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1. Main results

When solving Question CIQ-103 iR and Question CIQ-142 irg|, the following
two algebraic inequalities involving variables were posed.

Theorem 1.1.Letn > 2 andz; for 1 < i < 2n be positive real numbers. Then

2n 2n—1

T n
(1.1) i > |
; Zi¢z<$l 4 qp,)2n-1 T 2207220 — 1)

Equality in(1.1) holds if and only ifr; = x; forall 1 <4, j < 2n.

Theorem 1.2.Letn > 2 andy; for 1 < i < 2n be positive real numbers. Then

2n
y? S 2n

i+n—2 — _ 1’
o Yicpa dpl;  Yken M1

wherem|2n meansm mod 2n for all nonnegative integers:. Equality in(1.2)
holds if and only ify; = y; forall 1 <, 5 < 2n.

(1.2)

The notatlonz”” 2 Yk|2n IN Theoreml.2 could be illustrated with an example
to clarify the meaning: I, = 5 then>_, %, yxji0 = Yo + Y10 + ¥1 + ¥a.

In this article, by proving a combinatorial identity and an algebraic identity and by
using Cauchy’s inequality, these two algebraic inequalitie$) @nd (L.2) involving
2n positive variables are proved.

Moreover, as a by-product of Theorend, the following inequality is deduced.

Theorem 1.3.Forn >2andl1 < k <n — 1,

2(n—1)
1.3) prﬂ( p) 2 f;(k:Jrl)'
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2. Two Lemmas

In order to prove inequalitiesL(1) and (L.2), the following two lemmas are neces-
sary.

Lemma 2.1. Letn and k be natural numbers such that> k. Then

(2.1) ni(n — k)? (2;) = 4" 1p,

k=0

Proof. It is well known that
(1) = (20 ) =)
k(k — 1) (Z) —n(n—1) (Z B g) i (22”) vy

=0
Then
n—1
2n

o 2
Zm k) ( k)
k=0

L ron =l o el 2n
2
—n (k)—(Qn I)Zk(k)Jer;(k;—l)(k)

k=0 k=0 k=0

1 /on o —1 o —2
2 - o o o o
=n (k) 2n(2n — 1) <k_1)+2n(2n 1)Z(k_2>

k=0 k=1 k=2
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n—1 n—2 n—3
2 2n — 2
= n? (n)—Qn ( )+2n2n—1 g (n )
0 0

2n—2) _ 2(2n—2)

n—1

k= k=
qn (2n) 92n—1 _ 2(2:711) -1 _

n—2

=n T" —2n(2n — 1) 5 + 2n(2n — 1)

= 4" +

2

dn(2n = 1) (") —n?(7) — 2020 - D)) +2(05)]

2

= 4"+ [2(2n = 1)? = n(2n —1) = n(2n — 1) = 2(2n — 1)(n — 1) (2n y 2)

= 4" 1p,

The proof of Lemma&.1is complete.

n—1

]

Lemma 2.2. Letn > 2 andy; for 1 < ¢ < 2n be positive numbers. Denote

T =Y + Ynyi for 1 <i <nand

2n n—141
(2.2) Ay = Zyz Z Yk|2n;
= k=i+1

wherem|2n meansn mod 2n for all nonnegative integers:. Then
1<i<j<n

Proof. Formula ¢.2) can be written as

(24) Ap =iy +- -+ uyn) Fy2(ys+ -+ Yns1) + - F Yoy + - -

+ yn—l)-
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From this, it is obtained readily that

Z Yiy; — Z YiYn+i

1<i<j<2n
by induction om. Since
Z TiTj = Z (Wi + Yin) (W) + Yjtn),
1<i<j<n 1<i<j<n

then

= D oy Zyzym: D Wit Y)Wy i) = )

1<i<j<2n 1<i<j<n 1<i<j<n

which means that identity?(3) holds. The proof of Lemma.2is complete. O

Algebraic Inequalities with  2n

Variables
Xiao-Guang Chu, Cheng-En Zhang

and Feng Qi
vol. 8, iss. 4, art. 102, 2007

Title Page
Contents
44 44
< >
Page 6 of 13
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

3. Proofs of the Main Results

Proof of Theoreni.l By Cauchy’s inequality], 4], it follows that

EYID DI o TS 1><Zx) .

2n 1
=1 Zk#z(xz—'—xk =1 j#i

Consequently, it suffices to show

2n 2n  2n
(2n — 1)4"! (Z xf) > nZZm, x4 ;)" !

=1 ];éz
4n 1Zx2n_{_ )22n 1 Z .CE?ZL'?
1<i<j<2n
2n — 1 m—1\] e
= |( ) G
k=0 i=1 j#i

= (2n—1) (272 Zx%

v {(271_ 1)22nt — 2”(2nn_ 1)} > i

1<i<j<2n

MH

() GrIE T
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Since(7) = (,",) and(}) = (") + (7Z}), the above inequality becomes

(3.2) (2n—1)22”_1—n(2:)} S apa

1<i<j<2n
2n  2n

+(2n—1) (2772 - szn — ”Z (Zn) Z fo"‘kxf > 0.
i=1 ji

Utilization of 337 (*) = 22 and (¥') = (3") = 1 yields

(27 =n) + (2n — 12 — ”(2: ) - 221 (2: )

k=1,k#n
2n m,
=2""n —2n—n -2 =0.
()

Substituting this into{.2) gives

2n n—1 q m 2n—2q—2
(3.3) Z {Z [22”—2 —n— nz ( . )] ! Z w?n—Zq—k—Q‘x?}

i=1,7=1,i#j5 \ ¢=0 k=0
X ('Iz - x])Q Z 07

where) 7 _ ( ) = 0 for ¢ = 0. Employing ¢.1) in the above inequality leads to

nz_l(zn —op—1) [22"2 . ni (2;)]

p=0 k=0
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n—1 m
=22 _pn (n—k)Q(k):O
k=0
This implies that inequalityd.3) is equivalent to
2n n k—1
G4 Y (@-a) {Z [ 2t =0 k- o) (2 )] gkt
i=1,j=1,i#j k=1 q=0
2n n
. 2n ek ko
+ Z [(271—/{:—1—1)22 2—n2(2n—q+1)(q_k>] 7 kx? 2} >0,
2n n—1 p(p + 1) omn
2n—2
R N ()]
i=1,7=1,i#5 \ k=1 p=1
2n—2k—2
xxf‘lmf_l x?n P 4x§} (x; m])4 >0
p=0

In order to prove §.4), it is sufficient to show

IR (et Rt PRI R (n 5 ) > 0.

2 2
p=1
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Considering 2.1), it is sufficient to show

n—1
(3.6) (n— k) (2]?) > o2
k=0
By virtue of (7) = (,",) and>"i", (3") = 22, inequality ¢.6) can be rearranged
as
n—1 m, 2n m,
o) 3 o)
k=0 k=n+1
= 2n 2n 2n 2n
3.7 2n — 2k —1 + 2k —2n —1 > .
@D Y () PICE ()= ()

Sincen > 2and (")) + () > (*') is equivalent t@ > ™, then inequalities

(3.7), (3.6) and @3.5) are valld The proof of Theorem1is complete O

Proof of Theoremi.2. By LemmaZ2.2, it is easy to see thal ", y; = >.r, =
From Cauchy’s inequalityl] 4], it follows that

2n 2 2n 2
y.
An iz n— Z y’L )
; Yi—1)2n Zk; 2 Yk|2n (; >

where A,, is defined by 2.2) or (2.9 in LemmaZ2.2. Therefore, it is sufficient to
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(n—1) (i yi) >2nA, <= (n—-1) (Z xl) > 2n Z LT,

=1 1<i<j<n
<~ (n—-1) Zm >2 Z Ty
1<i<j<2n
1<i<j<2n
The proof of Theorem..2is complete. O
Proof of Theorem .3. Let
b 2n
3.8 B, =22 VE(k+1) — 1 .
(3.8) (k+1) n;p(w)k_p
Then
i o 42
Bni1 = k(k +1)22"7222 — 1 1
=k D WIS ()

o9 e o[ (272

p— k—p k—p
k
£4B,+ ) plp+1)Chyp

p=1
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and

e [()- ()] e[ ()
5] (5 B
_ 4n(2")w e+t 1)<2n+2)w

q qg+1 q qg+1
2 —2n+1
>—

qg+1 /

for0 < ¢ <k — 1. Hence,

2n —q
(3.10) — Cy > Cyia.
From the above inequality and the facts that
(3.11) o - 22n —1)(n+1) (2n> 50
n+ 2 n

and 27:1" > 0, it follows easily that”, > 0. Consequently, we havg, ., > 4B,
and tqhean+2 > 4B.1. As a result, utilization of{.5) gives
Bri1 >0, Bipi2>0, Bpiz>0, Bip>0, s Birm-ry= B, >0.

The proof of inequality 1.3) is complete. O
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