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ABSTRACT. An inequality for convex functions defined on linear spaces is obtained which con-
tains in a particular case a refinement for the second part of the celebrated Hermite-Hadamard
inequality. Applications for semi-inner products on normed linear spaces are also provided.
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1. INTRODUCTION

Let X be a real linear space,b € X, a # b and let[a,b] := {(1 — X)a+ \b, A € [0,1]}
be thesegmengenerated by andb. We consider the functioffi : [a, ] — R and the attached
functiong (a,b) : [0,1] = R, g (a,b) (t) :== f[(1 —t)a+tb], t € [0, 1].

It is well known thatf is convex ona, b] iff ¢ (a,b) is convex on[0, 1], and the following
lateral derivatives exist and satisfy

() g (a,b) (s) = (VS [(1 = s)a + sb]) (b —a), s € (0, 1)
(i) g’ (a,0) (0) = (V[ (a)) (b—a)

(ii)) g~ (a,0) (1) = (v-f (b)) (b—a)
)

where(v74 f (z)) (y) are theGateaux lateral derivativesye recall that

Guf @) ) ¢ = i [T L],
L e L
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2 S.S. RAGOMIR

The following inequality is the well known Hermite-Hadamard integral inequality for convex
functions defined on a segmentb] C X :

(HH) f(a;b)g/of[(l—t)aﬂb}dtgw

2 Y
which easily follows by the classical Hermite-Hadamard inequality for the convex function
g9(a,b):[0,1] =R

g(a,b) (%) s/o g(a.b) () dt < L@V O +9(ab) 1)

2

For other related results see the monograph onlline [1].
Now, assume th&tX, ||-||) is a normed linear space. The functifiy(s) = 3 |z|*, z € X is
convex and thus the following limits exist
i . 12— 2
V) (2.}, = (Voo () (@) = Jim | Lstellulc]

t—0+
(V) {2.9); = (V-fo (9) (2) = lim |Lreef ]

foranyx,y € X. They are called theower andupper semi-inneproducts associated to the
normf||-||.

For the sake of completeness we list here some of the main properties of these mappings that
will be used in the sequel (see for example [2]), assumingithatE {s,i} andp # ¢:

@) (z,z), = ||z]*forall = € X;
(@a) (az, By), = aB (z,y), if a, 3 > 0andz,y € X;
(a8@) | (z,9),| < |12l lyll for all 2,y € X;
@v) (ax +y,z), = a(z,z),+ (y,2), if 2,y € X anda € R;
V) (—z,y),=—(z,y), forallz,y € X;
(va) (z +y,2), < |lzll[|2]| + (y,2), forallz,y, z € X;
(vaa) The mapping., -),, is continuous and subadditive (superadditive) in the first variable for
p=s (orp=1);
(vaaa) The normed linear spac¥, ||-||) is smooth at the point, € X\ {0} if and only if
(y,z0), = (y, xo), forally € X;ingeneraly, z), < (y,z), forall z,y € X;
(ax) If the norm||-|| is induced by an inner produ¢t -) , then(y, ). = (y,z) = (y, ), for
allz,y € X.

Applying inequality (HH) for the convex functioff, (z) = ||z||*, one may deduce the
inequality

2 2
Tty []|” + llyll

2

2 1
(1.2) ‘\s/uu—wx+wst
0

for anyz,y € X. The same[(HH) inequality applied fgf (z) = |||, will give the following
refinement of the triangle inequality:

Tr+vy
2

1
(1.2) HS/Hu—wx+wWﬁswﬂ%ﬂﬂ,xyeX
0

In this paper we point out an integral inequality for convex functions which is related to
the first Hermite-Hadamard inequality in (FHH) and investigate its applications for semi-inner
products in normed linear spaces.

J. Inequal. Pure and Appl. Math3(3) Art. 35, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ON THE SECOND HERMITE-HADAMARD INEQUALITY 3

2. THE RESULTS

We start with the following lemma which is also of interest in itself.

Lemma 2.1. Leth : o, 5] C R — R be a convex function oja, 5]. Then for anyy € [«, ]
one has the inequality

@Y (B ()~ (- @) h ()
B

)h(&)+(ﬂ—’y)h(5)—/ o (t) dt

[0}

<(y-—
< (B2 W (8) ~ (v~ a)* M, ()]

The constant is sharp in both inequalltles.
The second inequality also holds for= « or v = .

Proof. It is easy to see that for any locally absolutely continuous fundtioric, 5) — R, we
have the identity

8 B
(2.2) /(t—v)h’(t)dtz(v—a)h(a)ﬂﬁ—v)h(ﬁ)—/ h(t) dt

foranyy € («, ), whereh' is the derivative of. which exists a.e. ofw, 3) .
Sinceh is convex, then it is locally Lipschitzian and this (2.2) holds. Moreover, for any
v € (a, #), we have the inequalities

(2.3) B (t) < h' (v) fora.e.t € [a,9]

and

(2.4) R (t) > 1 (y) fora.e.t € [v,].

If we multiply (2.3) byy — ¢ > 0, t € [, 7] and integrate ofy, 7], we get
K / 1 /

(2.5) / (y=O () dt <5 (v~ @)’ b (7)

and if we multiply [2.4) byt —~v > 0, ¢ € [y, 8], and integrate ofy, ], we also have

B
(2.6) /<t—fy>h'<>dt> (B —)", (7).

Now, if we subtract[(2]5) from (2/6) and use the representafion (2.2), we deduce the first in-

equality in [2.1).
If we assume that the first inequalify (2.1) holds with a constant 0 instead of}, i.e.,

B
@7) CHE- W, () = (=) ()] £ (=) h(@)+ (3= () [ h(od

)
(25 - -
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ho(a) = S22 ),
B 1
/ho<t>dt = k(5 -0,

and the inequalit?) becomes, for= QT“’,

1 2, 1 2 1 2
Z — Z — < Z _
Cljo-ariejE-aft < k- o
giving C < %, which proves the sharpness of the consWthe first inequality inl).
If either 4, (a) = —oo or b’ (3) = —oo0, then the second inequality in (2.1) holds true.
Assume that!, (a) andh’ () are finite. Sincé is convex ona, 3], we have
(o

(2.8) R (t) > 1 (a) fora.e.t € [a,7] (y may be equal t@)

and
(2.9) n'(t) < k' (B) fora.e.t € [y,0] (v may be equal te) .
If we multiply (2.8) byy — ¢ > 0, ¢ € [a, 7] and integrate ofrv, 7], then we deduce
7 !/ 1 /
(2.10) [ a—on w5 6-atr @
and if we multiply (2.9) byt — v > 0, t € [v, 5], and integrate ofty, ] , then we also have
s
(2.11) [ e=w @< 560" ).
v

Finally, if we subtract[(2.70) from (2.11) and use the representgtiohn (2.2), we deduce the second
part of (2.1).

Now, assume that the second |nequallty.(2 1) holds with a constant0 instead of?,
ie.,

I}
(2.12) (v—oz)f(a)ﬂﬁ—v)f(ﬁ)—/ £ (t)dt
D[B-*f(8)—(v—a)’fi ()]

If we consider the convex functid, given above, then we havé (3) = k, b/, (o) = —k and
by (2.12) applied for, andz = “2 we get

1 9 1 2 1 2
— — < — — — —
4/{:(5 a)" <D [4]{(5 @) +4k(ﬁ a)},
giving D > %, and the sharpness of the const%uiﬂ; proved. O

Corollary 2.2. With the assumptions of Leminal2.1 and i («, 3) is a point of differentia-
bility for h, then

(2.13) (O“gﬁ—fy) W (y) < (g:g)h(a)Jr(g:g)h(ﬁ)—ﬁia/jh(t)dt.

Now, recall that the following inequality, which is well known in the literature as the Hermite-
Hadamard inequality for convex functions, holds

a—+ 0 1 A h(a) +h(B)
(2.14) h( >§ﬁ /ah(t)dtg—.

2 -« 2
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ON THE SECOND HERMITE-HADAMARD INEQUALITY 5

The following corollary provides some bounds for the difference

h(a)+h(B) 1 /ﬁh(t)dt'

Corollary 2.3. Leth : [, 5] — R b2e a convei l;:ctlon o, 3]. Then we have the inequality
(2.15) 0 < Hh;(o‘;ﬂ>—h’(o‘gﬂ)}(ﬁ—a)

< M) rh) ﬁa/fh@)dt

< SI(8) - ()] (8- a).

8
The constan% is sharp in both inequalities.

We are now able to state the corresponding result for convex functions defined on linear
spaces.

Theorem 2.4.Let X be a linear spaceg,b € X,a # bandf : [a,b] C X — R be a convex
function on the segmeft, b]. Then for anys € (0, 1) one has the inequality

(216) o [(1= 9 (oS (L= 9)a+sb) (b—a) = 2 (7 [(1 = s)a+ b)) (b — a)]

<(1—=s)f(a)+sf(b /f (1 —t)a+tb]dt
1
<5 l0- ) (V- f () (b—a) = s* (V[ (a) (b= a)] .
The constang is sharp in both inequalities.
The second inequality also holds for= 0 or s = 1.

Proof. Follows by Lemmé 2]1 applied for the convex function
h(t)=g(a,b)(t) = fl(1—-t)a+1b], te][01],
and for the choices = 0, 5 = 1, andy = s. O

Corollary 2.5. If f : [a,b] — R is as in Theorem 2|4 and Gateaux differentiablecin=
(1 —=X)a—+ Ab, A € (0,1) along the direction(b — a), then we have the inequality:

(2.17) (%—A)(vf(c))(b—a) (=X f(a)+Af(b /f (1—1t)a+th]dt.

The following result related to the second Hermite-Hadamard inequality for functions defined
on linear spaces also holds.

Corollary 2.6. If f is as in Theorerp 2}4, then
@1 §|ves (a“’> (bh-a)-v- f(“”) -

/ FlL=t)a+tb] dt

(V- ) (b—a) = (Vif(a))(b—a).

The constang is sharp in both inequalities.

OOlH
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Now, letQ2 C R™ be an open convex set Rf*.
If F:Q — R is a differentiable convex function dn, then, obviously, for any € Q we
have
"L OF (¢)
VF(c)(y) = ‘i, ¥y €R™Y
@@ => i

i=1

Where are the partial derivatives df with respect to the variable, (i = 1,...,n).
Usmg @) we may state that

“VOF (Aa+ (1—X)b)

(2.19) (% - A) > . (b — a;)

i=1

<(1—A)F(a)+AF(b)—/IF[(l—t)a+tl3}dt

1 2= OF (b )
55[(1_A)Z ax(i) AZ 8% (b —a)

foranya,b € Q andX € (0, 1).
In particular, forA = 1, we get

(2.20) 0 < M—/IF[(l—t)athlﬂdt

L5 ()

In (2.20) the constan is sharp.

3. APPLICATIONS FOR SEMI-INNER PRODUCTS

Let (X, ||-||) be a real normed linear space. We may state the following results for the semi-
inner products:, -), and(, -)..

Proposition 3.1. For anyz,y € X ando € (0, 1) we have the inequalities:

BY) (-0 y—a(-o)rtoy), —o*{y—x(—0)z+oy),
< (L=o)fll* +ollyl* — /01 (1= t) & + ty||* dt
<(1-0)(y—mzy), - {y—zy),.

The second inequality if (3.1) also holds or= 0 or o = 1.

The proof is obvious by Theor.4 applied for the convex funcfior) = 3 |z|?, = € X.
If the space ismooth then we may puf, y| = (z,y), = (z,y), for eachz,y € X and the
firstinequality in [(3.1L) becomes

(3.2) (1—20)[9—957(1—0)3%%]S(l—ff)HﬂszJrUHyHQ—/o 11— t) & + ty||* d.
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An interesting particular case one can get fr(3.1) is the one forl,

1
(3.3) 0 < sly-—zy+a),—{y—=zy+a)]
< HJUH + Iy |I* / (1 — )z + ty||* dt
1
< 4[<y—xy> (y —z,z)].
The inequality [(3.8) provides a refinement and a counterpart for the second inequality in
@.1).

If we consider now two linearly independent vectary € X and apply Theorer 2.4 for
f(x) = |z||, z € X, then we get

Proposition 3.2. For any linearly independent vectoisy € X ando € (0,1), one has the
inequalities:

(3.4)

% (1_0)2 (y—z,(1—0)x+0y), _02<y—$,(1—0)$+ay>i]

10 —o)z +oyl 10 —o)z + oyl
1
<(1-o0) uxu+anyu—/0 11— )+ tyl| dt

1 _02<y_xay>i_02<3/—1’>$>3
S i e }

The second inequality also holds for= 0 or o = 1.
We note that if the space is smooth, then we have

1 ly— 2, (1—0)a+ oy '
@8) (3-0) LS AT <ol o ol - [0 o)a+ el a

and foro = 1, (3.4) will give the simple inequality

1 N i S R ol
= =20/
< HiUHJFHZ/H /|| t)x + ty| dt

N s )

The inequality[(3.6) provides a refinement and a couterpart of the second inequality in (1.2).
Moreover, if we assume thét/, (-, -)) is an inner product space, then py {3.6) we get for any
x,y € H with ||z|| = |ly|| = 1 that

1
1
(3.7) 051—/ (1= 0y -+ tylde < ¢ lly >
0

The constant is sharp.
Indeed, if we choosél =R, (a,b) = a-b, z = —1,y = 1, then we get equality in} (3.7).
We give now some examples.
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(1) Let’? (K), K = C,R; be the Hilbert space of sequenaes: (z;), . with 3> |z;|”
oo. Then, by [(3.F), we have the inequalities

(3.8) 0 < / (Z\ (1—1) xﬁ—tyll) dt
< g'zwz‘—%"Q,
=0

for anyx,y € ¢2 (K) provided> >, |z:|* = 320°, vil* = 1.

(2) Letu be a positive measuré, (£2) the Hilbert space ofi—measurable functions dn
with complex values that ae-integrable or2, i.e., f € Ly () iff [ |f ()" du (t) <
oo. Then, by [3.7), we have the inequalities

(3.9) 0 < /(/|1— +Ag<>!2du<t>)édx

< —-/If(t>—g(t)| dye (2)

forany f,g € Ly () provided [, | f (t)]* du (t) = [, lg () dp (t) =
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