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ABSTRACT. In this paper, we are concerned with the followingnth difference equations

∆ny(k − 1) + f(k, y(k)) = 0, k ∈ {1, . . . , T},
∆iy(0) = 0, i = 0, 1, . . . , n− 2, ∆n−2y(T + 1) = α∆n−2y(ξ),

wheref is continuous,n ≥ 2, T ≥ 3 andξ ∈ {2, . . . , T − 1} are three fixed positive integers,
constantα > 0 such thatαξ < T + 1. Under some suitable conditions, we obtain the existence
result of at least three positive solutions for the problem by using the Leggett-Williams fixed
point theorem.
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1. I NTRODUCTION

This paper deals with the following three-point discrete boundary value problem (BVP, for
short):

(1.1) ∆ny(k − 1) + f(k, y(k)) = 0, k ∈ {1, . . . , T},

(1.2) ∆iy(0) = 0, i = 0, 1, . . . , n− 2, ∆n−2y(T + 1) = α∆n−2y(ξ),

where∆y(k − 1) = y(k)− y(k − 1), ∆ny(k − 1) = ∆n−1(∆y(k − 1)), k ∈ {1, . . . , T}.
Throughout, we assume that the following conditions are satisfied:
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2 ZENGJI DU, CHUNYAN XUE, AND WEIGAO GE

(H1) T ≥ 3 andξ ∈ {2, . . . , T − 1} are two fixed positive integers,α > 0 such thatαξ <
T + 1.

(H2) f ∈ C({1, . . . , T}× [0, +∞), [0, +∞)) andf(k, ·) ≡ 0 does not hold on{1, . . . , ξ−1}
and{ξ, . . . , T}.

In the few past years, there has been increasing interest in studying the existence of multiple
positive solutions for differential and difference equations, for example, we refer the reader to
[1] – [8].

Recently, Ma [9] studied the following second-order three-point boundary value problem

(1.3) u′′ + λa(t)f(u) = 0, t ∈ (0, 1), u(0) = 0, αu(η) = u(1),

by applying fixed-point index theorems and Leray-Schauder degree and upper and lower solu-
tions. In the caseλ = 1, under the conditions thatf is superlinear or sublinear, Ma [10] con-
sidered the existence of at least one positive solution of problem (1.3) by using Krasnosel’skii’s
fixed-point theorem.

However, in [9] – [11], the author did not give the associate Green’s function and exceptional
work was carried out for higher order multi-point difference equations. In the current work, we
give the associate Green’s function and obtain the existence of multiple positive solutions for
BVP (1.1) – (1.2) by employing the Leggett-Williams fixed point theorem. Our results are new
and different from those in [9] – [11]. Particularly, we do not require the assumption thatf is
either superlinear or sublinear.

2. BACKGROUND DEFINITIONS AND GREEN’ S FUNCTION

For the convenience of the reader, we present here the necessary definitions from cone theory
in Banach space, which can be found in [3].

Let N be the nonnegative integers, we letNi,j = {k ∈ N : i ≤ k ≤ j} andNp = N0,p.
We say thaty is a positive solution of BVP (1.1) – (1.2), ify : NT+n−1 −→ R, y satisfies

(1.1) onN1,T , y fulfills (1.2) andy is nonnegative onNT+n−1 and positive onNn−1,T .

Definition 2.1. Let E be a Banach space, a nonempty closed setK ⊂ E is said to be a cone
provided that

(i) if x ∈ K andλ ≥ 0 thenλx ∈ K;

(ii) if x ∈ K and−x ∈ K thenx = 0.

If K ⊂ E is a cone, we denote the order induced byK on E by≤. Forx, y ∈ K, we write
x ≤ y if and only if y − x ∈ K.

Definition 2.2. A maph is a nonnegative continuous concave functional on the coneK which
is convex, provided that

(i) h : K −→ [0,∞) is continuous;

(ii) h(tx + (1− t)y) ≥ th(x) + (1− t)h(y) for all x, y ∈ K and0 ≤ t ≤ 1.

Now we shall denote
Kc = {y ∈ K : ‖y‖ < c}

and
K(h, a, b) = {y ∈ K : h(y) ≥ a, ‖y‖ ≤ b},

where‖ · ‖ is the maximum norm.
Next we shall state the fixed point theorem due to Leggett-Williams [12] also see [3].
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TRIPLE SOLUTIONS FOR AHIGHER-ORDERDIFFERENCEEQUATION 3

Theorem 2.1. Let E be a Banach space, and letK ⊂ E be a cone inE. Assume thath is a
nonnegative continuous concave functional onK such thath(y) ≤ ‖y‖ for all y ∈ Kc, and let
S : Kc −→ Kc be a completely continuous operator. Suppose that there exist0 < a < b < d ≤
c such that

(A1) {y ∈ K(h, b, d) : h(y) > b} 6= ∅ andh(Sy) > b for all y ∈ K(h, b, d);

(A2) ‖Sy‖ < a for ‖y‖ < a;

(A3) h(Sy) > b for all y ∈ K(h, b, c) with ‖Sy‖ > d.

ThenS has at least three fixed pointsy1, y2 andy3 in Kc such that‖y1‖ < a, h(y2) > b and
‖y3‖ > a with h(y3) < b.

In the following, we assume that the functionG(k, l) is the Green’s function of the problem
−∆ny(k − 1) = 0 with the boundary condition (1.2).

It is clear that (see [3])

g(k, l) = ∆n−2G(k, l), (with respect tok)

is the Green’s function of the problem−∆2y(k − 1) = 0 with the boundary condition

(2.1) y(0) = 0, y(T + 1) = αy(ξ).

We shall give the Green’s function of the problem−∆2y(k−1) = 0 with the boundary condition
(2.1).

Lemma 2.2. The problem

(2.2) ∆2y(k − 1) + u(k) = 0, k ∈ N1,T ,

with the boundary condition (2.1) has the unique solution

(2.3) y(k) = −
k−1∑
l=1

(k − l)u(l) +
k

T + 1− αξ

T∑
l=1

(T + 1− l)u(l)

− αk

T + 1− αξ

ξ−1∑
l=1

(ξ − l)u(l), k ∈ NT+1.

Proof. From (2.2), one has

∆y(k)−∆y(k − 1) = −u(k),

∆y(k − 1)−∆y(k − 2) = −u(k − 1),

...

∆y(1)−∆y(0) = −u(1).

We sum the above equalities to obtain

∆y(k) = ∆y(0)−
k∑

l=1

u(l), k ∈ NT ,
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4 ZENGJI DU, CHUNYAN XUE, AND WEIGAO GE

here and in the following, we denote
∑q

l=p u(l) = 0, if p > q. Similarly, we sum the equalities
from 0 to k and change the order of summation to obtain

y(k + 1) = y(0) + (k + 1)∆y(0)−
k∑

l=1

l∑
j=1

u(j)

= y(0) + (k + 1)∆y(0)−
k∑

l=1

(k + 1− l)u(l), k ∈ NT ,

i.e.,

(2.4) y(k) = y(0) + k∆y(0)−
k−1∑
l=1

(k − l)u(l), k ∈ NT+1.

By using the boundary condition (2.1), we have

(2.5) ∆y(0) =
1

T + 1− αξ

T∑
l=1

(T + 1− l)u(l)− α

T + 1− αξ

ξ−1∑
l=1

(ξ − l)u(l).

By (2.4) and (2.5), we have shown that (2.3) holds. �

Lemma 2.3. The function

(2.6) g(k, l) =



l[T + 1− k − α(ξ − k)]

T + 1− αξ
, l ∈ N1,k−1

⋂
N1,ξ−1;

l(T + 1− k) + αξ(k − l)

T + 1− aξ
, l ∈ Nξ,k−1;

k[T + 1− l − α(ξ − l)]

T + 1− αξ
, l ∈ Nk,ξ−1;

k(T + 1− l)

T + 1− αξ
, l ∈ Nk,T

⋂
Nξ,T .

is the Green’s function of the following problem

(2.7) −∆2y(k − 1) = 0, k ∈ N1,T ,

(2.1) y(0) = 0, y(T + 1) = αy(ξ).

Proof. We shall divide the proof into the following two steps.

Step 1.We supposek < ξ. Then the unique solution of problem (2.7), (2.1) can be written as

y(k) = −
k−1∑
l=1

(k − l)u(l) +
k

T + 1− αξ

k−1∑
l=1

(T + 1− l)u(l)

+
k

T + 1− αξ

[
ξ−1∑
l=k

(T + 1− l)u(l) +
T∑

l=ξ

(T + 1− l)u(l)

]

− αk

T + 1− αξ

[
k−1∑
l=1

(ξ − l)u(l) +

ξ−1∑
l=k

(ξ − l)u(l)

]
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=
k−1∑
l=1

l[T + 1− k − α(ξ − k)]

T + 1− αξ
u(l)

+

ξ−1∑
l=k

k[T + 1− l − α(ξ − l)]

T + 1− αξ
u(l) +

T∑
l=ξ

k(T + 1− l)

T + 1− αξ
u(l)

=
T∑

l=1

g(k, l)u(l).

Step 2.We supposek ≥ ξ. Then the unique solution of problem (2.7), (2.1) can be written as

y(k) = −

[
ξ−1∑
l=1

(k − l)u(l) +
k−1∑
l=ξ

(k − l)u(l)

]

+
k

T + 1− αξ

[
ξ−1∑
l=1

(T + 1− l)u(l) +
k−1∑
l=ξ

(T + 1− l)u(l) +
T∑

l=k

(T + 1− l)u(l)

]

− αk

T + 1− αξ

ξ−1∑
l=1

(ξ − l)u(l)

=

ξ−1∑
l=1

l[T + 1− k − α(ξ − k)]

T + 1− αξ
u(l)

+
k−1∑
l=ξ

l(T + 1− k) + αξ(k − l)

T + 1− αξ
u(l) +

T∑
l=k

k(T + 1− l)

T + 1− αξ
u(l)

=
T∑

l=1

g(k, l)u(l).

Thus the unique solution of problem (2.7), (2.1) can be written asy(k) =
∑T

l=1 g(k, l)u(l). �

We observe that the conditionαξ < T +1 implies thatg(k, l) is nonnegative onNT+1×N1,T ,
and positive onN1,T ×N1,T . From (2.3), we have

y(k) =
T∑

l=1

g(k, l)u(l),

where

g(k, l) := (T+1−αξ)−1
(
k(T + 1− l)− (k − l)(T + 1− αξ)χ[1,k−1](l)− αk(ξ − l)χ[1,ξ−1](l)

)
.

This is a positive function, which means that the finite set

{g(k, l)/g(k, k) : k, l = 1, 2, . . . , T}
takes positive values. LetM1, M2 be its minimum and maximum values, respectively.

3. EXISTENCE OF TRIPLE SOLUTIONS

In the following, we denote

m = min
k∈Nξ,T

T∑
l=ξ

g(k, l), M = max
k∈NT+1

T∑
l=1

g(k, l)
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and
m̃ = min

k∈Nξ,T

g(k, k), M̃ = max
k∈NT+1

g(k, k).

Then0 < m < M , 0 < m̃ < M̃ .
Let E be the Banach space defined by

E = {y : NT+n−1 −→ R, ∆iy(0) = 0, i = 0, 1, . . . , n− 2}.
Define

K =

{
y ∈ E : ∆n−2y(k) ≥ 0 for k ∈ NT+1 and min

k∈Nξ,T

∆n−2y(k) ≥ σ‖y‖
}

whereσ = M1m̃

M2M̃
∈ (0, 1), ‖y‖ = max

k∈NT+1

|∆n−2y(k)|. It is clear thatK is a cone inE.

Finally, let the nonnegative continuous concave functionalh : K −→ [0,∞) be defined by

h(y) = min
k∈Nξ,T

∆n−2y(k), y ∈ K.

Note that fory ∈ K, h(y) ≤ ‖y‖.

Remark 3.1. If y ∈ K, ‖y‖ ≤ c, then

0 ≤ y(k) ≤ qc, k ∈ NT+n−1,

where

q = q(n, T ) =
(T + n− 1)(T + n) · · · (T + 2n− 4)

(n− 2)!
.

In fact, if y ∈ K, ‖y‖ ≤ c, then0 ≤ ∆n−2y(k) ≤ c, k ∈ NT+1, i.e.,

0 ≤ ∆(∆n−3y(k)) = ∆n−3y(k + 1)−∆n−3y(k) ≤ c.

Then one has

0 ≤ ∆n−3y(1)−∆n−3y(0) ≤ c,

0 ≤ ∆n−3y(2)−∆n−3y(1) ≤ c,

...

0 ≤ ∆n−3y(k)−∆n−3y(k − 1) ≤ c.

We sum the above inequalities to obtain

0 ≤ ∆n−3y(k) ≤ kc, k ∈ NT+2.

Similarly, we have

0 ≤ ∆n−4y(k) ≤

(
k∑

i=1

i

)
c =

k(k + 1)

2!
c, k ∈ NT+3.

By using the induction method, one has

0 ≤ y(k) ≤ k(k + 1) · · · (k + n− 3)

(n− 2)!
c, k ∈ NT+n−1.

Then

0 ≤ y(k) ≤ (T + n− 1)(T + n) · · · (T + 2n− 4)

(n− 2)!
c = qc, k ∈ NT+n−1.

Theorem 3.2. Assume that there exist constantsa, b, c such that0 < a < b < c ·min
{
σ, m

M

}
and satisfy
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(H3) f(k, y) ≤ c
M

, (k, y) ∈ [0, T + n− 1]× [0, qc],

(H4) f(k, y) < a
M

, (k, y) ∈ [0, T + n− 1]× [0, qa],

(H5) There exists somel0 ∈ [n− 2, T + n− 1], such thatf(k, y) ≥ b
m0

, (k, y) ∈ [n− 2, T +

n− 1]×
[
b, qb

σ

]
, wherem0 = min

k,l∈NT

g(k, l) > 0.

Then BVP (1.1) – (1.2) has at least three positive solutionsy1, y2 andy3, such that

(3.1) ‖y1‖ < a, h(y2) > b,

and

(3.2) ‖y3‖ > a with h(y3) < b.

Proof. Let the operatorS : K −→ E be defined by

(Sy)(k) =
T∑

l=1

G(k, l)f(l, y(l)), k ∈ NT+n−1.

It follows that

(3.3) ∆n−2(Sy)(k) =
T∑

l=1

g(k, l)f(l, y(l)), for k ∈ NT+1.

We shall now show that the operatorS mapsK into itself. For this, lety ∈ K, from (H1), (H2),
one has

(3.4) ∆n−2(Sy)(k) =
T∑

l=1

g(k, l)f(l, y(l)) ≥ 0, for k ∈ NT+1,

and

∆n−2(Sy)(k) =
T∑

l=1

g(k, l)f(l, y(l))

≤ M2

T∑
l=1

g(k, k)f(l, y(l))

≤ M2M̃

T∑
l=1

f(l, y(l)), for k ∈ NT+1.

Thus

‖Sy‖ ≤ M2M̃

T∑
l=1

f(l, y(l)).

From(H1), (H2), and (3.3), fork ∈ Nξ,T , we have

∆n−2(Sy)(k) ≥ M1

T∑
l=1

g(k, k)f(l, y(l))

≥ M1m̃
T∑

l=1

f(l, y(l)) ≥ M1m̃

M2M̃
‖Sy‖ = σ‖Sy‖.

Subsequently

(3.5) min
k∈Nξ,T

∆n−2(Sy)(k) ≥ σ‖Sy‖.
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From (3.4) and (3.5), we obtainSy ∈ K. HenceS(K) ⊆ K. Also standard arguments yield
thatS : K −→ K is completely continuous.

We now show that all of the conditions of Theorem 2.1 are fulfilled. For ally ∈ Kc, we have
‖y‖ ≤ c. From assumption(H3), we get

‖Sy‖ = max
k∈NT+1

|∆n−2(Sy)(k)|

= max
k∈NT+1

∣∣∣∣∣
T∑

l=1

g(k, l)f(l, y(l))

∣∣∣∣∣
≤ c

M
max

k∈NT+1

T∑
l=1

g(k, l) = c.

HenceS : Kc −→ Kc.
Similarly, if y ∈ Ka, then assumption(H4) yieldsf(k, y) < a

M
, for k ∈ NT+1. As in the

argument above, we can showS : Ka −→ Ka. Therefore, condition(A2) of Theorem 2.1 is
satisfied.

Now we prove that condition(A1) of Theorem 2.1 holds. Let

y∗(k) =
k(k + 1) · · · (k + n− 3)b

(n− 2)!σ
, for k ∈ Nξ,T .

Then we can show thaty∗ ∈ K
(
h, b, qb

σ

)
andh(y∗) ≥ b

σ
> b. So{

y ∈ K

(
h, b,

b

σ

)
: h(y) > b

}
6= ∅.

From assumptions(H2) and(H5), one has

h(Sy) = min
k∈Nξ,T

T∑
l=1

g(k, l)f(l, y(l))

> min
k∈Nξ,T

T∑
l=ξ

g(k, l)f(l, y(l))

≥ min
k∈Nξ,T

g(k, l0)f(l0, y(l0))

≥ b

m0

min
k∈Nξ,T

g(k, l) ≥ b.

This shows that condition(A1) of Theorem 2.1 is satisfied.
Finally, suppose thaty ∈ K(h, b, c) with ‖Sy‖ > b

σ
, then

h(Sy) = min
k∈Nξ,T

∆n−2(Sy)(k) ≥ σ‖Sy‖ > b.

Thus, condition(A3) of Theorem 2.1 is also satisfied. Therefore, Theorem 2.1 implies that BVP
(1.1) – (1.2) has at least three positive solutionsy1, y2, y3 described by (3.1) and (3.2). �

Corollary 3.3. Suppose that there exist constants

0 < a1 < b1 < c1 ·min
{

σ,
m

M

}
< a2 < b2 < c2 ·min

{
σ,

m

M

}
< · · · < ap,

p is a positive integer, such that the following conditions are satisfied:

(H7) f(k, y) < ai

M
, (k, y) ∈ [0, T + n− 1]× [0, qai], i ∈ N1,p;
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(H8) There existli0 ∈ [n− 2, T + n− 1], such thatf(k, y) ≥ qbi

m0
, (k, y) ∈ [n− 2, T + n−

1]× [bi,
qbi

σ
], i ∈ N1,p−1.

Then BVP (1.1) – (1.2) has at least2p− 1 positive solutions.

Proof. When p = 1, from condition(H7), we showS : Ka1 −→ Ka1 ⊆ Ka1. By using
the Schauder fixed point theorem, we show that BVP (1.1) – (1.2) has at least one fixed point
y1 ∈ Ka1. Whenp = 2, it is clear that Theorem 3.2 holds ( withc1 = a2). Then we can
obtain BVP (1.1) – (1.2) has at least three positive solutionsy1, y2 andy3, such that‖y1‖ < a1,
h(y2) > b1, ‖y3‖ > a1, with h(y3) < b1. Following this way, we finish the proof by the
induction method. The proof is completed. �

If the casen = 2, similar to the proof of Theorem 3.2, we obtain the following result.

Corollary 3.4. Assume that there exist constantsa, b, c such that0 < a < b < c ·min
{
σ, m

M

}
and satisfy

(H9) f(k, y) ≤ c
M

, (k, y) ∈ [0, T + n− 1]× [0, c],

(H10) f(k, y) < a
M

, (k, y) ∈ [0, T + n− 1]× [0, a],

(H11) f(k, y) ≥ b
m

, (k, y) ∈ [ξ, T + n− 1]× [b, b
σ
].

Then BVP (1.1) – (1.2) has at least three positive solutionsy1, y2 andy3, satisfying (3.1) and
(3.2).

Finally, we give an example to illustrate our main result.

Example 3.1.Consider the following second order third point boundary value problem

(3.6) ∆2y(k − 1) + f(k, y) = 0, k ∈ N1,6,

(3.7) y(0) = 0, y(7) =
7

9
y(3),

wheref(k, y) = 100
k+100

a(y), and

a(y) =



1

720
+ sin8 y, if y ∈

[
0,

1

30

]
;

1

720
+ 6

(
y − 1

30

)
+ sin8 y, if y ∈

[
1
30

, 3
]
;

1

720
+

89

5
+

sin2(y − 3)

2
+ sin8 y, if y ∈ [3, 360].

ThenT = 6, n = 3, α = 7
9

< 1, T + 1 − αn = 14
3

> 0. Then the conditions(H1), (H2) are
satisfied, and the function

G(k, l) =
3

14



l(42− 2k)

9
, l ∈ N1,k−1

⋂
N1,2;

3l(7− k) + 7(k − l)

3
, l ∈ N3,k−1;

k(42− 2l)

9
, l ∈ Nk,2;

k(7− l), l ∈ Nk,6

⋂
N3,6,

is the Green’s function of the problem−∆2y(k − 1) = 0, k ∈ N1,6 with (3.7).
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Thus we can computem = 27
2
, M = 18, m̃ = 9

7
, M̃ = 18

7
, M1 = 2

9
, M2 = 9, σ = 1

81
< m

M
=

3
4
. We choose thata = 1

35
, b = 1

10
, c = 360, consequently,

f(k, y) =
100

k + 100
a(y)

≤ a(y) ≤



1

720
+ 1 < 20 =

c

M
, (k, y) ∈ [0, 7]×

[
0, 1

30

]
;

1

720
+ 6

(
3− 1

30

)
+ 1 < 20 =

c

M
, (k, y) ∈ [0, 7]×

[
1
30

, 3
]
;

1

720
+

89

5
+

3

2
< 20 = c

M
, (k, y) ∈ [0, 7]× [3, 360].

Thus
f(k, y) ≤ c

M
, (k, y) ∈ [0, 7]× [0, 360];

and

f(k, y) ≤ 1

720
+ sin8 y <

1

630
=

a

M
, (k, y) ∈ [0, 7]×

[
0,

1

35

]
;

f(k, y) ≥ 100

107

[
1

720
+ 6

(
1

10
− 1

30

)
+ sin8 y

]
≥ 1

135
=

b

m
, (k, y) ∈ [3, 7]×

[
1

27
, 3

]
.

That is to say, all the conditions of Corollary 3.4 are satisfied. Then the boundary value problem
(3.6), (3.7) has at least three positive solutionsy1, y2 andy3, such that

y1(k) <
1

35
, for k ∈ N7, y2(k) >

1

27
, for k ∈ N3,7,

and

max
k∈N1,7

y3(k) >
1

35
, for k ∈ N7 with min

k∈N3,7

y3(k) <
1

27
.
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