem A
Corollary 1.4. Let f be an entire function which is not constant. If f and f^{\prime} share the value 1 IM and if $N\left(r, \frac{1}{f}\right)=S(r, f)$, then $\frac{f^{\prime}-1}{f-1} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.

From Theorem 1.3 we have
Corollary 1.5. Let f be a non-constant entire function and $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic function such that $T(r, a)=S(r, f)$. If $f-a$ and $f^{(k)}-a$ share the value $0 C M$ and $\delta(0, f)>\frac{1}{2}$, or if $f-a$ and $f^{(k)}-a$ share the value 0 IM and $\delta(0, f)>\frac{4}{5}$, then $f \equiv f^{(k)}$.

Clearly Corollary 1.5 is an improvement and complement of Theorem B

2. Main Lemmas

Lemma 2.1 (see [4]). Let f be a non-constant meromorphic function, k be a positive integer, then

$$
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

This lemma can be obtained immediately from the proof of Lemma 2.3 in [4] which is the special case $p=2$.
Lemma 2.2 (see [5]). Let f be a non-constant meromorphic function, n be a positive integer. $P(f)=a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f$ where a_{i} is a meromorphic function such that $T\left(r, a_{i}\right)=$ $S(r, f)(i=1,2, \ldots, n)$. Then

$$
T(r, P(f))=n T(r, f)+S(r, f)
$$

3. Proof of Theorem 1.2

Let $F=\frac{f}{a}, G=\frac{f^{(k)}}{a}$, then $F-1=\frac{f-a}{a}, G-1=\frac{f^{(k)}-a}{a}$. Since $f-a$ and $f^{(k)}-a$ share $(0, l), F$ and G share $(1, l)$ except the zeros and poles of $a(z)$. Define

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-2 \frac{F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-2 \frac{G^{\prime}}{G-1}\right) \tag{3.1}
\end{equation*}
$$

We have the following two cases to investigate.
Case 1. $H \equiv 0$. Integration yields

$$
\begin{equation*}
\frac{1}{F-1} \equiv C \frac{1}{G-1}+D \tag{3.2}
\end{equation*}
$$

where C and D are constants and $C \neq 0$. If there exists a pole z_{0} of f with multiplicity p which is not the pole and zero of $a(z)$, then z_{0} is the pole of F with multiplicity p and the pole of G with multiplicity $p+k$. This contradicts with (3.2). So

$$
\begin{align*}
& \bar{N}(r, f) \leq \bar{N}(r, a)+\bar{N}\left(r, \frac{1}{a}\right)=S(r, f), \tag{3.3}\\
& \bar{N}(r, F)=S(r, f), \quad \bar{N}(r, G)=S(r, f)
\end{align*}
$$

(3.2) also shows F and G share the value 1 CM . Next we prove $D=0$. We first assume that $D \neq 0$, then

$$
\begin{equation*}
\frac{1}{F-1} \equiv \frac{D\left(G-1+\frac{C}{D}\right)}{G-1} \tag{3.4}
\end{equation*}
$$

So

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{G-1+\frac{C}{D}}\right)=\bar{N}(r, F)=S(r, f) . \tag{3.5}
\end{equation*}
$$

If $\frac{C}{D} \neq 1$, by the second fundamental theorem and (3.3), 3.5$)$ and $S(r, G)=S(r, f)$, we have

$$
\begin{aligned}
T(r, G) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1+\frac{C}{D}}\right)+S(r, G) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+S(r, f) \leq T(r, G)+S(r, f) .
\end{aligned}
$$

So

$$
\begin{equation*}
T(r, G)=\bar{N}\left(r, \frac{1}{G}\right)+S(r, f) \tag{3.6}
\end{equation*}
$$

i.e.

$$
T\left(r, f^{(k)}\right)=\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
$$

this contradicts with conditions (1.1), (1.2) and (1.3) of this theorem.
If $\frac{C}{D}=1$, from 3.4 we know

$$
\frac{1}{F-1} \equiv C \frac{G}{G-1}
$$

then

$$
\left(F-1-\frac{1}{C}\right) G \equiv-\frac{1}{C}
$$

Noticing that $F=\frac{f}{a}, G=\frac{f^{(k)}}{a}$, we have

$$
\begin{equation*}
\frac{1}{f\left(f-\left(1+\frac{1}{C}\right) a\right)} \equiv-\frac{C}{a^{2}} \cdot \frac{f^{(k)}}{f} \tag{3.7}
\end{equation*}
$$

By Lemma 2.2 and (3.3) and (3.7), then

$$
\begin{align*}
2 T(r, f) & =T\left(r, f\left(f-\left(1+\frac{1}{C}\right) a\right)\right)+S(r, f) \tag{3.8}\\
& =T\left(r, \frac{1}{f\left(f-\left(1+\frac{1}{C}\right) a\right)}\right)+S(r, f) \\
& =T\left(r, \frac{f^{(k)}}{f}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) \\
& \leq T(r, f)+S(r, f) .
\end{align*}
$$

So $T(r, f)=S(r, f)$, this is impossible. Hence $D=0$, and $\frac{G-1}{F-1} \equiv C$, i.e. $\frac{f^{(k)}-a}{f-a} \equiv C$. This is just the conclusion of this theorem.

Case 2. $H \not \equiv 0$. From (3.1) it is easy to see that $m(r, H)=S(r, f)$.
Subcase 2. $1 \geq 1$. From (3.1) we have

$$
\begin{align*}
N(r, H) \leq \bar{N}(r, F)+\bar{N}_{(l+1} & \left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right) \tag{3.9}\\
& +\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+\bar{N}(r, a)+\bar{N}\left(r, \frac{1}{a}\right)
\end{align*}
$$

where $N_{0}\left(r, \frac{1}{F^{\prime}}\right)$ denotes the counting function of the zeros of F^{\prime} which are not the zeros of F and $F-1$, and $\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)$ denotes its reduced form. In the same way, we can define $N_{0}\left(r, \frac{1}{G^{\prime}}\right)$ and $\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)$. Let z_{0} be a simple zero of $F-1$ but $a\left(z_{0}\right) \neq 0, \infty$, then z_{0} is also the simple zero of $G-1$. By calculating z_{0} is the zero of H, so

$$
\begin{equation*}
N_{1)}\left(r, \frac{1}{F-1}\right) \leq N\left(r, \frac{1}{H}\right)+N(r, a)+N\left(r, \frac{1}{a}\right) \leq N(r, H)+S(r, f) \tag{3.10}
\end{equation*}
$$

Noticing that $N_{1)}\left(r, \frac{1}{G}\right)=N_{1)}\left(r, \frac{1}{F}\right)+S(r, f)$, we have

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{G-1}\right)= & N_{1)}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right) \tag{3.11}\\
\leq \bar{N}(r, F) & +\bar{N}_{(l+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right) \\
& +\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) .
\end{align*}
$$

By the second fundamental theorem and 3.11) and noting $\bar{N}(r, F)=\bar{N}(r, G)+S(r, f)$, then

$$
\begin{align*}
T(r, G) \leq & \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G) \tag{3.12}\\
\leq & 2 \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{(2}\left(r, \frac{1}{F}\right) \\
& +\bar{N}_{(l+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+S(r, f)
\end{align*}
$$

While $l \geq 2$,

$$
\begin{equation*}
\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(l+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right) \leq N_{2}\left(r, \frac{1}{F^{\prime}}\right) \tag{3.13}
\end{equation*}
$$

so

$$
T(r, G) \leq 2 \bar{N}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}\left(r, \frac{1}{F^{\prime}}\right)+S(r, f)
$$

i.e.

$$
T\left(r, f^{(k)}\right) \leq 2 \bar{N}(r, f)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+N_{2}\left(r, \frac{1}{(f / a)^{\prime}}\right)+S(r, f) .
$$

This contradicts with (1.1).
While $l=1$, (3.13) turns into

$$
\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(l+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right) \leq 2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right) .
$$

Similarly as above, we have

$$
T\left(r, f^{(k)}\right) \leq 2 \bar{N}(r, f)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+2 \bar{N}\left(r, \frac{1}{(f / a)^{\prime}}\right)+S(r, f)
$$

This contradicts with (1.2).
Subcase 2.2 $l=0$. In this case, F and G share 1 IM except the zeros and poles of $a(z)$.
Let z_{0} be the zero of $F-1$ with multiplicity p and the zero of $G-1$ with multiplicity q. We denote by $N_{E}^{1)}\left(r, \frac{1}{F}\right)$ the counting function of the zeros of $F-1$ where $p=q=1$; by $\bar{N}_{E}^{(2}\left(r, \frac{1}{F}\right)$ the counting function of the zeros of $F-1$ where $p=q \geq 2$; by $\bar{N}_{L}\left(r, \frac{1}{F}\right)$ the counting function of the zeros of $F-1$ where $p>q \geq 1$, each point in these counting functions is counted only once. In the same way, we can define $N_{E}^{1)}\left(r, \frac{1}{G}\right), \bar{N}_{E}^{(2}\left(r, \frac{1}{G}\right)$ and $\bar{N}_{L}\left(r, \frac{1}{G}\right)$. It is easy to see that

$$
\begin{gather*}
N_{E}^{1)}\left(r, \frac{1}{F-1}\right)=N_{E}^{1)}\left(r, \frac{1}{G-1}\right)+S(r, f), \\
\bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right)=\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right)+S(r, f), \\
\bar{N}\left(r, \frac{1}{F-1}\right)= \tag{3.14}\\
=\bar{N}\left(r, \frac{1}{G-1}\right)+S(r, f) \\
=N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right) \\
\quad+\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+S(r, f) .
\end{gather*}
$$

From (3.1) we have now

$$
\begin{align*}
N(r, H) \leq \bar{N}(r, F)+ & \bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \tag{3.15}\\
& +\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f)
\end{align*}
$$

In this case, (3.10) is replaced by

$$
\begin{equation*}
N_{E}^{1)}\left(r, \frac{1}{F-1}\right) \leq N(r, H)+S(r, f) \tag{3.16}
\end{equation*}
$$

From (3.14), (3.15) and (3.16), we have

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{G-1}\right) \leq & \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right) \\
& +2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& +\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \\
\leq & \bar{N}(r, F)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& +\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) .
\end{aligned}
$$

By the second fundamental theorem, then

$$
\begin{aligned}
T(r, G) \leq & \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G) \\
\leq & 2 \bar{N}(r, G)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G}\right) \\
& +\bar{N}_{(2}\left(r, \frac{1}{G}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+S(r, f) \\
\leq & 2 \bar{N}(r, G)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G}\right)+2 \bar{N}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) .
\end{aligned}
$$

From Lemma 2.1 for $p=1, k=1$ we know

$$
\bar{N}\left(r, \frac{1}{G^{\prime}}\right) \leq N_{2}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+S(r, G)
$$

So

$$
T(r, G) \leq 4 \bar{N}(r, F)+3 N_{2}\left(r, \frac{1}{G}\right)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+S(r, f)
$$

i.e.

$$
T\left(r, f^{(k)}\right) \leq 4 \bar{N}(r, f)+3 N_{2}\left(r, \frac{1}{f^{(k)}}\right)+2 \bar{N}\left(r, \frac{1}{(f / a)^{\prime}}\right)+S(r, f)
$$

This contradicts with (1.3). The proof is complete.

4. Proof of Theorem 1.3

The proof is similar to that of Theorem 1.2. We define F and G and (3.1) as above, and we also distinguish two cases to discuss.
Case 3. $H \equiv 0$. We also have (3.2). From (3.3) we know that $\Theta(\infty, f)=1$, and from (1.4), (1.5) and $\sqrt{1.6)}$, we further know $\delta_{2+k}(0, f)>\frac{1}{2}$. Assume that $D \neq 0$, then

$$
-\frac{D\left(F-1-\frac{1}{D}\right)}{F-1} \equiv C \frac{1}{G-1},
$$

so

$$
\bar{N}\left(r, \frac{1}{F-1-\frac{1}{D}}\right)=\bar{N}(r, G)=S(r, f) .
$$

If $D \neq-1$, using the second fundamental theorem for F, similarly as 3.6 we have

$$
T(r, F)=\bar{N}\left(r, \frac{1}{F}\right)+S(r, f)
$$

i.e.

$$
T(r, f)=\bar{N}\left(r, \frac{1}{f}\right)+S(r, f)
$$

Hence $\Theta(0, f)=0$, this contradicts with $\Theta(0, f) \geq \delta_{2+k}(0, f)>\frac{1}{2}$.
If $D=-1$, then $\bar{N}\left(r, \frac{1}{F}\right)=S(r, f)$, i.e. $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$, and

$$
\frac{F}{F-1} \equiv C \frac{1}{G-1}
$$

Then

$$
F(G-1-C) \equiv-C
$$

and thus,

$$
\begin{equation*}
f^{(k)}\left(f^{(k)}-(1+C) a\right) \equiv-C a^{2} \frac{f^{(k)}}{f} \tag{4.1}
\end{equation*}
$$

As same as 3.8, by Lemma 2.2 and 3.3 and $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$, from 4.1 we have

$$
\begin{aligned}
2 T\left(r, f^{(k)}\right) & =T\left(r, \frac{f^{(k)}}{f}\right)+S(r, f) \\
& =N\left(r, \frac{f^{(k)}}{f}\right)+S(r, f) \\
& \leq k \bar{N}(r, f)+k \bar{N}\left(r, \frac{1}{f}\right)+S(r, f)=S(r, f) .
\end{aligned}
$$

So $T\left(r, f^{(k)}\right)=S(r, f)$ and $T\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)$. Hence

$$
\begin{aligned}
T(r, f) & \leq T\left(r, \frac{f}{f^{(k)}}\right)+T\left(r, f^{(k)}\right)+O(1) \\
& =T\left(r, \frac{f^{(k)}}{f}\right)+T\left(r, f^{(k)}\right)+O(1)=S(r, f)
\end{aligned}
$$

this is impossible. Therefore $D=0$, and from (3.2) then

$$
G-1 \equiv \frac{1}{C}(F-1) .
$$

If $C \neq 1$, then

$$
G \equiv \frac{1}{C}(F-1+C)
$$

and

$$
N\left(r, \frac{1}{G}\right)=N\left(r, \frac{1}{F-1+C}\right) .
$$

By the second fundamental theorem and (3.3) we have

$$
\begin{aligned}
T(r, F) & \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1+C}\right)+S(r, G) \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f)
\end{aligned}
$$

By Lemma 2.1 for $p=1$ and (3.3), we have

$$
\begin{aligned}
T(r, f) & \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+N_{1+k}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+S(r, f) \\
& \leq 2 N_{1+k}\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

Hence $\delta_{1+k}(0, f) \leq \frac{1}{2}$. This is a contradiction with $\delta_{1+k}(0, f) \geq \delta_{2+k}(0, f)>\frac{1}{2}$. So $C=1$ and $F \equiv G$, i.e. $f \equiv f^{(k)}$. This is just the conclusion of this theorem.

Case 4. $H \not \equiv 0$.
Subcase 4. $1 \quad l \geq 1 . \quad$ As similar as Subcase 2 . 1 , From (3.9) and (3.10) we have

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{F-1}\right)+ & \bar{N}\left(r, \frac{1}{G-1}\right) \\
= & N_{1)}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \\
\leq & \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right) \\
& +\bar{N}_{(l+1}\left(r, \frac{1}{G-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{G-1}\right) \\
& +\bar{N}\left(r, \frac{1}{G-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f)
\end{aligned}
$$

While $l \geq 2$,

$$
\begin{aligned}
\bar{N}_{(l+1}\left(r, \frac{1}{G-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) & \leq N\left(r, \frac{1}{G-1}\right) \\
& \leq T(r, G)+O(1)
\end{aligned}
$$

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}(r, & \left.\frac{1}{G-1}\right) \\
\leq \bar{N}(r, F)+ & \bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right) \\
& +\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+T(r, G)+S(r, f)
\end{aligned}
$$

By the second fundamental theorem, we have

$$
\begin{aligned}
& T(r, F)+T(r, G) \\
& \qquad \begin{array}{l}
\leq \bar{N}(r, F)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F-1}\right) \\
\quad+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{F^{\prime}}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, F)+S(r, G) \\
\leq 3 \bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+T(r, G)+S(r, f),
\end{array}, \quad .
\end{aligned}
$$

so

$$
T(r, F) \leq 3 \bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+S(r, f)
$$

i.e.

$$
T(r, f) \leq 3 \bar{N}(r, f)+N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) .
$$

By Lemma 2.1 for $p=2$ we have

$$
T(r, f) \leq(3+k) \bar{N}(r, f)+2 N_{2+k}\left(r, \frac{1}{f}\right)+S(r, f)
$$

so

$$
(3+k) \Theta(\infty, f)+2 \delta_{2+k}(0, f) \leq k+4
$$

This contradicts with (1.4).
While $l=1$,

$$
\bar{N}_{(l+1}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \leq N\left(r, \frac{1}{G-1}\right) \leq T(r, G)+O(1)
$$

so by Lemma 2.1 for $p=1, k=1$, we have

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{F-1}\right)+ & \bar{N}\left(r, \frac{1}{G-1}\right) \\
\leq & \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+T(r, G)+S(r, f) \\
\leq & \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+T(r, G)+S(r, f) \\
\leq & 2 \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+N_{2}\left(r, \frac{1}{F}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+T(r, G)+S(r, f)
\end{aligned}
$$

As same as above, by the second fundamental theorem we have

$$
T(r, F)+T(r, G) \leq 4 \bar{N}(r, F)+2 N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+T(r, G)+S(r, f),
$$

so

$$
T(r, F) \leq 4 \bar{N}(r, F)+2 N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+S(r, f),
$$

i.e.

$$
T(r, f) \leq 4 \bar{N}(r, f)+2 N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) .
$$

By Lemma 2.1 for $p=2$ we have

$$
T(r, f) \leq(4+k) \bar{N}(r, f)+3 N_{2+k}\left(r, \frac{1}{f}\right)+S(r, f)
$$

so

$$
(4+k) \Theta(\infty, f)+3 \delta_{2+k}(0, f) \leq k+6 .
$$

This contradicts with (1.5).
Subcase (4. $2 l=0$. From (3.14), (3.15) and (3.16) and Lemma 2.1 for $p=1, k=1$, noticing

$$
\begin{aligned}
\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) & \leq N\left(r, \frac{1}{G-1}\right) \\
& \leq T(r, G)+S(r, f)
\end{aligned}
$$

then

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{F-1}\right)+ & \bar{N}\left(r, \frac{1}{G-1}\right) \\
= & N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \\
\leq & \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& +\bar{N}\left(r, \frac{1}{G-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \\
\leq & \bar{N}(r, F)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G^{\prime}}\right)+T(r, G)+S(r, f) \\
\leq & 4 \bar{N}(r, F)+2 N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+T(r, G)+S(r, f) .
\end{aligned}
$$

As same as above, by the second fundamental theorem, we can obtain

$$
T(r, F)+T(r, G) \leq 6 \bar{N}(r, F)+3 N_{2}\left(r, \frac{1}{F}\right)+2 N_{2}\left(r, \frac{1}{G}\right)+T(r, G)+S(r, f),
$$

so

$$
T(r, F) \leq 6 \bar{N}(r, F)+3 N_{2}\left(r, \frac{1}{F}\right)+2 N_{2}\left(r, \frac{1}{G}\right)+S(r, f)
$$

i.e.

$$
T(r, f) \leq 6 \bar{N}(r, f)+3 N_{2}\left(r, \frac{1}{f}\right)+2 N_{2}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
$$

By Lemma 2.1 for $p=2$ we have

$$
T(r, f) \leq(6+2 k) \bar{N}(r, f)+5 N_{2+k}\left(r, \frac{1}{f}\right)+S(r, f)
$$

so

$$
(6+2 k) \Theta(\infty, f)+5 \delta_{2+k}(0, f) \leq 2 k+10
$$

This contradicts with (1.6). Now the proof has been completed.

REFERENCES

[1] R. BRÜCK, On entire functions which share one value CM with their first derivative, Results in Math., 30 (1996), 21-24.
[2] W.K. HAYMAN, Meromorphic Function, Oxford, Clarendon Press, 1964.
[3] I. LAHIRI, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001), 193-206.
[4] I. LAHIRI, Uniqueness of a meromorphic function and its derivative, J. Inequal. Pure Appl. Math., 5(1) (2004), Art. 20. [ONLINE http://jipam.vu.edu.au/article.php?sid=372].
[5] C.C. YANG, On deficiencies of differential polynomials II, Math. Z., 125 (1972), 107-112.
[6] C.C. YANG and H.Y. YI, Uniqueness Theory of Meromorphic Functions, Beijing/New York, Science Press/Kluwer Academic Publishers, 2003.
[7] L.Z. YANG, Solution of a differential equation and its applications, Kodai Math. J., 22 (1999), 458464.
[8] K.-W. YU, On entire and meromorphic functions that share small functions with their derivatives, J. Inequal. Pure Appl. Math., 4(1) (2003), Art. 21. [ONLINE http://jipam.vu.edu.au/ article.php?sid=257].
[9] Q.C. ZHANG, The uniqueness of meromorphic functions with their derivatives, Kodai Math. J., 21 (1998), 179-184.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 077-05

