
volume 5, issue 1, article 21,
2004.

Received 10 June, 2003;
accepted 01 August, 2003.

Communicated by: S.S. Dragomir

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure and
Applied Mathematics

GENERALIZED RELATIVE INFORMATION AND
INFORMATION INEQUALITIES

INDER JEET TANEJA
Departamento de Matemática
Universidade Federal de Santa Catarina
88.040-900 Florianópolis,
SC, Brazil
EMail : taneja@mtm.ufsc.br
URL: http://www.mtm.ufsc.br/∼taneja

c©2000Victoria University
ISSN (electronic): 1443-5756
078-03

Please quote this number (078-03) in correspondence regarding this paper with the Editorial Office.

mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au/
mailto:taneja@mtm.ufsc.br
http://www.mtm.ufsc.br/~taneja
http://www.vu.edu.au/


Generalized Relative
Information and Information

Inequalities

Inder Jeet Taneja

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 42

J. Ineq. Pure and Appl. Math. 5(1) Art. 21, 2004

http://jipam.vu.edu.au

Abstract

In this paper, we have obtained bounds on Csiszár’s f-divergence in terms of rel-
ative information of type s using Dragomir’s [9] approach. The results obtained
in particular lead us to bounds in terms of χ2−Divergence, Kullback-Leibler’s
relative information and Hellinger’s discrimination.

2000 Mathematics Subject Classification: 94A17; 26D15.
Key words: Relative information; Csiszár’s f−divergence; χ2−divergence;
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1. Introduction
Let

∆n =

{
P = (p1, p2, . . . , pn)

∣∣∣∣∣pi > 0,
n∑

i=1

pi = 1

}
, n ≥ 2,

be the set of complete finite discrete probability distributions.
The Kullback Leibler’s [13] relative informationis given by

(1.1) K(P ||Q) =
n∑

i=1

pi ln

(
pi

qi

)
,

for all P, Q ∈ ∆n.
In ∆n, we have taken allpi > 0. If we takepi ≥ 0,∀i = 1, 2, . . . , n, then in

this case we have to suppose that0 ln 0 = 0 ln
(

0
0

)
= 0. From theinformation

theoreticpoint of view we generally take all the logarithms with base 2, but here
we have taken only natural logarithms.

We observe that the measure (1.1) is not symmetric inP andQ. Its symmet-
ric version, famous asJ-divergence(Jeffreys [12]; Kullback and Leiber [13]),
is given by

(1.2) J(P ||Q) = K(P ||Q) + K(Q||P ) =
n∑

i=1

(pi − qi) ln

(
pi

qi

)
.

Let us consider the one parametric generalization of the measure (1.1), called
relative information of types given by

(1.3) Ks(P ||Q) = [s(s− 1)]−1

[
n∑

i=1

ps
iq

1−s
i − 1

]
, s 6= 0, 1.
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In this case we have the following limiting cases

lim
s→1

Ks(P ||Q) = K(P ||Q),

and
lim
s→0

Ks(P ||Q) = K(Q||P ).

The expression (1.3) has been studied by Vajda [22]. Previous to it many
authors studied its characterizations and applications (ref. Taneja [20] and on
line book Taneja [21]).

We have some interesting particular cases of the measure (1.3).

(i) Whens = 1
2
, we have

K1/2(P ||Q) = 4 [1−B(P ||Q)] = 4h(P ||Q)

where

(1.4) B(P ||Q) =
n∑

i=1

√
piqi,

is the famous as Bhattacharya’s [1] distance, and

(1.5) h(P ||Q) =
1

2

n∑
i=1

(
√

pi −
√

qi)
2,

is famous as Hellinger’s [11] discrimination.
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(ii) Whens = 2, we have

K2(P ||Q) =
1

2
χ2(P ||Q),

where

(1.6) χ2(P ||Q) =
n∑

i=1

(pi − qi)
2

qi

=
n∑

i=1

p2
i

qi

− 1,

is theχ2−divergence(Pearson [16]).

(iii) Whens = −1, we have

K−1(P ||Q) =
1

2
χ2(Q||P ),

where

(1.7) χ2(Q||P ) =
n∑

i=1

(pi − qi)
2

pi

=
n∑

i=1

q2
i

pi

− 1.

For simplicity, let us write the measures (1.3) in the unified way:

(1.8) Φs(P ||Q) =


Ks(P ||Q), s 6= 0, 1,

K(Q||P ), s = 0,

K(P ||Q), s = 1.
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Summarizing, we have the following particular cases of the measures (1.8):

(i) Φ−1(P ||Q) = 1
2
χ2(Q||P ).

(ii) Φ0(P ||Q) = K(Q||P ).

(iii) Φ1/2(P ||Q) = 4 [1−B(P ||Q)] = 4h(P ||Q).

(iv) Φ1(P ||Q) = K(P ||Q).

(v) Φ2(P ||Q) = 1
2
χ2(P ||Q).

http://jipam.vu.edu.au/
mailto:taneja@mtm.ufsc.br
http://jipam.vu.edu.au/


Generalized Relative
Information and Information

Inequalities

Inder Jeet Taneja

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 42

J. Ineq. Pure and Appl. Math. 5(1) Art. 21, 2004

http://jipam.vu.edu.au

2. Csiszár’sf−Divergence and Information Bounds
Given a convex functionf : [0,∞) → R, thef−divergence measure introduced
by Csiszár [4] is given by

(2.1) Cf (p, q) =
n∑

i=1

qif

(
pi

qi

)
,

wherep, q ∈ Rn
+.

The following two theorems can be seen in Csiszár and Körner [5].

Theorem 2.1. (Joint convexity). Iff : [0,∞) → R be convex, thenCf (p, q) is
jointly convex inp andq, wherep, q ∈ Rn

+.

Theorem 2.2. (Jensen’s inequality). Letf : [0,∞) → R be a convex function.
Then for anyp, q ∈ Rn

+, with Pn =
∑n

i=1 pi > 0, Qn =
∑n

i=1 pi > 0, we have
the inequality

Cf (p, q) ≥ Qnf

(
Pn

Qn

)
.

The equality sign holds for strictly convex functions iff

p1

qi

=
p2

q2

= · · · = pn

qn

.

In particular, for allP, Q ∈ ∆n, we have

Cf (P ||Q) ≥ f(1),

with equality iff P = Q.
In view of Theorems2.1and2.2, we have the following result.
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Result 1. For all P, Q ∈ ∆n, we have

(i) Φs(P ||Q) ≥ 0 for anys ∈ R, with equality iffP = Q.

(ii) Φs(P ||Q) is convex function of the pair of distributions(P, Q) ∈ ∆n×∆n

and for anys ∈ R.

Proof. Take

(2.2) φs(u) =


[s(s− 1)]−1 [us − 1− s(u− 1)] , s 6= 0, 1;

u− 1− ln u, s = 0;

1− u + u ln u, s = 1

for all u > 0 in (2.1), we have

Cf (P ||Q) = Φs (P ||Q) =


Ks(P ||Q), s 6= 0, 1;

K(Q||P ), s = 0;

K(P ||Q), s = 1.

Moreover,

(2.3) φ′s(u) =


(s− 1)−1 (us−1 − 1) , s 6= 0, 1;

1− u−1, s = 0;

ln u, s = 1
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and

(2.4) φ′′s(u) =


us−2, s 6= 0, 1;

u−2, s = 0;

u−1, s = 1.

Thus we haveφ′′s(u) > 0 for all u > 0, and hence,φs(u) is strictly convex for
all u > 0. Also, we haveφs(1) = 0. In view of Theorems2.1and2.2we have
the proof of parts (i) and (ii) respectively.

For some studies on the measure (2.2) refer to Liese and Vajda [15], Öster-
reicher [17] and Cerone et al. [3].

The following theorem summarizes some of the results studies by Dragomir
[7], [8]. For simplicity we have takenf(1) = 0 andP, Q ∈ ∆n.

Theorem 2.3. Let f : R+ → R be differentiable convex and normalized i.e.,
f(1) = 0. If P, Q ∈ ∆n are such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

for somer and R with 0 < r ≤ 1 ≤ R < ∞, then we have the following
inequalities:

(2.5) 0 ≤ Cf (P ||Q) ≤ 1

4
(R− r) (f ′(R)− f ′(r)) ,

(2.6) 0 ≤ Cf (P ||Q) ≤ βf (r, R),

http://jipam.vu.edu.au/
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and

0 ≤ βf (r, R)− Cf (P ||Q)(2.7)

≤ f ′(R)− f ′(r)

R− r

[
(R− 1)(1− r)− χ2(P ||Q)

]
≤ 1

4
(R− r) (f ′(R)− f ′(r)) ,

where

(2.8) βf (r, R) =
(R− 1)f(r) + (1− r)f(R)

R− r
,

andχ2(P ||Q) andCf (P ||Q) are as given by (1.6) and (2.1) respectively.

In view of above theorem, we have the following result.

Result 2. LetP, Q ∈ ∆n ands ∈ R. If there existsr, R such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

with 0 < r ≤ 1 ≤ R < ∞, then we have

(2.9) 0 ≤ Φs(P ||Q) ≤ µs(r, R),

(2.10) 0 ≤ Φs(P ||Q) ≤ φs(r, R),

http://jipam.vu.edu.au/
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and

0 ≤ φs(r, R)− Φs(P ||Q)(2.11)

≤ ks(r, R)
[
(R− 1)(1− r)− χ2(P ||Q)

]
≤ µs(r, R),

where

(2.12) µs(r, R) =


1
4

(R−r)(Rs−1−rs−1)
(s−1)

, s 6= 1;

1
4
(R− r) ln

(
R
r

)
, s = 1

φs(r, R) =
(R− 1)φs(r) + (1− r)φs(R)

R− r
(2.13)

=



(R−1)(rs−1)+(1−r)(Rs−1)
(R−r)s(s−1)

, s 6= 0, 1;

(R−1) ln 1
r
+(1−r) ln 1

R

(R−r)
, s = 0;

(R−1)r ln r+(1−r)R ln R
(R−r)

, s = 1,

and

(2.14) ks(r, R) =
φ′s(R)− φ′s(r)

R− r
=


Rs−1 − rs−1

(R− r)(s− 1)
, s 6= 1;

ln R− ln r

R− r
, s = 1.

http://jipam.vu.edu.au/
mailto:taneja@mtm.ufsc.br
http://jipam.vu.edu.au/


Generalized Relative
Information and Information

Inequalities

Inder Jeet Taneja

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 42

J. Ineq. Pure and Appl. Math. 5(1) Art. 21, 2004

http://jipam.vu.edu.au

Proof. The above result follows immediately from Theorem2.3, by takingf(u) =
φs(u), whereφs(u) is as given by (2.2), then in this case we haveCf (P ||Q) =
Φs(P ||Q).

Moreover,

µs(r, R) =
1

4
(R− r)2 ks(r, R),

where

ks(r, R) =

{
[Ls−2(r, R)]s−2 , s 6= 1;

[L−1(r, R)]−1 s = 1,

andLp(a, b) is the famous (ref. Bullen, Mitrinović and Vasíc [2]) p-logarithmic
meangiven by

Lp(a, b) =



[
bp+1−ap+1

(p+1)(b−a)

] 1
p
, p 6= −1, 0;

b−a
ln b−ln a

, p = −1;

1
e

[
bb

aa

] 1
b−a

, p = 0,

for all p ∈ R, a, b ∈ R+, a 6= b.
We have the following corollaries as particular cases of Result2.

Corollary 2.4. Under the conditions of Result2, we have

0 ≤ χ2(Q||P ) ≤ 1

4
(R + r)

(
R− r

rR

)2

,(2.15)

0 ≤ K(Q||P ) ≤ (R− r)2

4Rr
,(2.16)

http://jipam.vu.edu.au/
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0 ≤ K(P ||Q) ≤ 1

4
(R− r) ln

(
R

r

)
,(2.17)

0 ≤ h(P ||Q) ≤
(R− r)

(√
R−

√
r
)

8
√

Rr
(2.18)

and

(2.19) 0 ≤ χ2(P ||Q) ≤ 1

2
(R− r)2.

Proof. (2.15) follows by takings = −1, (2.16) follows by takings = 0, (2.17)
follows by takings = 1, (2.18) follows by takings = 1

2
and (2.19) follows by

takings = 2 in (2.9).

Corollary 2.5. Under the conditions of Result2, we have

0 ≤ χ2(Q||P ) ≤ (R− 1)(1− r)

rR
,(2.20)

0 ≤ K(Q||P ) ≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
,(2.21)

0 ≤ K(P ||Q) ≤ (R− 1)r ln r + (1− r)R ln R

R− r
,(2.22)

0 ≤ h(P ||Q) ≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

(2.23)

and

(2.24) 0 ≤ χ2(P ||Q) ≤ (R− 1)(1− r).

http://jipam.vu.edu.au/
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Proof. (2.20) follows by takings = −1, (2.21) follows by takings = 0, (2.22)
follows by takings = 1, (2.23) follows by takings = 1

2
and (2.24) follows by

takings = 2 in (2.10).

In view of (2.16), (2.17), (2.21) and (2.22), we have the following bounds on
J-divergence:

(2.25) 0 ≤ J(P ||Q) ≤ min {t1(r, R), t2(r, R)} ,

where

t1(r, R) =
1

4
(R− r)2

[
(rR)−1 + (L−1(r, R))−1]

and
t2(r, R) = (R− 1)(1− r) (L−1(r, R))−1 .

The expressiont1(r, R) is due to (2.16) and (2.17) and the expressiont2(r, R)
is due to (2.21) and (2.22).

Corollary 2.6. Under the conditions of Result2, we have

0 ≤ (R− 1)(1− r)

rR
− χ2(Q||P )(2.26)

≤ R + r

(rR)2

[
(R− 1)(1− r)− χ2(P ||Q)

]
,

0 ≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )(2.27)

≤ 1

rR

[
(R− 1)(1− r)− χ2(P ||Q)

]
,

http://jipam.vu.edu.au/
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0 ≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)(2.28)

≤ ln R− ln r

R− r

[
(R− 1)(1− r)− χ2(P ||Q)

]
and

0 ≤

(√
R− 1

)
(1−

√
r)(√

R +
√

r
) − h(P ||Q)(2.29)

≤ 1

2
√

rR
(√

R +
√

r
) [

(R− 1)(1− r)− χ2(P ||Q)
]
.

Proof. (2.26) follows by takings = −1, (2.27) follows by takings = 0, (2.28)
follows by takings = 1, (2.29) follows by takings = 1

2
in (2.11).
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3. Main Results
In this section, we shall present a theorem generalizing the one obtained by
Dragomir [9]. The results due to Dragomir [9] are limited only toχ2− diver-
gence, while the theorem established here is given in terms ofrelative informa-
tion of types, that in particular lead us to bounds in terms ofχ2−divergence,
Kullback-Leibler’srelative informationand Hellinger’sdiscrimination.

Theorem 3.1. Let f : I ⊂ R+ → R the generating mapping be normalized,
i.e.,f(1) = 0 and satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 ≤ r ≤ 1 ≤ R ≤ ∞;

(ii) there exists the real constantsm, M with m < M such that

(3.1) m ≤ x2−sf ′′(x) ≤ M, ∀x ∈ (r, R), s ∈ R.

If P, Q ∈ ∆n are discrete probability distributions satisfying the assump-
tion

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

m [φs(r, R)− Φs(P ||Q)] ≤ βf (r, R)− Cf (P ||Q)(3.2)

≤ M [φs(r, R)− Φs(P ||Q)] ,

whereCf (P ||Q), Φs(P ||Q), βf (r, R) and φs(r, R) are as given by (2.1),
(1.8), (2.8) and (2.13) respectively.
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Proof. Let us consider the functionsFm,s(·) andFM,s(·) given by

(3.3) Fm,s(u) = f(u)−mφs(u),

and

(3.4) FM,s(u) = Mφs(u)− f(u),

respectively, wherem andM are as given by (3.1) and functionφs(·) is as given
by (2.3).

Sincef(u) andφs(u) are normalized, thenFm,s(·) andFM,s(·) are also nor-
malized, i.e.,Fm,s(1) = 0 andFM,s(1) = 0. Moreover, the functionsf(u) and
φs(u) are twice differentiable. Then in view of (2.4) and (3.1), we have

F ′′
m,s(u) = f ′′(u)−mus−2 = us−2

(
u2−sf ′′(u)−m

)
≥ 0

and
F ′′

M,s(u) = Mus−2 − f ′′(u) = us−2
(
M − u2−sf ′′(u)

)
≥ 0,

for all u ∈ (r, R) ands ∈ R. Thus the functionsFm,s(·) andFM,s(·) are convex
on (r, R).

We have seen above that the real mappingsFm,s(·) andFM,s(·) defined over
R+ given by (3.3) and (3.4) respectively are normalized, twice differentiable
and convex on(r, R). Applying the r.h.s. of the inequality (2.6), we have

(3.5) CFm,s(P ||Q) ≤ βFm,s(r, R),

and

(3.6) CFm,s(P ||Q) ≤ βFM,s
(r, R),
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respectively.
Moreover,

(3.7) CFm,s(P ||Q) = Cf (P ||Q)−mΦs(P ||Q),

and

(3.8) CFM,s
(P ||Q) = MΦs(P ||Q)− Cf (P ||Q).

In view of (3.5) and (3.7), we have

Cf (P ||Q)−mΦs(P ||Q) ≤ βFm,s(r, R),

i.e.,
Cf (P ||Q)−mΦs(P ||Q) ≤ βf (r, R)−mφs(r, R)

i.e.,
m [φs(r, R)− Φs(P ||Q)] ≤ βf (r, R)− Cf (P ||Q).

Thus, we have the l.h.s. of the inequality (3.2).
Again in view of (3.6) and (3.8), we have

MΦs(P ||Q)− Cf (P ||Q) ≤ βFM,s
(r, R),

i.e.,
MΦs(P ||Q)− Cf (P ||Q) ≤ Mφs(r, R)− βf (r, R),

i.e.,
βf (r, R)− Cf (P ||Q) ≤ M [φs(r, R)− Φs(P ||Q)] .

Thus we have the r.h.s. of the inequality (3.2).
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Remark 3.1. For similar kinds of results in comparing thef−divergence with
Kullback-Leibler relative information see the work by Dragomir [10]. The case
of Hellinger discrimination is discussed in Dragomir [6].

We shall now present some particular case of the Theorem3.1.

3.1. Information Bounds in Terms of χ2−Divergence

In particular fors = 2, in Theorem3.1, we have the following proposition:

Proposition 3.2. Letf : I ⊂ R+ → R the generating mapping be normalized,
i.e.,f(1) = 0 and satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 < r ≤ 1 ≤ R < ∞;

(ii) there exists the real constantsm, M with m < M such that

(3.9) m ≤ f ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assump-
tion

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

m

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.10)

≤ βf (r, R)− Cf (P ||Q)

≤ M

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
,
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whereCf (P ||Q), βf (r, R) andχ2(P ||Q) are as given by (2.1), (2.8) and
(1.6) respectively.

The above proposition was obtained by Dragomir in [9]. As a consequence
of the above Proposition3.2, we have the following result.

Result 3. LetP, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞)
such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

then in view of Proposition3.2, we have

Rs−2

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.11)

≤ φs(r, R)− Φs(P ||Q)

≤ rs−2

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
, s ≤ 2

and

rs−2

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.12)

≤ φs(r, R)− Φs(P ||Q)

≤ Rs−2

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
, s ≥ 2.

Proof. Let us considerf(u) = φs(u), whereφs(u) is as given by (2.2), then
according to expression (2.4), we have

φ′′s(u) = us−2.
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Now if u ∈ [r, R] ⊂ (0,∞), then we have

Rs−2 ≤ φ′′s(u) ≤ rs−2, s ≤ 2,

or accordingly, we have

(3.13) φ′′s(u)

≤ rs−2, s ≤ 2;

≥ rs−2, s ≥ 2

and

(3.14) φ′′s(u)

≤ Rs−2, s ≥ 2;

≥ Rs−2, s ≤ 2,

wherer andR are as defined above. Thus in view of (3.9), (3.13) and (3.14),
we have the proof.

In view of Result3, we have the following corollary.

Corollary 3.3. Under the conditions of Result3, we have

1

R3

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.15)

≤ (R− 1)(1− r)

rR
− χ2(Q||P )

≤ 1

r3

[
(R− 1)(1− r)− χ2(P ||Q)

]
,
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1

2R2

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.16)

≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

≤ 1

2r2

[
(R− 1)(1− r)− χ2(P ||Q)

]
,

1

2R

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.17)

≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

≤ 1

2r

[
(R− 1)(1− r)− χ2(P ||Q)

]
and

1

8
√

R3

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.18)

≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

− h(P ||Q)

≤ 1

8
√

r3

[
(R− 1)(1− r)− χ2(P ||Q)

]
.

Proof. (3.15) follows by takings = −1, (3.16) follows by takings = 0, (3.17)
follows by takings = 1, (3.18) follows by takings = 1

2
in Result3. While for

s = 2, we have equality sign.
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Proposition 3.4. Let f : I ⊂ R+ → R the generating mapping be normalized,
i.e.,f(1) = 0 and satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 < r ≤ 1 ≤ R < ∞;

(ii) there exists the real constantsm, Msuch thatm < M and

(3.19) m ≤ x3f ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assump-
tion

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

m

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.20)

≤ βf (r, R)− Cf (P ||Q)

≤ m

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
,

whereCf (P ||Q), βf (r, R) andχ2(Q||P ) are as given by (2.1), (2.8) and
(1.7) respectively.

As a consequence of above proposition, we have the following result.

Result 4. LetP, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞)
such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},
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then in view of Proposition3.4, we have

Rs+1

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.21)

≤ φs(r, R)− Φs(P ||Q)

≤ rs+1

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
, s ≤ −1

and

rs+1

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.22)

≤ φs(r, R)− Φs(P ||Q)

≤ Rs+1

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
, s ≥ −1.

Proof. Let us considerf(u) = φs(u), whereφs(u) is as given by (2.2), then
according to expression (2.4), we have

φ′′s(u) = us−2.

Let us define the functiong : [r, R] → R such thatg(u) = u3φ′′s(u) = us+1,
then we have

(3.23) sup
u∈[r,R]

g(u) =

Rs+1, s ≥ −1;

rs+1, s ≤ −1
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and

(3.24) inf
u∈[r,R]

g(u) =

rs+1, s ≥ −1;

Rs+1, s ≤ −1.

In view of (3.23) , (3.24) and Proposition3.4, we have the proof of the result.

In view of Result4, we have the following corollary.

Corollary 3.5. Under the conditions of Result4, we have

r

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.25)

≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

≤ R

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
,

r2

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.26)

≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

≤ R2

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
,
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√
r3

8

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.27)

≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

− h(P ||Q)

≤
√

R3

8

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
and

r3

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.28)

≤ (R− 1)(1− r)− χ2(P ||Q)

≤ R3

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
.

Proof. (3.25) follows by takings = 0, (3.26) follows by takings = 1, (3.27)
follows by takings = 1

2
and (3.28) follows by takings = 2 in Result4. While

for s = −1, we have equality sign.

3.2. Information Bounds in Terms of Kullback-Leibler
Relative Information

In particular fors = 1, in the Theorem3.1, we have the following proposition
(see also Dragomir [10]).
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Proposition 3.6. Letf : I ⊂ R+ → R the generating mapping be normalized,
i.e.,f(1) = 0 and satisfy the assumptions:

(i) f is twice differentiable on(r, R) , where0 < r ≤ 1 ≤ R < ∞;

(ii) there exists the real constantsm, M with m < M such that

(3.29) m ≤ xf ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assump-
tion

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

m

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.30)

≤ βf (r, R)− Cf (P ||Q)

≤ M

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
,

whereCf (P ||Q), βf (r, R) andK(P ||Q) as given by (2.1), (2.8) and (1.1)
respectively.

In view of the above proposition, we have the following result.

Result 5. LetP, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞)
such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},
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then in view of Proposition3.6, we have

rs−1

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.31)

≤ φs(r, R)− Φs(P ||Q)

≤ Rs−1

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
, s ≥ 1

and

Rs−1

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.32)

≤ φs(r, R)− Φs(P ||Q)

≤ rs−1

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
, s ≤ 1.

Proof. Let us considerf(u) = φs(u), whereφs(u) is as given by (2.2), then
according to expression (2.4), we have

φ′′s(u) = us−2.

Let us define the functiong : [r, R] → R such thatg(u) = φ′′s(u) = us−1, then
we have

(3.33) sup
u∈[r,R]

g(u) =

Rs−1, s ≥ 1;

rs−1, s ≤ 1

http://jipam.vu.edu.au/
mailto:taneja@mtm.ufsc.br
http://jipam.vu.edu.au/


Generalized Relative
Information and Information

Inequalities

Inder Jeet Taneja

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 29 of 42

J. Ineq. Pure and Appl. Math. 5(1) Art. 21, 2004

http://jipam.vu.edu.au

and

(3.34) inf
u∈[r,R]

g(u) =

rs−1, s ≥ 1;

Rs−1, s ≤ 1.

In view of (3.33), (3.34) and Proposition3.6we have the proof of the result.

In view of Result5, we have the following corollary.

Corollary 3.7. Under the conditions of Result5, we have

2

R2

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.35)

≤ (R− 1)(1− r)

rR
− χ2(Q||P )

≤ 2

r2

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
,

1

R

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.36)

≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

≤ 1

r

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
,
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1

4
√

R

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.37)

≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

− h(P ||Q)

≤ 1

4
√

r

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
and

2r

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.38)

≤ (R− 1)(1− r)− χ2(P ||Q)

≤ 2R

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
.

Proof. (3.35) follows by takings = −1, (3.36) follows by takings = 0, (3.37)
follows by takings = 1

2
and (3.38) follows by takings = 2 in Result5. For

s = 1, we have equality sign.

In particular, fors = 0 in Theorem3.1, we have the following proposition:

Proposition 3.8. Letf : I ⊂ R+ → R the generating mapping be normalized,
i.e.,f(1) = 0 and satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 < r ≤ 1 ≤ R < ∞;
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(ii) there exists the real constantsm, M with m < M such that

(3.39) m ≤ x2f ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assump-
tion

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

m

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.40)

≤ βf (r, R)− Cf (P ||Q)

≤ M

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
,

whereCf (P ||Q), βf (r, R) andK(Q||P ) as given by (2.1), (2.8) and (1.1)
respectively.

In view of Proposition3.8, we have the following result.

Result 6. LetP, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞)
such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},
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then in view of Proposition3.8, we have

rs

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.41)

≤ φs(r, R)− Φs(P ||Q)

≤ Rs

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
, s ≥ 0

and

Rs

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.42)

≤ φs(r, R)− Φs(P ||Q)

≤ rs

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
, s ≤ 0.

Proof. Let us considerf(u) = φs(u), whereφs(u) is as given by (2.2), then
according to expression (2.4), we have

φ′′s(u) = us−2.

Let us define the functiong : [r, R] → R such thatg(u) = u2φ′′s(u) = us, then
we have

(3.43) sup
u∈[r,R]

g(u) =

Rs, s ≥ 0;

rs, s ≤ 0

http://jipam.vu.edu.au/
mailto:taneja@mtm.ufsc.br
http://jipam.vu.edu.au/


Generalized Relative
Information and Information

Inequalities

Inder Jeet Taneja

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 33 of 42

J. Ineq. Pure and Appl. Math. 5(1) Art. 21, 2004

http://jipam.vu.edu.au

and

(3.44) inf
u∈[r,R]

g(u) =

rs, s ≥ 0;

Rs, s ≤ 0.

In view of (3.43), (3.44) and Proposition3.8, we have the proof of the result.

In view of Result6, we have the following corollary.

Corollary 3.9. Under the conditions of Result6, we have

2

R

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.45)

≤ (R− 1)(1− r)

rR
− χ2(Q||P )

≤ 2

r

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
,

r

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.46)

≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

≤ R

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
,
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√
r

4

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.47)

≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

− h(P ||Q)

≤
√

R

4

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
and

2r2

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.48)

≤ (R− 1)(1− r)− χ2(P ||Q)

≤ 2R2

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
.

Proof. (3.45) follows by takings = −1, (3.46) follows by takings = 1, (3.47)
follows by takings = 1

2
and (3.48) follows by takings = 2 in Result6. For

s = 0, we have equality sign.

3.3. Information Bounds in Terms of Hellinger’s
Discrimination

In particular, fors = 1
2

in Theorem3.1, we have the following proposition (see
also Dragomir [6]).
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Proposition 3.10. Let f : I ⊂ R+ → R the generating mapping be normal-
ized, i.e.,f(1) = 0 and satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 < r ≤ 1 ≤ R < ∞;

(ii) there exists the real constantsm, M with m < M such that

(3.49) m ≤ x3/2f ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assump-
tion

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

4m


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.50)

≤ βf (r, R)− Cf (P ||Q)

≤ 4M


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 ,

whereCf (P ||Q), βf (r, R) andh(P ||Q) as given by (2.1), (2.8) and (1.5)
respectively.

In view of Proposition3.10, we have the following result.
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Result 7. LetP, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞)
such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

then in view of Proposition3.10, we have

4r
2s−1

2


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.51)

≤ φs(r, R)− Φs(P ||Q)

≤ 4R
2s−1

2


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 , s ≥ 1

2

and

4R
2s−1

2


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.52)

≤ φs(r, R)− Φs(P ||Q)

≤ 4r
2s−1

2


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 , s ≤ 1

2
.

Proof. Let the functionφs(u) given by (3.29) be defined over[r, R]. Defining
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g(u) = u3/2φ′′s(u) = u
2s−1

2 , obviously we have

(3.53) sup
u∈[r,R]

g(u) =

R
2s−1

2 , s ≥ 1
2
;

r
2s−1

2 , s ≤ 1
2

and

(3.54) inf
u∈[r,R]

g(u) =

r
2s−1

2 , s ≥ 1
2
;

R
2s−1

2 , s ≤ 1
2
.

In view of (3.53), (3.54) and Proposition3.10, we get the proof of the result.

In view of Result7, we have the following corollary.

Corollary 3.11. Under the conditions of Result7, we have

8√
R3


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.55)

≤ (R− 1)(1− r)

rR
− χ2(Q||P )

≤ 8√
r3


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 ,
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4√
R


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.56)

≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

≤ 4√
r


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 ,

4
√

r


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.57)

≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

≤ 4
√

R


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)


and

8
√

r3


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.58)

≤ (R− 1)(1− r)− χ2(P ||Q)
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≤ 8
√

R3


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 .

Proof. (3.55) follows by takings = −1, (3.56) follows by takings = 0, (3.57)
follows by takings = 1 and (3.58) follows by takings = 2 in Result7. For
s = 1

2
, we have equality sign.
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