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ABSTRACT. We give a new simpler proof along with a generalization for the inequality of Yao
and Iyer [10] arising in bioequivalence studies and by using a nonparametric approach we also
discuss an extension of the individual bioequivalence setting to the case where the data are not
necessarily normally distributed.
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1. I NTRODUCTION

Bioequivalence testing is required when trying to get the approval for manufacturing and
selling of a generic drug having mainly the same properties with a (more expensive) reference
(brand-name) drug. Establishing bioequivalence saves the generic drug manufacturer from per-
forming expensive clinical trials to demonstrate the quality of his product. Two drugs are con-
sidered bioequivalent if they are absorbed into the blood and become active at about the same
rate and concentration. Bioequivalent drugs are supposed to provide the same therapeutic effect.

For explaining the notions and notations we use, we recall the problem setting in [10] for
the individual bioequivalence. Thus, the amount of the chemical absorbed by a patient’s blood-
stream when using a reference drug is a random variableX, which has meanµR and standard
deviationσR. The corresponding variable for the same patient when using the generic drug has
meanµT and standard deviationσT . The therapeutic windowof a patient is defined to be the
interval in which must lie the concentration of the chemical in the bloodstream, in order for the
drug to be classified as beneficial for that patient. Usually, the therapeutic window is assumed to
be an interval centered at the meanµR, namely the range(µR − zσR, µR + zσR). The drug will
be uneffective if the amount absorbed in the bloodstream is too low and it could cause severe
side effects if too much of the chemical substance is absorbed.
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Denoting bypR andpT the probabilities that the subject will have benefit from using drug
R, respectivelyT , the regulatory agency might approve the marketing of drugT provided that
pT

pR
≥ γ, whereγ is about 1 or even larger.

The therapeutic window of a patient is generally unknown, therefore a quantity of interest for
the approval procedure will beinfz≥0

pT

pR
.

Usually, to derive this quantity the assumption thatX andT have normal distributions is
made, though it is well known that in practice this is rarely the case. Under this assumption,
Yao and Iyer [10] have shown that

inf
z>0

pT

pR

= inf
z>0

Φ(µR+zσR−µT

σT
)− Φ(µR−zσR−µT

σT
)

Φ(z)− Φ(−z)
(1.1)

= min

{
1,

σR

√
2π

σT

φ

(
µT − µR

σT

)}
,

whereφ and Φ are respectively the probability density function and the cumulative density
function of a standard normal variable.

Thus, the approval of manufacturing the generic drugT may be granted if from the statistical
analysis of experimental data it can be proven that

(1.2)
σR

√
2π

σT

φ

(
µT − µR

σT

)
≥ γ.

Alternatively to (1.2), a more flexible approval criterion can be used, namely one of the type

(1.3) `(Zγ) ≥ bγ,

for some large enough given boundbγ, whereZγ := {z > 0 : pT

pR
> γ} and` is for instance

the Lebesgue measure. We will discuss in the next sections sufficient conditions for (1.3) to be
satisfied.

For more information about individual bioequivalence see [1], [7], [8], [4], [5], [6] and the
references therein.

In this paper we give a simpler proof and a generalization of the inequality of Yao and Iyer
and we also give a nonparametric extension of the above bioequivalence setting.

For the sake of clarity, we put all our proofs in the Appendix.

2. A GENERALIZATION OF THE I NEQUALITY OF YAO AND I YER

The main result of Yao and Iyer in [10] was the proof of the following inequality:

(2.1)
Φ( z−µ

σ
)− Φ(−z−µ

σ
)

Φ(z)− Φ(−z)
> min

{
1,

√
2π

σ
φ
(µ

σ

)}
,

for all z > 0, µ ∈ R\{0} andσ ∈ (0,∞)\{1}; this inequality comes from (1.1) after some
changes of notations.

As in [10], observe that it is enough to treat the caseµ ≥ 0. Here we will prove the following
generalization:

Proposition 2.1. In the above settings, we have:
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(i) If σ > 1, then

Φ( z−µ
σ

)− Φ(−z−µ
σ

)

Φ(z)− Φ(−z)
> e−

µ2

2σ2
Φ( z

σ
)− Φ(−z

σ
)

Φ(z)− Φ(−z)

> e−
µ2

2σ2
1

σ

[
1 +

1

6

(
1− 1

σ2

)
· z2e−

z2

2

]
>

1

σ
e−

µ2

2σ2 = min

{
1,

√
2π

σ
φ
(µ

σ

)}
, ∀z > 0.

(ii) If σ ∈ (0, 1) then

Φ( z−µ
σ

)− Φ(−z−µ
σ

)

Φ(z)− Φ(−z)
≥ min

{
1,

√
2π

σ
φ
(µ

σ

)} Φ( z−µ(σ)
σ

)− Φ(−z−µ(σ)
σ

)

Φ(z)− Φ(−z)

> min

{
1,

√
2π

σ
φ
(µ

σ

)}
, ∀z > 0, ∀µ > 0,(2.2)

whereµ(σ) := σ
√

2 ln 1
σ
.

This result is based on Lemma 2.2, generalising Lemma 3 in [10], (which was the most
difficult part of the proof therein) and on Lemmas 2.3 and 2.4 below.

Lemma 2.2. The functionσ 7→ F (σ) := Φ( z−µ(σ)
σ

) − Φ(−z−µ(σ)
σ

) is strictly decreasing on
(0, 1), with µ(σ) as above.

Lemma 2.3. For everyσ > 0, σ 6= 1, we have:

(2.3)
Φ
(

z
σ

)
− Φ

(−z
σ

)
Φ(z)− Φ(−z)

−min

{
1,

1

σ

}
>

1

6σ

(
1−min

{
1,

1

σ

}2
)
· z2e−

z2

2

+

(
1

σ
−min

{
1,

1

σ

})
e−

z2

2σ2 > 0, ∀z > 0.

The following lemma generalises Lemma 1 and Lemma 4 in [10]:

Lemma 2.4.

(2.4)
Φ(z − µ1)− Φ(−z − µ1)

Φ(z − µ2)− Φ(−z − µ2)
> min

{
1, e−

1
2
[(µ1)2−(µ2)2]

}
∀z > 0, µ1, µ2 ∈ R, µ1 6= µ2.

Remark 2.5. Replacingz with z
σ
, µ1 by µ1

σ
andµ2 by µ2

σ
then

• for µ1 > µ2 > 0 one has

Φ
(

z−µ1

σ

)
− Φ

(−z−µ1

σ

)
Φ
(

z−µ2

σ

)
− Φ

(−z−µ2

σ

) > min

{
1, e

− 1
2

[
(µ1

σ )
2
−(µ2

σ )
2
]}

= e
− 1

2

[
(µ1

σ )
2
−(µ2

σ )
2
]
,

thus the function

(0,∞) 3 µ 7→ B1(µ) := e
1
2
( µ

σ
)2
[
Φ

(
z − µ

σ

)
− Φ

(
−z − µ

σ

)]
is increasing, i.e. Lemma 1 in [10] is obtained;

J. Inequal. Pure and Appl. Math., 7(3) Art. 100, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 C. SURULESCU AND N. SURULESCU

• for µ2 > µ1 > 0 one has

Φ( z−µ1

σ
)− Φ(−z−µ1

σ
)

Φ( z−µ2

σ
)− Φ(−z−µ2

σ
)

> 1,

thus the function

(0,∞) 3 µ 7→ B2(µ) := Φ

(
z − µ

σ

)
− Φ

(
−z − µ

σ

)
is proved to be decreasing, i.e. we obtained Lemma 4 in [10].

Remark 2.6. Sufficient conditions for (1.3) to be satisfied can be easily derived upon using

for σ > 1 the monotonicity of the functionz 7→ z2e−
z2

2 (increasing on(0,
√

2), decreasing on
[
√

2,∞)) and for0 < σ < 1 the fact that

Φ
(

z−µ
σ

)
− Φ

(−z−µ
σ

)
Φ(z)− Φ(−z)

> min

{
1,

√
2π

σ
φ
(µ

σ

)} Φ
(

z−µ(σ)
σ

)
− Φ

(
−z−µ(σ)

σ

)
Φ(z)− Φ(−z)

≥ σ min

{
1,

√
2π

σ
φ
(µ

σ

)} Φ( z
σ
)− Φ(−z

σ
)

Φ(z)− Φ(−z)
, ∀z > 0

and this term can be minorated by applying Lemma 2.3.

3. A NONPARAMETRIC APPROACH FOR THE BIOEQUIVALENCE SETTING

Consider now that the random variablesX, T from the Introduction have continuous univari-
ate distributions, with the densitiesfX , respectivelyfT , which are not necessarily Gaussian, and
assume that we correspondingly have the independent observations:x1, . . . , xm, respectively
t1, . . . , tn. ThenfX andfT can be estimated by using the classical nonparametric estimators:

f̂X(x) =
1

mhX
m

·
m∑

i=1

K

(
x− xi

hX
m

)
and

f̂T (t) =
1

nhT
n

·
n∑

i=1

K

(
t− ti
hT

n

)
,

whereK is a kernel,hX
m andhT

n are the bandwidths (with the usual properties:hX
m → 0, hT

n → 0
for m, n → ∞; mhX

m → 0, nhT
n → ∞ for m, n → ∞ and, of course,hX

m andhT
n have to be

chosen in practice by a corresponding criterion, see [9]).
With the above notations, the fractions of interest for bioequivalence studies are

(3.1)
pT

pR

= R(z) :=

µR+zσR∫
µR−zσR

fT (t)dt

µR+zσR∫
µR−zσR

fX(x)dx

≈ R̂(z) :=

µR+zσR∫
µR−zσR

f̂T (t)dt

µR+zσR∫
µR−zσR

f̂X(x)dx

, z > 0,

and for the approval procedure it will be important to find the quantity of interestinfz>0 R̂(z),
but this is clearly more difficult than for the case presented in the previous section and an
analytic treatment is hardly possible. Even when considering the Gaussian kernel, the available
nonlinear optimization procedures are surprisingly very time consuming. However, a great (and
also easy to implement) simplification can be achieved when using one of the following kernels
(see e.g., [9]):
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• the rectangular kernel:K(u) := 1
2
χ(−1,1)(u);

• the triangular kernel:K(u) := (1− |u|)χ(−1,1)(u);
• the Epanechnikov kernel:K(u) := 3

4
(1− u2)χ(−1,1)(u);

• the triangle kernel:K(u) := (1− |u|)χ(−1,1)(u);
• the double Epanechnikov kernel:K(u) := 3|u|(1− |u|)χ(−1,1)(u).

Moreover, the procedure can also be used for finding the largest therapeutic window under
which the fraction of interest exceeds some given positive constantγ. Since all kernels above
are supported on(−1, 1), then the global minimum can be found in the following way:

• constructAT,+
n := AT

n ∩ (0,∞), where

AT
n :=

n⋃
i=1

{
−ti − hT

n − µR

σR

,
ti + hT

n − µR

σR

,
ti − hT

n − µR

σR

, −ti + hT
n − µR

σR

}
;

• constructAX,+
m := AX

m ∩ (0,∞), where

AX
m :=

m⋃
j=1

{
−xj − hX

m − µR

σR

,
xj + hX

m − µR

σR

,
xj − hX

m − µR

σR

, −xj + hX
m − µR

σR

}
;

• if K is not the rectangular kernel, then constructA+
T,deriv as the set constituted by the

critical points ofR̂(z) on the union of the subintervals ofR+ whereR̂ is differentiable
(which in this case are roots of some polynomials, thus easy to be handled by the com-
puter); ifK is the rectangular kernel, setA+

T,deriv = ∅.
• denoteA := AT,+

n

⋃
AX,+

m

⋃
A+

T,deriv.

Then we have:

Proposition 3.1. With the notations above and withK being one of the kernels enumerated
before,

R̂(z) =

1
nhT

n

n∑
i=1

µR+zσR∫
µR−zσR

K
(

t−ti
hT

n

)
dt

1
mhX

m

m∑
i=1

µR+zσR∫
µR−zσR

K
(

x−xi

hX
m

)
dx

≥ min
{

R̂(zmax), lim
z→0

R̂(z), R̂(A)
}

,

wherezmax = max{|ζ| : ζ ∈ A},

lim
z→0

R̂(z) =
mhX

m

nhT
n

n∑
i=1

K
(

µR−ti
hT

n

)
m∑

i=1

K
(

µR−xi

hX
m

) for the continuous kernels above,

and

lim
z→0

R̂(z) =
mhX

m

nhT
n

n∑
i=1

[
K+

(
µR−ti

hT
n

)
+ K−

(
µR−ti

hT
n

)]
m∑

i=1

[
K+

(
µR−xi

hX
m

)
+ K−

(
µR−xi

hX
m

)] for the rectangular kernel,

with the notationsK+(ξ) := limt↘ξ K(t), respectivelyK−(ξ) := limt↗ξ K(t).

Remark 3.2. If K is one of the kernels presented above, then for eachγ > 0 and using an
algorithm similar to the one described above one can easily determineZγ, in order to check the
approval condition (1.3).
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Simulation result: Figure 3.1 illustrates a simulation withm = 150, n = 160 for the case
whereX andT are normally distributed and the nonparametric estimators are constructed with
the Epanechnikov kernel. The continuous lines representR̂(z) and its minimum, which is
0.012; the lines of circles representR(z) and its minimum, which is 0.0088. This shows that
the Gaussian case can be well recovered with this nonparametric procedure.

1

0.8

0.6

0.4

0.2

0

z

20161284

Figure 3.1: The continuous line iŝR(z); the line of circles isR(z); the horizontal lines are the corresponding
minimums

4. CONCLUSIONS

In this paper we gave a generalization and a simpler proof of the inequality of Yao and Iyer
[10] concerning an individual bioequivalence setting when the data were supposed to be nor-
mally distributed. Our generalization can be used to develop a more flexible approval criterion
(of the type (1.3)) for manufacturing and selling a drug which is supposed to be bioequivalent
with a reference one. Finally, we extended these settings to the more general situation when
the data are not necessarily normally distributed, upon using the nonparametric estimation tech-
nique. This idea can also be useful in the context of global nonlinear optimization problems.

APPENDIX A. PROOFS

Proof of Lemma 2.2.Denotingθ := 1
σ
∈ (1,∞), we have

Φ

(
z − µ(σ)

σ

)
− Φ

(
−z − µ(σ)

σ

)
= Φ(zθ −

√
2 ln θ)− Φ(−zθ −

√
2 ln θ).

Considerg : (1,∞) → R, g(θ) := Φ(zθ −
√

2 ln θ) − Φ(−zθ −
√

2 ln θ), ∀θ > 1. Observe
that

g′(θ) =

(
z +

1

θ
√

2 ln θ

)
· φ(zθ −

√
2 ln θ)

[
zθ
√

2 ln θ − 1

zθ
√

2 ln θ + 1
+ exp(−2zθ

√
2 ln θ)

]
> 0,

for all θ > 1, becauseu := zθ
√

2 ln θ > 0 and it is easy to see that

u− 1

u + 1
+ e−2u > 0, ∀u > 0.
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�

Proof of Lemma 2.3.If σ > 1, we can write

Φ
( z

σ

)
− Φ

(
−z

σ

)
=

1

σ
√

2π

∫ z

−z

e−
x2

2σ2 dx

>
1

σ

[
Φ(z)− Φ(−z) +

1√
2π

· 1

2

(
1− 1

σ2

)∫ z

−z

x2e−
x2

2 dx

]
,

sincee
x2

2 (1− 1
σ2 ) ≥ 1 + x2

2

(
1− 1

σ2

)
, ∀x ∈ R\{0}. Further, from the decreasing monotonicity of

x 7→ e−
x2

2 on [0, z] deduce that

Φ
( z

σ

)
− Φ

(
−z

σ

)
≥ 1

σ

[
Φ(z)− Φ(−z) +

1√
2π

(
1− 1

σ2

)
· z3

3
e−

z2

2

]
and, since

Φ(z)− Φ(−z) < z
√

2/π, ∀z > 0

(2.3) is proved.
For the case whereσ ∈ (0, 1) we have:

Φ( z
σ
)− Φ(−z

σ
)

Φ(z)− Φ(−z)
= 1 + 2

Φ( z
σ
)− Φ(z)

Φ(z)− Φ(−z)

= 1 + 2

∫ z
σ

z
1√
2π

e−
x2

2 dx

Φ(z)− Φ(−z)

> 1 + 2

1√
2π

e−
z2

2σ2 · z
(

1
σ
− 1
)

Φ(z)− Φ(−z)

> 1 +

(
1

σ
− 1

)
e−

z2

2σ2 ,∀z > 0,

upon using the same method as in the previous case. �

Proof of Lemma 2.4.Let

Q(z) := Φ(z − µ1) − Φ(−z − µ1) − e−
1
2
[(µ1)2−(µ2)2][Φ(z − µ2) − Φ(−z − µ2)], z > 0.

Then

Q′(z) =
2√
2π

e−
1
2
[(µ1)2+z2]

[
ezµ1 + e−zµ1

2
− ezµ2 + e−zµ2

2

]
=

2√
2π

e−
1
2
[(µ1)2+z2][cosh(z|µ1|)− cosh(z|µ2|)], ∀z > 0.

Now using the fact that the hyperbolic cosine is an increasing function on(0,∞), we have
thatQ′(z) > 0 if |µ1| > |µ2| andQ′(z) < 0 if |µ1| < |µ2|.

Thus, if |µ1| > |µ2|, thenQ(z) > 0, ∀z > 0, i.e. inequality (2.4) is satisfied, since the
minimum therein ise−

1
2
[(µ1)2−(µ2)2].

If |µ1| < |µ2|, then consider the function

G(µ) := Φ(z − µ)− Φ(−z − µ)

and observe that it is decreasing on(0,∞), since its derivative is

G′(µ) = − 1√
2π

e−(z2+µ2)/2[ezµ − e−zµ] < 0, ∀z > 0, µ > 0.
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Observing thatG(µ) = G(−µ), ∀µ ∈ R, we have thatG(µ2) = G(|µ2|) < G(|µ1|) = G(µ1),
which proves the inequality in this case. �

Proof of Proposition 2.1.In the case (i) observe that we can write

Φ( z−µ
σ

)− Φ(−z−µ
σ

)

Φ(z)− Φ(−z)
=

Φ( z−µ
σ

)− Φ(−z−µ
σ

)

Φ( z
σ
)− Φ(−z

σ
)

·
Φ( z

σ
)− Φ(−z

σ
)

Φ(z)− Φ(−z)
.

Now apply Lemma 2.4 for the first term in the right hand side and Lemma 2.3 for the other one.
In the case (ii), ifµ ∈ (0, µ(σ)), then we have thatB2(µ) ≥ B2(µ(σ)) (see Lemma 2.4 and

Remark 2.5). Further, use Lemma 2.2 to obtain the last inequality in (2.2).
If µ > µ(σ), thenσB1(µ) ≥ σB1(µ(σ)) (see again Lemma 2.4 and Remark 2.5). Then

Lemma 2.2 implies that

σB1(µ(σ))

Φ(z)− Φ(−z)
=

F (σ)

Φ(z)− Φ(−z)
> 1,

which completes the proof. �

Proof of Proposition 3.1.The proof follows observing that for each of the kernels aboveR̂(z)
becomes a rapport of polynomials on some finite intervals dictated by the points inAX,+

m

⋃
AT,+

n .
Thus, the problem reduces to characterising the minimum of these fractional expressions on
such corresponding finite intervals, which in this particular case means to find the roots of the
polynomials at the numerator of the derivatives. It only remains to observe thatlimz→∞ R̂(z) =

R̂(zmax). �
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