Journal of Inequalities in Pure and Applied Mathematics

Volume 5, Issue 1, Article 21, 2004

GENERALIZED RELATIVE INFORMATION AND INFORMATION INEQUALITIES

INDER JEET TANEJA
Departamento de Matemática Universidade Federal de Santa Catarina 88.040-900 FLORIANÓpOLIS, SC, Brazil
taneja@mtm.ufsc.br
URL: http://www.mtm.ufsc.br/~taneja

Received 10 June, 2003; accepted 01 August, 2003
Communicated by S.S. Dragomir

Abstract

In this paper, we have obtained bounds on Csiszár's f-divergence in terms of relative information of type s using Dragomir's [9] approach. The results obtained in particular lead us to bounds in terms of χ^{2}-Divergence, Kullback-Leibler's relative information and Hellinger's discrimination.

Key words and phrases: Relative information; Csiszár's f-divergence; χ^{2}-divergence; Hellinger's discrimination; Relative
information of type s ; Information inequalities.

1. Introduction

Let

$$
\Delta_{n}=\left\{P=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid p_{i}>0, \sum_{i=1}^{n} p_{i}=1\right\}, \quad n \geq 2
$$

be the set of complete finite discrete probability distributions.
The Kullback Leibler's [13] relative information is given by

$$
\begin{equation*}
K(P \| Q)=\sum_{i=1}^{n} p_{i} \ln \left(\frac{p_{i}}{q_{i}}\right), \tag{1.1}
\end{equation*}
$$

for all $P, Q \in \Delta_{n}$.
In Δ_{n}, we have taken all $p_{i}>0$. If we take $p_{i} \geq 0, \forall i=1,2, \ldots, n$, then in this case we have to suppose that $0 \ln 0=0 \ln \left(\frac{0}{0}\right)=0$. From the information theoretic point of view we generally take all the logarithms with base 2 , but here we have taken only natural logarithms.

[^0]We observe that the measure (1.1) is not symmetric in P and Q. Its symmetric version, famous as J-divergence (Jeffreys [12]; Kullback and Leiber [13]), is given by

$$
\begin{equation*}
J(P \| Q)=K(P \| Q)+K(Q \| P)=\sum_{i=1}^{n}\left(p_{i}-q_{i}\right) \ln \left(\frac{p_{i}}{q_{i}}\right) . \tag{1.2}
\end{equation*}
$$

Let us consider the one parametric generalization of the measure (1.1), called relative information of type s given by

$$
\begin{equation*}
K_{s}(P \| Q)=[s(s-1)]^{-1}\left[\sum_{i=1}^{n} p_{i}^{s} q_{i}^{1-s}-1\right], \quad s \neq 0,1 \tag{1.3}
\end{equation*}
$$

In this case we have the following limiting cases

$$
\lim _{s \rightarrow 1} K_{s}(P \| Q)=K(P \| Q)
$$

and

$$
\lim _{s \rightarrow 0} K_{s}(P \| Q)=K(Q \| P)
$$

The expression (1.3) has been studied by Vajda [22]. Previous to it many authors studied its characterizations and applications (ref. Taneja [20] and on line book Taneja [21]).

We have some interesting particular cases of the measure (1.3).
(i) When $s=\frac{1}{2}$, we have

$$
K_{1 / 2}(P \| Q)=4[1-B(P \| Q)]=4 h(P \| Q)
$$

where

$$
\begin{equation*}
B(P \| Q)=\sum_{i=1}^{n} \sqrt{p_{i} q_{i}}, \tag{1.4}
\end{equation*}
$$

is the famous as Bhattacharya's [1] distance, and

$$
\begin{equation*}
h(P \| Q)=\frac{1}{2} \sum_{i=1}^{n}\left(\sqrt{p_{i}}-\sqrt{q_{i}}\right)^{2}, \tag{1.5}
\end{equation*}
$$

is famous as Hellinger's [11] discrimination.
(ii) When $s=2$, we have

$$
K_{2}(P \| Q)=\frac{1}{2} \chi^{2}(P \| Q),
$$

where

$$
\begin{equation*}
\chi^{2}(P \| Q)=\sum_{i=1}^{n} \frac{\left(p_{i}-q_{i}\right)^{2}}{q_{i}}=\sum_{i=1}^{n} \frac{p_{i}^{2}}{q_{i}}-1, \tag{1.6}
\end{equation*}
$$

is the χ^{2}-divergence (Pearson [16]).
(iii) When $s=-1$, we have

$$
K_{-1}(P \| Q)=\frac{1}{2} \chi^{2}(Q \| P)
$$

where

$$
\begin{equation*}
\chi^{2}(Q \| P)=\sum_{i=1}^{n} \frac{\left(p_{i}-q_{i}\right)^{2}}{p_{i}}=\sum_{i=1}^{n} \frac{q_{i}^{2}}{p_{i}}-1 . \tag{1.7}
\end{equation*}
$$

For simplicity, let us write the measures (1.3) in the unified way:

$$
\Phi_{s}(P \| Q)= \begin{cases}K_{s}(P \| Q), & s \neq 0,1 \tag{1.8}\\ K(Q \| P), & s=0 \\ K(P \| Q), & s=1\end{cases}
$$

Summarizing, we have the following particular cases of the measures (1.8):
(i) $\Phi_{-1}(P \| Q)=\frac{1}{2} \chi^{2}(Q \| P)$.
(ii) $\Phi_{0}(P \| Q)=K(Q \| P)$.
(iii) $\Phi_{1 / 2}(P \| Q)=4[1-B(P \| Q)]=4 h(P \| Q)$.
(iv) $\Phi_{1}(P \| Q)=K(P \| Q)$.
(v) $\Phi_{2}(P \| Q)=\frac{1}{2} \chi^{2}(P \| Q)$.

2. CSISZÁR's f-Divergence and Information Bounds

Given a convex function $f:[0, \infty) \rightarrow \mathbb{R}$, the f-divergence measure introduced by Csiszár [4] is given by

$$
\begin{equation*}
C_{f}(p, q)=\sum_{i=1}^{n} q_{i} f\left(\frac{p_{i}}{q_{i}}\right), \tag{2.1}
\end{equation*}
$$

where $p, q \in \mathbb{R}_{+}^{n}$.
The following two theorems can be seen in Csiszár and Körner [5].
Theorem 2.1. (Joint convexity). If $f:[0, \infty) \rightarrow \mathbb{R}$ be convex, then $C_{f}(p, q)$ is jointly convex in p and q, where $p, q \in \mathbb{R}_{+}^{n}$.

Theorem 2.2. (Jensen's inequality). Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a convex function. Then for any $p, q \in \mathbb{R}_{+}^{n}$, with $P_{n}=\sum_{i=1}^{n} p_{i}>0, Q_{n}=\sum_{i=1}^{n} p_{i}>0$, we have the inequality

$$
C_{f}(p, q) \geq Q_{n} f\left(\frac{P_{n}}{Q_{n}}\right)
$$

The equality sign holds for strictly convex functions iff

$$
\frac{p_{1}}{q_{i}}=\frac{p_{2}}{q_{2}}=\cdots=\frac{p_{n}}{q_{n}} .
$$

In particular, for all $P, Q \in \Delta_{n}$, we have

$$
C_{f}(P \| Q) \geq f(1),
$$

with equality iff $P=Q$.
In view of Theorems 2.1 and 2.2, we have the following result.
Result 1. For all $P, Q \in \Delta_{n}$, we have
(i) $\Phi_{s}(P \| Q) \geq 0$ for any $s \in \mathbb{R}$, with equality iff $P=Q$.
(ii) $\Phi_{s}(P \| Q)$ is convex function of the pair of distributions $(P, Q) \in \Delta_{n} \times \Delta_{n}$ and for any $s \in \mathbb{R}$.

Proof. Take

$$
\phi_{s}(u)= \begin{cases}{[s(s-1)]^{-1}\left[u^{s}-1-s(u-1)\right],} & s \neq 0,1 \tag{2.2}\\ u-1-\ln u, & s=0 \\ 1-u+u \ln u, & s=1\end{cases}
$$

for all $u>0$ in (2.1), we have

$$
C_{f}(P \| Q)=\Phi_{s}(P \| Q)= \begin{cases}K_{s}(P \| Q), & s \neq 0,1 \\ K(Q \| P), & s=0 \\ K(P \| Q), & s=1\end{cases}
$$

Moreover,

$$
\phi_{s}^{\prime}(u)= \begin{cases}(s-1)^{-1}\left(u^{s-1}-1\right), & s \neq 0,1 \tag{2.3}\\ 1-u^{-1}, & s=0 \\ \ln u, & s=1\end{cases}
$$

and

$$
\phi_{s}^{\prime \prime}(u)= \begin{cases}u^{s-2}, & s \neq 0,1 \tag{2.4}\\ u^{-2}, & s=0 \\ u^{-1}, & s=1\end{cases}
$$

Thus we have $\phi_{s}^{\prime \prime}(u)>0$ for all $u>0$, and hence, $\phi_{s}(u)$ is strictly convex for all $u>0$. Also, we have $\phi_{s}(1)=0$. In view of Theorems 2.1 and 2.2 we have the proof of parts (i) and (ii) respectively.

For some studies on the measure (2.2) refer to Liese and Vajda [15], Österreicher [17] and Cerone et al. [3].

The following theorem summarizes some of the results studies by Dragomir [7], [8]. For simplicity we have taken $f(1)=0$ and $P, Q \in \Delta_{n}$.
Theorem 2.3. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be differentiable convex and normalized i.e., $f(1)=0$. If $P, Q \in \Delta_{n}$ are such that

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty, \quad \forall i \in\{1,2, \ldots, n\}
$$

for some r and R with $0<r \leq 1 \leq R<\infty$, then we have the following inequalities:

$$
\begin{equation*}
0 \leq C_{f}(P \| Q) \leq \frac{1}{4}(R-r)\left(f^{\prime}(R)-f^{\prime}(r)\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
0 & \leq \beta_{f}(r, R)-C_{f}(P \| Q) \tag{2.7}\\
& \leq \frac{f^{\prime}(R)-f^{\prime}(r)}{R-r}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] \\
& \leq \frac{1}{4}(R-r)\left(f^{\prime}(R)-f^{\prime}(r)\right)
\end{align*}
$$

where

$$
\begin{equation*}
\beta_{f}(r, R)=\frac{(R-1) f(r)+(1-r) f(R)}{R-r} \tag{2.8}
\end{equation*}
$$

and $\chi^{2}(P \| Q)$ and $C_{f}(P \| Q)$ are as given by (1.6) and (2.1) respectively.

In view of above theorem, we have the following result.
Result 2. Let $P, Q \in \Delta_{n}$ and $s \in \mathbb{R}$. If there exists r, R such that

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty, \quad \forall i \in\{1,2, \ldots, n\}
$$

with $0<r \leq 1 \leq R<\infty$, then we have

$$
\begin{equation*}
0 \leq \Phi_{s}(P \| Q) \leq \mu_{s}(r, R) \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
0 \leq \Phi_{s}(P \| Q) \leq \phi_{s}(r, R) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{align*}
0 & \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \tag{2.11}\\
& \leq k_{s}(r, R)\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] \\
& \leq \mu_{s}(r, R)
\end{align*}
$$

where

$$
\begin{align*}
\phi_{s}(r, R) & =\frac{(R-1) \phi_{s}(r)+(1-r) \phi_{s}(R)}{R-r} \tag{2.13}\\
& = \begin{cases}\frac{(R-1)\left(r^{s}-1\right)+(1-r)\left(R^{s}-1\right)}{(R-r) s(s-1)}, & s \neq 0,1 ; \\
\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{(R-r)}, & s=0 ; \\
\frac{(R-1) r \ln r+(1-r) R \ln R}{(R-r)}, & s=1,\end{cases}
\end{align*}
$$

and

$$
k_{s}(r, R)=\frac{\phi_{s}^{\prime}(R)-\phi_{s}^{\prime}(r)}{R-r}= \begin{cases}\frac{R^{s-1}-r^{s-1}}{(R-r)(s-1)}, & s \neq 1 \tag{2.14}\\ \frac{\ln R-\ln r}{R-r}, & s=1\end{cases}
$$

Proof. The above result follows immediately from Theorem 2.3, by taking $f(u)=\phi_{s}(u)$, where $\phi_{s}(u)$ is as given by (2.2), then in this case we have $C_{f}(P \| Q)=\Phi_{s}(P \| Q)$.

Moreover,

$$
\mu_{s}(r, R)=\frac{1}{4}(R-r)^{2} k_{s}(r, R),
$$

where

$$
k_{s}(r, R)= \begin{cases}{\left[L_{s-2}(r, R)\right]^{s-2},} & s \neq 1 \\ {\left[L_{-1}(r, R)\right]^{-1}} & s=1,\end{cases}
$$

and $L_{p}(a, b)$ is the famous (ref. Bullen, Mitrinović and Vasić [2]) p-logarithmic mean given by

$$
L_{p}(a, b)= \begin{cases}{\left[\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right]^{\frac{1}{p}},} & p \neq-1,0 \\ \frac{b-a}{\ln b-\ln a}, & p=-1 \\ \frac{1}{e}\left[\frac{b^{b}}{a^{a}}\right]^{\frac{1}{b-a}}, & p=0\end{cases}
$$

for all $p \in \mathbb{R}, a, b \in \mathbb{R}_{+}, a \neq b$.
We have the following corollaries as particular cases of Result 2 .
Corollary 2.4. Under the conditions of Result 2 , we have

$$
\begin{align*}
& 0 \leq \chi^{2}(Q \| P) \leq \frac{1}{4}(R+r)\left(\frac{R-r}{r R}\right)^{2} \tag{2.15}\\
& 0 \leq K(Q \| P) \leq \frac{(R-r)^{2}}{4 R r} \tag{2.16}\\
& 0 \leq K(P \| Q) \leq \frac{1}{4}(R-r) \ln \left(\frac{R}{r}\right) \tag{2.17}\\
& 0 \leq h(P \| Q) \leq \frac{(R-r)(\sqrt{R}-\sqrt{r})}{8 \sqrt{R r}} \tag{2.18}
\end{align*}
$$

and

$$
\begin{equation*}
0 \leq \chi^{2}(P \| Q) \leq \frac{1}{2}(R-r)^{2} \tag{2.19}
\end{equation*}
$$

Proof. (2.15) follows by taking $s=-1$, 2.16) follows by taking $s=0$, 2.17) follows by taking $s=1$, 2.18) follows by taking $s=\frac{1}{2}$ and 2.19 follows by taking $s=2$ in 2.9.
Corollary 2.5. Under the conditions of Result 2 we have

$$
\begin{align*}
& 0 \leq \chi^{2}(Q \| P) \leq \frac{(R-1)(1-r)}{r R} \tag{2.20}\\
& 0 \leq K(Q \| P) \leq \frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r} \tag{2.21}\\
& 0 \leq K(P \| Q) \leq \frac{(R-1) r \ln r+(1-r) R \ln R}{R-r} \tag{2.22}\\
& 0 \leq h(P \| Q) \leq \frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}} \tag{2.23}
\end{align*}
$$

and

$$
\begin{equation*}
0 \leq \chi^{2}(P \| Q) \leq(R-1)(1-r) \tag{2.24}
\end{equation*}
$$

Proof. 2.20) follows by taking $s=-1$, 2.21) follows by taking $s=0$, 2.22 follows by taking $s=1,2.23$ follows by taking $s=\frac{1}{2}$ and (2.24) follows by taking $s=2$ in 2.10).

In view of (2.16), (2.17), (2.21) and (2.22), we have the following bounds on J-divergence:

$$
\begin{equation*}
0 \leq J(P \| Q) \leq \min \left\{t_{1}(r, R), t_{2}(r, R)\right\} \tag{2.25}
\end{equation*}
$$

where

$$
t_{1}(r, R)=\frac{1}{4}(R-r)^{2}\left[(r R)^{-1}+\left(L_{-1}(r, R)\right)^{-1}\right]
$$

and

$$
t_{2}(r, R)=(R-1)(1-r)\left(L_{-1}(r, R)\right)^{-1}
$$

The expression $t_{1}(r, R)$ is due to 2.16) and 2.17) and the expression $t_{2}(r, R)$ is due to 2.21) and (2.22).

Corollary 2.6. Under the conditions of Result 2, we have

$$
\begin{align*}
0 & \leq \frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P) \tag{2.26}\\
& \leq \frac{R+r}{(r R)^{2}}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] \\
0 & \leq \frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P) \tag{2.27}\\
& \leq \frac{1}{r R}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] \\
0 & \leq \frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q) \tag{2.28}\\
& \leq \frac{\ln R-\ln r}{R-r}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right]
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \frac{(\sqrt{R}-1)(1-\sqrt{r})}{(\sqrt{R}+\sqrt{r})}-h(P \| Q) \tag{2.29}\\
& \leq \frac{1}{2 \sqrt{r R}(\sqrt{R}+\sqrt{r})}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right]
\end{align*}
$$

Proof. 2.26 follows by taking $s=-1$, 2.27) follows by taking $s=0$, 2.28 follows by taking $s=1,2.29$ follows by taking $s=\frac{1}{2}$ in 2.11 .

3. Main Results

In this section, we shall present a theorem generalizing the one obtained by Dragomir [9]. The results due to Dragomir [9] are limited only to $\chi^{2}-$ divergence, while the theorem established here is given in terms of relative information of type s, that in particular lead us to bounds in terms of χ^{2}-divergence, Kullback-Leibler's relative information and Hellinger's discrimination.

Theorem 3.1. Let $f: I \subset \mathbb{R}_{+} \rightarrow \mathbb{R}$ the generating mapping be normalized, i.e., $f(1)=0$ and satisfy the assumptions:
(i) f is twice differentiable on (r, R), where $0 \leq r \leq 1 \leq R \leq \infty$;
(ii) there exists the real constants m, M with $m<M$ such that

$$
\begin{equation*}
m \leq x^{2-s} f^{\prime \prime}(x) \leq M, \quad \forall x \in(r, R), \quad s \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

If $P, Q \in \Delta_{n}$ are discrete probability distributions satisfying the assumption

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty
$$

then we have the inequalities:

$$
\begin{equation*}
m\left[\phi_{s}(r, R)-\Phi_{s}(P \| Q)\right] \leq \beta_{f}(r, R)-C_{f}(P \| Q) \leq M\left[\phi_{s}(r, R)-\Phi_{s}(P \| Q)\right], \tag{3.2}
\end{equation*}
$$

where $C_{f}(P \| Q), \Phi_{s}(P \| Q), \beta_{f}(r, R)$ and $\phi_{s}(r, R)$ are as given by (2.1), (1.8), (2.8) and (2.13) respectively.

Proof. Let us consider the functions $F_{m, s}(\cdot)$ and $F_{M, s}(\cdot)$ given by

$$
\begin{equation*}
F_{m, s}(u)=f(u)-m \phi_{s}(u), \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{M, s}(u)=M \phi_{s}(u)-f(u), \tag{3.4}
\end{equation*}
$$

respectively, where m and M are as given by (3.1) and function $\phi_{s}(\cdot)$ is as given by (2.3).
Since $f(u)$ and $\phi_{s}(u)$ are normalized, then $F_{m, s}(\cdot)$ and $F_{M, s}(\cdot)$ are also normalized, i.e., $F_{m, s}(1)=0$ and $F_{M, s}(1)=0$. Moreover, the functions $f(u)$ and $\phi_{s}(u)$ are twice differentiable. Then in view of (2.4) and (3.1), we have

$$
F_{m, s}^{\prime \prime}(u)=f^{\prime \prime}(u)-m u^{s-2}=u^{s-2}\left(u^{2-s} f^{\prime \prime}(u)-m\right) \geq 0
$$

and

$$
F_{M, s}^{\prime \prime}(u)=M u^{s-2}-f^{\prime \prime}(u)=u^{s-2}\left(M-u^{2-s} f^{\prime \prime}(u)\right) \geq 0
$$

for all $u \in(r, R)$ and $s \in \mathbb{R}$. Thus the functions $F_{m, s}(\cdot)$ and $F_{M, s}(\cdot)$ are convex on (r, R).
We have seen above that the real mappings $F_{m, s}(\cdot)$ and $F_{M, s}(\cdot)$ defined over \mathbb{R}_{+}given by (3.3) and (3.4) respectively are normalized, twice differentiable and convex on (r, R). Applying the r.h.s. of the inequality (2.6), we have

$$
\begin{equation*}
C_{F_{m, s}}(P \| Q) \leq \beta_{F_{m, s}}(r, R) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{F_{m, s}}(P \| Q) \leq \beta_{F_{M, s}}(r, R) \tag{3.6}
\end{equation*}
$$

respectively.
Moreover,

$$
\begin{equation*}
C_{F_{m, s}}(P \| Q)=C_{f}(P \| Q)-m \Phi_{s}(P \| Q) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{F_{M, s}}(P \| Q)=M \Phi_{s}(P \| Q)-C_{f}(P \| Q) \tag{3.8}
\end{equation*}
$$

In view of (3.5) and (3.7), we have

$$
C_{f}(P \| Q)-m \Phi_{s}(P \| Q) \leq \beta_{F_{m, s}}(r, R)
$$

i.e.,

$$
C_{f}(P \| Q)-m \Phi_{s}(P \| Q) \leq \beta_{f}(r, R)-m \phi_{s}(r, R)
$$

i.e.,

$$
m\left[\phi_{s}(r, R)-\Phi_{s}(P \| Q)\right] \leq \beta_{f}(r, R)-C_{f}(P \| Q)
$$

Thus, we have the l.h.s. of the inequality (3.2).
Again in view of (3.6) and 3.8), we have

$$
M \Phi_{s}(P \| Q)-C_{f}(P \| Q) \leq \beta_{F_{M, s}}(r, R)
$$

i.e.,

$$
M \Phi_{s}(P \| Q)-C_{f}(P \| Q) \leq M \phi_{s}(r, R)-\beta_{f}(r, R)
$$

i.e.,

$$
\beta_{f}(r, R)-C_{f}(P \| Q) \leq M\left[\phi_{s}(r, R)-\Phi_{s}(P \| Q)\right] .
$$

Thus we have the r.h.s. of the inequality (3.2).

Remark 3.2. For similar kinds of results in comparing the f-divergence with Kullback-Leibler relative information see the work by Dragomir [10]. The case of Hellinger discrimination is discussed in Dragomir [6].

We shall now present some particular case of the Theorem 3.1.
3.1. Information Bounds in Terms of χ^{2}-Divergence. In particular for $s=2$, in Theorem 3.1, we have the following proposition:

Proposition 3.3. Let $f: I \subset \mathbb{R}_{+} \rightarrow \mathbb{R}$ the generating mapping be normalized, i.e., $f(1)=0$ and satisfy the assumptions:
(i) f is twice differentiable on (r, R), where $0<r \leq 1 \leq R<\infty$;
(ii) there exists the real constants m, M with $m<M$ such that

$$
\begin{equation*}
m \leq f^{\prime \prime}(x) \leq M, \quad \forall x \in(r, R) \tag{3.9}
\end{equation*}
$$

If $P, Q \in \Delta_{n}$ are discrete probability distributions satisfying the assumption

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty
$$

then we have the inequalities:

$$
\begin{align*}
\frac{m}{2} & {\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] } \tag{3.10}\\
& \leq \beta_{f}(r, R)-C_{f}(P \| Q) \\
& \leq \frac{M}{2}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right]
\end{align*}
$$

where $C_{f}(P \| Q), \beta_{f}(r, R)$ and $\chi^{2}(P \| Q)$ are as given by (2.1), (2.8) and (1.6) respectively.

The above proposition was obtained by Dragomir in [9]. As a consequence of the above Proposition 3.3, we have the following result.
Result 3. Let $P, Q \in \Delta_{n}$ and $s \in \mathbb{R}$. Let there exist $r, R(0<r \leq 1 \leq R<\infty)$ such that

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty, \quad \forall i \in\{1,2, \ldots, n\}
$$

then in view of Proposition 3.3, we have

$$
\begin{align*}
\frac{R^{s-2}}{2} & {\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] } \tag{3.11}\\
& \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \leq \frac{r^{s-2}}{2}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right], \quad s \leq 2
\end{align*}
$$

and

$$
\begin{align*}
\frac{r^{s-2}}{2} & {\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] } \tag{3.12}\\
& \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \leq \frac{R^{s-2}}{2}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right], \quad s \geq 2 .
\end{align*}
$$

Proof. Let us consider $f(u)=\phi_{s}(u)$, where $\phi_{s}(u)$ is as given by 2.2), then according to expression (2.4), we have

$$
\phi_{s}^{\prime \prime}(u)=u^{s-2} .
$$

Now if $u \in[r, R] \subset(0, \infty)$, then we have

$$
R^{s-2} \leq \phi_{s}^{\prime \prime}(u) \leq r^{s-2}, \quad s \leq 2
$$

or accordingly, we have

$$
\phi_{s}^{\prime \prime}(u) \begin{cases}\leq r^{s-2}, & s \leq 2 \tag{3.13}\\ \geq r^{s-2}, & s \geq 2\end{cases}
$$

and

$$
\phi_{s}^{\prime \prime}(u) \begin{cases}\leq R^{s-2}, & s \geq 2 \tag{3.14}\\ \geq R^{s-2}, & s \leq 2\end{cases}
$$

where r and R are as defined above. Thus in view of (3.9), (3.13) and (3.14), we have the proof.

In view of Result 3, we have the following corollary.
Corollary 3.4. Under the conditions of Result 3 , we have

$$
\begin{gather*}
\frac{1}{R^{3}}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] \tag{3.15}\\
\leq \frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P) \\
\leq \frac{1}{r^{3}}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] \\
\frac{1}{2 R^{2}}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] \tag{3.16}\\
\leq \frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P) \\
\quad \leq \frac{1}{2 r^{2}}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] \\
\frac{1}{2 R}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] \tag{3.17}\\
\leq \\
\leq \frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q) \\
\leq
\end{gather*}
$$

and

$$
\begin{align*}
\frac{1}{8 \sqrt{R^{3}}} & {\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] } \tag{3.18}\\
& \leq \frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q) \\
& \leq \frac{1}{8 \sqrt{r^{3}}}\left[(R-1)(1-r)-\chi^{2}(P \| Q)\right] .
\end{align*}
$$

Proof. 3.15) follows by taking $s=-1$, 3.16 follows by taking $s=0$, 3.17) follows by taking $s=1$, 3.18) follows by taking $s=\frac{1}{2}$ in Result 3 . While for $s=2$, we have equality sign.

Proposition 3.5. Let $f: I \subset \mathbb{R}_{+} \rightarrow \mathbb{R}$ the generating mapping be normalized, i.e., $f(1)=0$ and satisfy the assumptions:
(i) f is twice differentiable on (r, R), where $0<r \leq 1 \leq R<\infty$;
(ii) there exists the real constants m, M such that $m<M$ and

$$
\begin{equation*}
m \leq x^{3} f^{\prime \prime}(x) \leq M, \quad \forall x \in(r, R) \tag{3.19}
\end{equation*}
$$

If $P, Q \in \Delta_{n}$ are discrete probability distributions satisfying the assumption

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty
$$

then we have the inequalities:

$$
\begin{align*}
& \frac{m}{2}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right] \tag{3.20}\\
& \quad \leq \beta_{f}(r, R)-C_{f}(P \| Q) \\
& \quad \leq \frac{m}{2}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right]
\end{align*}
$$

where $C_{f}(P \| Q), \beta_{f}(r, R)$ and $\chi^{2}(Q \| P)$ are as given by (2.1), (2.8) and (1.7) respectively.

As a consequence of above proposition, we have the following result.
Result 4. Let $P, Q \in \Delta_{n}$ and $s \in \mathbb{R}$. Let there exist $r, R(0<r \leq 1 \leq R<\infty)$ such that

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty, \quad \forall i \in\{1,2, \ldots, n\}
$$

then in view of Proposition 3.5, we have

$$
\begin{align*}
\frac{R^{s+1}}{2} & {\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right] } \tag{3.21}\\
& \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \leq \frac{r^{s+1}}{2}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right], s \leq-1
\end{align*}
$$

and

$$
\begin{align*}
\frac{r^{s+1}}{2} & {\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right] } \tag{3.22}\\
& \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \leq \frac{R^{s+1}}{2}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right], s \geq-1 .
\end{align*}
$$

Proof. Let us consider $f(u)=\phi_{s}(u)$, where $\phi_{s}(u)$ is as given by 2.2, then according to expression (2.4), we have

$$
\phi_{s}^{\prime \prime}(u)=u^{s-2} .
$$

Let us define the function $g:[r, R] \rightarrow \mathbb{R}$ such that $g(u)=u^{3} \phi_{s}^{\prime \prime}(u)=u^{s+1}$, then we have

$$
\sup _{u \in[r, R]} g(u)= \begin{cases}R^{s+1}, & s \geq-1 \tag{3.23}\\ r^{s+1}, & s \leq-1\end{cases}
$$

and

$$
\inf _{u \in[r, R]} g(u)= \begin{cases}r^{s+1}, & s \geq-1 \tag{3.24}\\ R^{s+1}, & s \leq-1\end{cases}
$$

In view of (3.23), (3.24) and Proposition 3.5, we have the proof of the result.
In view of Result 4 , we have the following corollary.
Corollary 3.6. Under the conditions of Result 4 we have

$$
\begin{align*}
& \frac{r}{2}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right] \tag{3.25}\\
& \quad \leq \frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P) \\
& \quad \leq \frac{R}{2}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right]
\end{align*}
$$

$$
\begin{equation*}
\frac{r^{2}}{2}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right] \tag{3.26}
\end{equation*}
$$

$$
\leq \frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)
$$

$$
\leq \frac{R^{2}}{2}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right]
$$

$$
\begin{equation*}
\frac{\sqrt{r^{3}}}{8}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right] \tag{3.27}
\end{equation*}
$$

$$
\leq \frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)
$$

$$
\leq \frac{\sqrt{R^{3}}}{8}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right]
$$

and

$$
\begin{align*}
r^{3} & {\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right] } \tag{3.28}\\
& \leq(R-1)(1-r)-\chi^{2}(P \| Q) \\
& \leq R^{3}\left[\frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P)\right]
\end{align*}
$$

Proof. (3.25) follows by taking $s=0$, (3.26) follows by taking $s=1$, 3.27) follows by taking $s=\frac{1}{2}$ and (3.28) follows by taking $s=2$ in $\operatorname{Result} 4$. While for $s=-1$, we have equality sign.
3.2. Information Bounds in Terms of Kullback-Leibler Relative Information. In particular for $s=1$, in the Theorem 3.1, we have the following proposition (see also Dragomir [10]).

Proposition 3.7. Let $f: I \subset \mathbb{R}_{+} \rightarrow \mathbb{R}$ the generating mapping be normalized, i.e., $f(1)=0$ and satisfy the assumptions:
(i) f is twice differentiable on (r, R), where $0<r \leq 1 \leq R<\infty$;
(ii) there exists the real constants m, M with $m<M$ such that

$$
\begin{equation*}
m \leq x f^{\prime \prime}(x) \leq M, \quad \forall x \in(r, R) \tag{3.29}
\end{equation*}
$$

If $P, Q \in \Delta_{n}$ are discrete probability distributions satisfying the assumption

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty
$$

then we have the inequalities:

$$
\begin{align*}
& m\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] \tag{3.30}\\
& \quad \leq \beta_{f}(r, R)-C_{f}(P \| Q) \\
& \quad \leq M\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right],
\end{align*}
$$

where $C_{f}(P \| Q), \beta_{f}(r, R)$ and $K(P \| Q)$ as given by (2.1), (2.8) and (1.1) respectively.
In view of the above proposition, we have the following result.
Result 5. Let $P, Q \in \Delta_{n}$ and $s \in \mathbb{R}$. Let there exist $r, R(0<r \leq 1 \leq R<\infty)$ such that

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty, \quad \forall i \in\{1,2, \ldots, n\}
$$

then in view of Proposition 3.7, we have

$$
\begin{align*}
r^{s-1} & {\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] } \tag{3.31}\\
& \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \leq R^{s-1}\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right], s \geq 1
\end{align*}
$$

and

$$
\begin{align*}
R^{s-1} & {\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] } \tag{3.32}\\
& \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \leq r^{s-1}\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right], \quad s \leq 1 .
\end{align*}
$$

Proof. Let us consider $f(u)=\phi_{s}(u)$, where $\phi_{s}(u)$ is as given by 2.2, then according to expression (2.4), we have

$$
\phi_{s}^{\prime \prime}(u)=u^{s-2}
$$

Let us define the function $g:[r, R] \rightarrow \mathbb{R}$ such that $g(u)=\phi_{s}^{\prime \prime}(u)=u^{s-1}$, then we have

$$
\sup _{u \in[r, R]} g(u)= \begin{cases}R^{s-1}, & s \geq 1 \tag{3.33}\\ r^{s-1}, & s \leq 1\end{cases}
$$

and

$$
\inf _{u \in[r, R]} g(u)= \begin{cases}r^{s-1}, & s \geq 1 \tag{3.34}\\ R^{s-1}, & s \leq 1\end{cases}
$$

In view of (3.33), (3.34) and Proposition 3.7 we have the proof of the result.
In view of Result 5 , we have the following corollary.
Corollary 3.8. Under the conditions of Result 5] we have
(3.37)

$$
\begin{align*}
\frac{2}{R^{2}} & {\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] } \tag{3.35}\\
& \leq \frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P) \\
& \leq \frac{2}{r^{2}}\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] \\
\frac{1}{R} & {\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] } \tag{3.36}\\
& \leq \frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P) \\
& \leq \frac{1}{r}\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] \\
\frac{1}{4 \sqrt{R}} & {\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] } \\
& \leq \frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q) \\
& \leq \frac{1}{4 \sqrt{r}}\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right]
\end{align*}
$$

and

$$
\begin{align*}
2 r & {\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] } \tag{3.38}\\
& \leq(R-1)(1-r)-\chi^{2}(P \| Q) \\
& \leq 2 R\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right] .
\end{align*}
$$

Proof. (3.35) follows by taking $s=-1$, 3.36 follows by taking $s=0$, 3.37 follows by taking $s=\frac{1}{2}$ and 3.38 follows by taking $s=2$ in Result 5 . For $s=1$, we have equality sign.

In particular, for $s=0$ in Theorem 3.1, we have the following proposition:
Proposition 3.9. Let $f: I \subset \mathbb{R}_{+} \rightarrow \mathbb{R}$ the generating mapping be normalized, i.e., $f(1)=0$ and satisfy the assumptions:
(i) f is twice differentiable on (r, R), where $0<r \leq 1 \leq R<\infty$;
(ii) there exists the real constants m, M with $m<M$ such that

$$
\begin{equation*}
m \leq x^{2} f^{\prime \prime}(x) \leq M, \quad \forall x \in(r, R) \tag{3.39}
\end{equation*}
$$

If $P, Q \in \Delta_{n}$ are discrete probability distributions satisfying the assumption

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty,
$$

then we have the inequalities:

$$
\begin{align*}
& m\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right] \tag{3.40}\\
& \quad \leq \beta_{f}(r, R)-C_{f}(P \| Q) \\
& \quad \leq M\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right],
\end{align*}
$$

where $C_{f}(P \| Q), \beta_{f}(r, R)$ and $K(Q \| P)$ as given by (2.1), (2.8) and (1.1) respectively. In view of Proposition 3.9, we have the following result.
Result 6. Let $P, Q \in \Delta_{n}$ and $s \in \mathbb{R}$. Let there exist $r, R(0<r \leq 1 \leq R<\infty)$ such that

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty, \quad \forall i \in\{1,2, \ldots, n\}
$$

then in view of Proposition 3.9, we have

$$
\begin{align*}
r^{s} & {\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right] } \tag{3.41}\\
& \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \leq R^{s}\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right], s \geq 0
\end{align*}
$$

and

$$
\begin{align*}
R^{s} & {\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right] } \tag{3.42}\\
& \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \leq r^{s}\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right], \quad s \leq 0 .
\end{align*}
$$

Proof. Let us consider $f(u)=\phi_{s}(u)$, where $\phi_{s}(u)$ is as given by 2.2), then according to expression (2.4), we have

$$
\phi_{s}^{\prime \prime}(u)=u^{s-2} .
$$

Let us define the function $g:[r, R] \rightarrow \mathbb{R}$ such that $g(u)=u^{2} \phi_{s}^{\prime \prime}(u)=u^{s}$, then we have

$$
\sup _{u \in[r, R]} g(u)= \begin{cases}R^{s}, & s \geq 0 \tag{3.43}\\ r^{s}, & s \leq 0\end{cases}
$$

and

$$
\inf _{u \in[r, R]} g(u)= \begin{cases}r^{s}, & s \geq 0 \tag{3.44}\\ R^{s}, & s \leq 0\end{cases}
$$

In view of (3.43), (3.44) and Proposition 3.9, we have the proof of the result.

In view of Result 6, we have the following corollary.
Corollary 3.10. Under the conditions of Result 6 we have

$$
\begin{align*}
& \frac{2}{R}\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right] \tag{3.45}\\
& \quad \leq \frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P) \\
& \quad \leq \frac{2}{r}\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right] \\
& r\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right] \tag{3.46}\\
& \quad \leq \frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q) \\
& \quad \leq R\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right]
\end{align*}
$$

$$
\begin{equation*}
\frac{\sqrt{r}}{4}\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right] \tag{3.47}
\end{equation*}
$$

$$
\leq \frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)
$$

$$
\leq \frac{\sqrt{R}}{4}\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right]
$$

and

$$
\begin{align*}
2 r^{2} & {\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right] } \tag{3.48}\\
& \leq(R-1)(1-r)-\chi^{2}(P \| Q) \\
& \leq 2 R^{2}\left[\frac{(R-1) \ln \frac{1}{r}+(1-r) \ln \frac{1}{R}}{R-r}-K(Q \| P)\right] .
\end{align*}
$$

Proof. (3.45) follows by taking $s=-1$, (3.46) follows by taking $s=1$, (3.47) follows by taking $s=\frac{1}{2}$ and 3.48) follows by taking $s=2$ in Result 6 . For $s=0$, we have equality sign.
3.3. Information Bounds in Terms of Hellinger's Discrimination. In particular, for $s=\frac{1}{2}$ in Theorem 3.1, we have the following proposition (see also Dragomir [6]).

Proposition 3.11. Let $f: I \subset \mathbb{R}_{+} \rightarrow \mathbb{R}$ the generating mapping be normalized, i.e., $f(1)=0$ and satisfy the assumptions:
(i) f is twice differentiable on (r, R), where $0<r \leq 1 \leq R<\infty$;
(ii) there exists the real constants m, M with $m<M$ such that

$$
\begin{equation*}
m \leq x^{3 / 2} f^{\prime \prime}(x) \leq M, \quad \forall x \in(r, R) \tag{3.49}
\end{equation*}
$$

If $P, Q \in \Delta_{n}$ are discrete probability distributions satisfying the assumption

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty
$$

then we have the inequalities:

$$
\begin{align*}
& 4 m\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right] \tag{3.50}\\
& \quad \leq \beta_{f}(r, R)-C_{f}(P \| Q) \\
& \quad \leq 4 M\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right]
\end{align*}
$$

where $C_{f}(P \| Q), \beta_{f}(r, R)$ and $h(P \| Q)$ as given by (2.1), (2.8) and (1.5) respectively.
In view of Proposition 3.11, we have the following result.
Result 7. Let $P, Q \in \Delta_{n}$ and $s \in \mathbb{R}$. Let there exist $r, R(0<r \leq 1 \leq R<\infty)$ such that

$$
0<r \leq \frac{p_{i}}{q_{i}} \leq R<\infty, \quad \forall i \in\{1,2, \ldots, n\}
$$

then in view of Proposition 3.11, we have

$$
\begin{align*}
& 4 r^{\frac{2 s-1}{2}}\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right] \tag{3.51}\\
& \quad \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \quad \leq 4 R^{\frac{2 s-1}{2}}\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right], s \geq \frac{1}{2}
\end{align*}
$$

and

$$
\begin{align*}
4 R^{\frac{2 s-1}{2}} & {\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right] } \tag{3.52}\\
& \leq \phi_{s}(r, R)-\Phi_{s}(P \| Q) \\
& \leq 4 r^{\frac{2 s-1}{2}}\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right], s \leq \frac{1}{2} .
\end{align*}
$$

Proof. Let the function $\phi_{s}(u)$ given by 3.29 be defined over $[r, R]$. Defining $g(u)=u^{3 / 2} \phi_{s}^{\prime \prime}(u)=$ $u^{\frac{2 s-1}{2}}$, obviously we have

$$
\sup _{u \in[r, R]} g(u)= \begin{cases}R^{\frac{2 s-1}{2}}, & s \geq \frac{1}{2} \tag{3.53}\\ r^{\frac{2 s-1}{2}}, & s \leq \frac{1}{2}\end{cases}
$$

and

$$
\inf _{u \in[r, R]} g(u)= \begin{cases}r^{\frac{2 s-1}{2}}, & s \geq \frac{1}{2} \tag{3.54}\\ R^{\frac{2 s-1}{2}}, & s \leq \frac{1}{2}\end{cases}
$$

In view of (3.53), (3.54) and Proposition 3.11, we get the proof of the result.
In view of Result 7 , we have the following corollary.

Corollary 3.12. Under the conditions of Result 7 we have

$$
\begin{align*}
& \frac{8}{\sqrt{R^{3}}} {\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right] } \tag{3.55}\\
& \leq \frac{(R-1)(1-r)}{r R}-\chi^{2}(Q \| P) \\
& \leq \frac{8}{\sqrt{r^{3}}}\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right] \\
& \leq \frac{4}{\sqrt{R}} \tag{3.56}\\
&\left.\leq \frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right] \\
& 4 \sqrt{r} {\left[\frac{\left(\sqrt{r}-\ln \frac{1}{r}+(1-r) \ln \frac{1}{R}\right.}{R-r}-K(Q \| P)\right.} \\
&\sqrt{R}-1)(1-\sqrt{r}) \tag{3.57}\\
& \sqrt{R}+\sqrt{r} \\
&\left.\leq \frac{(1-\sqrt{r})}{r}-h(P \| Q)\right] \\
& \leq 4 \sqrt{R}\left[\frac{(R-1) r \ln r+(1-r) R \ln R}{R-r}-K(P \| Q)\right. \\
&\left.\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right]
\end{align*}
$$

and

$$
\begin{align*}
8 \sqrt{r^{3}} & {\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right] } \tag{3.58}\\
& \leq(R-1)(1-r)-\chi^{2}(P \| Q) \\
& \leq 8 \sqrt{R^{3}}\left[\frac{(\sqrt{R}-1)(1-\sqrt{r})}{\sqrt{R}+\sqrt{r}}-h(P \| Q)\right] .
\end{align*}
$$

Proof. (3.55) follows by taking $s=-1$, 3.56 follows by taking $s=0$, 3.57) follows by taking $s=1$ and 3.58) follows by taking $s=2$ in Result 7 . For $s=\frac{1}{2}$, we have equality sign.

References

[1] A. BHATTACHARYYA, Some analogues to the amount of information and their uses in statistical estimation, Sankhya, 8 (1946), 1-14.
[2] P.S. BULLEN, D.S. MITRINOVIĆ AND P.M. VASIĆ, Means and Their Inequalities, Kluwer Academic Publishers, 1988.
[3] P. CERONE, S.S. DRAGOMIR AND F. ÖSTERREICHER, Bounds on extended f-divergences for a variety of classes, RGMIA Research Report Collection, 6(1) (2003), Article 7.
[4] I. CSISZÁR, Information type measures of differences of probability distribution and indirect observations, Studia Math. Hungarica, 2 (1967), 299-318.
[5] I. CSISZÁR AND J. KÖRNER, Information Theory: Coding Theorems for Discrete Memoryless Systems, Academic Press, New York, 1981.
[6] S.S. DRAGOMIR, Upper and lower bounds for Csiszár f-divergence in terms of Hellinger discrimination and applications, Nonlinear Analysis Forum, 7(1) (2002), 1-13
[7] S.S. DRAGOMIR, Some inequalities for the Csiszár Φ-divergence - Inequalities for Csiszár fDivergence in Information Theory, http://rgmia.vu.edu.au/monographs/csiszar. htm
[8] S.S. DRAGOMIR, A converse inequality for the Csiszár Φ-Divergence- Inequalities for Csiszár fDivergence in Information Theory, http://rgmia.vu.edu.au/monographs/csiszar. htm
[9] S.S. DRAGOMIR, Other inequalities for Csiszár divergence and applications - Inequalities for Csiszár f-Divergence in Information Theory, http://rgmia.vu.edu.au/monographs/ csiszar.htm
[10] S.S. DRAGOMIR, Upper and lower bounds Csiszár f-divergence in terms of Kullback-Leibler distance and applications - Inequalities for Csiszár f-Divergence in Information Theory, http: //rgmia.vu.edu.au/monographs/csiszar.htm
[11] E. HELLINGER, Neue Begründung der Theorie der quadratischen Formen von unendlichen vielen Veränderlichen, J. Reine Aug. Math., 136 (1909), 210-271.
[12] H. JEFFREYS, An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. Lon., Ser. A, 186 (1946), 453-461.
[13] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Ann. Math. Statist., 22 (1951), 79-86.
[14] L. LECAM, Asymptotic Methods in Statistical Decision Theory, New York, Springer, 1978.
[15] F. LIESE AND I. VAJDA, Convex Statistical Decision Rules, Teubner-Texte zur Mathematick, Band 95, Leipzig, 1987.
[16] K. PEARSON, On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonable supposed to have arisen from random sampling, Phil. Mag., 50 (1900), 157-172.
[17] F. ÖSTERREICHER, Csiszár's f-Divergence - Basic Properties - pre-print, 2002. http:// rgmia.vu.edu.au
[18] A. RÉNYI, On measures of entropy and information, Proc. 4th Berk. Symp. Math. Statist. and Probl., University of California Press, Vol. 1 (1961), 547-461.
[19] R. SIBSON, Information radius, Z. Wahrs. und verw Geb., 14 (1969), 149-160.
[20] I.J. TANEJA, New developments in generalized information measures, Chapter in: Advances in Imaging and Electron Physics, Ed. P.W. Hawkes, 91(1995), 37-135.
[21] I.J. TANEJA, Generalized Information Measures and their Applications, 2001, [ONLINE http: //www.mtm.ufsc.br/~taneja/book/book.html.
[22] I. VAJDA, Theory of Statistical Inference and Information, Kluwer Academic Press, London, 1989.

[^0]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 The author is thankful to the referee for valuable comments and suggestions on an earlier version of the paper.
 078-03

