Journal of Inequalities in Pure and Applied Mathematics

TRIPLE SOLUTIONS FOR A HIGHER-ORDER DIFFERENCE EQUATION

ZENGJI DU, CHUNYAN XUE AND WEIGAO GE

Department of Mathematics
Beijing Institute of Technology
Beijing 100081
People's Republic of China
EMail: duzengji@163.com
EMail: xuechunyanab@bit.edu.cn
EMail: gew@bit.edu.cn
volume 6, issue 1, article 10, 2005.

Received 09 April, 2004; accepted 24 December, 2004

Communicated by: S.S. Dragomir

Abstract
Contents
Home Page
Go Back
Close
Quit

Abstract

In this paper, we are concerned with the following nth difference equations

$$
\begin{gathered}
\Delta^{n} y(k-1)+f(k, y(k))=0, \quad k \in\{1, \ldots, T\}, \\
\Delta^{i} y(0)=0, i=0,1, \ldots, n-2, \quad \Delta^{n-2} y(T+1)=\alpha \Delta^{n-2} y(\xi),
\end{gathered}
$$

where f is continuous, $n \geq 2, T \geq 3$ and $\xi \in\{2, \ldots, T-1\}$ are three fixed positive integers, constant $\alpha>0$ such that $\alpha \xi<T+1$. Under some suitable conditions, we obtain the existence result of at least three positive solutions for the problem by using the Leggett-Williams fixed point theorem.

2000 Mathematics Subject Classification: 39A10.
Key words: Discrete three-point boundary value problem; Multiple solutions; Green's function; Cone; Fixed point.

Sponsored by the National Natural Science Foundation of China (No. 10371006). The authors express their sincere gratitude to the referee for very valuable suggestions.

Contents

1 Introduction 3
2 Background Definitions and Green's Function 5
3 Existence of Triple Solutions 12
References

Triple Solutions for a Higher-order Difference

Equation
Zengji Du, Chunyan Xue and Weigao Ge

Title Page
Contents
Go Back
Close
Pait 2 of 23

1. Introduction

This paper deals with the following three-point discrete boundary value problem (BVP, for short):

$$
\begin{equation*}
\Delta^{n} y(k-1)+f(k, y(k))=0, \quad k \in\{1, \ldots, T\} \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta^{i} y(0)=0, i=0,1, \ldots, n-2, \quad \Delta^{n-2} y(T+1)=\alpha \Delta^{n-2} y(\xi) \tag{1.2}
\end{equation*}
$$

where $\Delta y(k-1)=y(k)-y(k-1), \Delta^{n} y(k-1)=\Delta^{n-1}(\Delta y(k-1))$, $k \in\{1, \ldots, T\}$.

Throughout, we assume that the following conditions are satisfied:
$\left(H_{1}\right) T \geq 3$ and $\xi \in\{2, \ldots, T-1\}$ are two fixed positive integers, $\alpha>0$ such that $\alpha \xi<T+1$.
$\left(H_{2}\right) f \in C(\{1, \ldots, T\} \times[0,+\infty),[0,+\infty))$ and $f(k, \cdot) \equiv 0$ does not hold on $\{1, \ldots, \xi-1\}$ and $\{\xi, \ldots, T\}$.

In the few past years, there has been increasing interest in studying the existence of multiple positive solutions for differential and difference equations, for example, we refer the reader to [1] - [8].

Recently, Ma [9] studied the following second-order three-point boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+\lambda a(t) f(u)=0, t \in(0,1), \quad u(0)=0, \quad \alpha u(\eta)=u(1) \tag{1.3}
\end{equation*}
$$

Triple Solutions for a Higher-order Difference

Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents

44	\checkmark
4	-
Go Back	
Close	
Quit	

Page 3 of 23
by applying fixed-point index theorems and Leray-Schauder degree and upper and lower solutions. In the case $\lambda=1$, under the conditions that f is superlinear or sublinear, Ma [10] considered the existence of at least one positive solution of problem (1.3) by using Krasnosel'skii's fixed-point theorem.

However, in [9] - [11], the author did not give the associate Green's function and exceptional work was carried out for higher order multi-point difference equations. In the current work, we give the associate Green's function and obtain the existence of multiple positive solutions for BVP (1.1) - (1.2) by employing the Leggett-Williams fixed point theorem. Our results are new and different from those in [9] - [11]. Particularly, we do not require the assumption that f is either superlinear or sublinear.

Triple Solutions for a Higher-order Difference Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents
Go Back
Close
Pait

2. Background Definitions and Green's Function

For the convenience of the reader, we present here the necessary definitions from cone theory in Banach space, which can be found in [3].

Let \mathbf{N} be the nonnegative integers, we let $\mathbf{N}_{i, j}=\{k \in \mathbf{N}: i \leq k \leq j\}$ and $\mathbf{N}_{p}=\mathbf{N}_{0, p}$.

We say that y is a positive solution of BVP (1.1) - (1.2), if $y: \mathbf{N}_{T+n-1} \longrightarrow$ \mathbb{R}, y satisfies (1.1) on $\mathbf{N}_{1, T}, y$ fulfills (1.2) and y is nonnegative on \mathbf{N}_{T+n-1} and positive on $\mathbf{N}_{n-1, T}$.

Definition 2.1. Let E be a Banach space, a nonempty closed set $K \subset E$ is said to be a cone provided that
(i) if $x \in K$ and $\lambda \geq 0$ then $\lambda x \in K$;
(ii) if $x \in K$ and $-x \in K$ then $x=0$.

If $K \subset E$ is a cone, we denote the order induced by K on E by \leq. For $x, y \in K$, we write $x \leq y$ if and only if $y-x \in K$.

Definition 2.2. A map h is a nonnegative continuous concave functional on the cone K which is convex, provided that
(i) $h: K \longrightarrow[0, \infty)$ is continuous;
(ii) $h(t x+(1-t) y) \geq t h(x)+(1-t) h(y)$ for all $x, y \in K$ and $0 \leq t \leq 1$.

Now we shall denote

$$
K_{c}=\{y \in K:\|y\|<c\}
$$

and

$$
K(h, a, b)=\{y \in K: h(y) \geq a,\|y\| \leq b\}
$$

where $\|\cdot\|$ is the maximum norm.
Next we shall state the fixed point theorem due to Leggett-Williams [12] also see [3].

Theorem 2.1. Let E be a Banach space, and let $K \subset E$ be a cone in E. Assume that h is a nonnegative continuous concave functional on K such that $h(y) \leq\|y\|$ for all $y \in \overline{K_{c}}$, and let $S: \overline{K_{c}} \longrightarrow \overline{K_{c}}$ be a completely continuous operator. Suppose that there exist $0<a<b<d \leq c$ such that
$\left(A_{1}\right)\{y \in K(h, b, d): h(y)>b\} \neq \emptyset$ and $h(S y)>b$ for all $y \in K(h, b, d) ;$
$\left(A_{2}\right)\|S y\|<a$ for $\|y\|<a ;$
$\left(A_{3}\right) h(S y)>b$ for all $y \in K(h, b, c)$ with $\|S y\|>d$.
Then S has at least three fixed points y_{1}, y_{2} and y_{3} in $\overline{K_{c}}$ such that $\left\|y_{1}\right\|<a$, $h\left(y_{2}\right)>b$ and $\left\|y_{3}\right\|>a$ with $h\left(y_{3}\right)<b$.

In the following, we assume that the function $G(k, l)$ is the Green's function of the problem $-\Delta^{n} y(k-1)=0$ with the boundary condition (1.2).

It is clear that (see [3])

$$
g(k, l)=\Delta^{n-2} G(k, l),(\text { with respect to } k)
$$

Triple Solutions for a Higher-order Difference

Equation
Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents
Go Back
Close
Quit
Page 6 of 23

is the Green's function of the problem $-\Delta^{2} y(k-1)=0$ with the boundary condition

$$
\begin{equation*}
y(0)=0, \quad y(T+1)=\alpha y(\xi) \tag{2.1}
\end{equation*}
$$

We shall give the Green's function of the problem $-\Delta^{2} y(k-1)=0$ with the boundary condition (2.1).

Lemma 2.2. The problem

$$
\begin{equation*}
\Delta^{2} y(k-1)+u(k)=0, \quad k \in \mathbf{N}_{1, T} \tag{2.2}
\end{equation*}
$$

with the boundary condition (2.1) has the unique solution

$$
\begin{align*}
y(k)=-\sum_{l=1}^{k-1}(k-l) u(l) & +\frac{k}{T+1-\alpha \xi} \sum_{l=1}^{T}(T+1-l) u(l) \tag{2.3}\\
& -\frac{\alpha k}{T+1-\alpha \xi} \sum_{l=1}^{\xi-1}(\xi-l) u(l), \quad k \in \mathbf{N}_{T+1}
\end{align*}
$$

Proof. From (2.2), one has

$$
\begin{aligned}
\Delta y(k)-\Delta y(k-1) & =-u(k) \\
\Delta y(k-1)-\Delta y(k-2) & =-u(k-1)
\end{aligned}
$$

$$
\vdots
$$

$$
\Delta y(1)-\Delta y(0)=-u(1)
$$

We sum the above equalities to obtain

$$
\Delta y(k)=\Delta y(0)-\sum_{l=1}^{k} u(l), \quad k \in \mathbf{N}_{T}
$$

here and in the following, we denote $\sum_{l=p}^{q} u(l)=0$, if $p>q$. Similarly, we sum the equalities from 0 to k and change the order of summation to obtain

$$
\begin{aligned}
y(k+1) & =y(0)+(k+1) \Delta y(0)-\sum_{l=1}^{k} \sum_{j=1}^{l} u(j) \\
& =y(0)+(k+1) \Delta y(0)-\sum_{l=1}^{k}(k+1-l) u(l), \quad k \in \mathbf{N}_{T}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
y(k)=y(0)+k \Delta y(0)-\sum_{l=1}^{k-1}(k-l) u(l), \quad k \in \mathbf{N}_{T+1} \tag{2.4}
\end{equation*}
$$

By using the boundary condition (2.1), we have

$$
\begin{equation*}
\Delta y(0)=\frac{1}{T+1-\alpha \xi} \sum_{l=1}^{T}(T+1-l) u(l)-\frac{\alpha}{T+1-\alpha \xi} \sum_{l=1}^{\xi-1}(\xi-l) u(l) \tag{2.5}
\end{equation*}
$$

By (2.4) and (2.5), we have shown that (2.3) holds.

Triple Solutions for a Higher-order Difference

Equation
Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents
Go Back
Quit
Page 8 of 23

Lemma 2.3. The function

$$
g(k, l)= \begin{cases}\frac{l[T+1-k-\alpha(\xi-k)]}{T+1-\alpha \xi}, & l \in \mathbf{N}_{1, k-1} \bigcap \mathbf{N}_{1, \xi-1} ; \\ \frac{l(T+1-k)+\alpha \xi(k-l)}{T+1-a \xi}, & l \in \mathbf{N}_{\xi, k-1} ; \tag{2.6}\\ \frac{k[T+1-l-\alpha(\xi-l)]}{T+1-\alpha \xi}, & l \in \mathbf{N}_{k, \xi-1} ; \\ \frac{k(T+1-l)}{T+1-\alpha \xi}, & l \in \mathbf{N}_{k, T} \bigcap \mathbf{N}_{\xi, T} .\end{cases}
$$

is the Green's function of the following problem

$$
\begin{equation*}
-\Delta^{2} y(k-1)=0, \quad k \in \mathbf{N}_{1, T} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
y(0)=0, y(T+1)=\alpha y(\xi) \tag{2.1}
\end{equation*}
$$

Proof. We shall divide the proof into the following two steps.
Step 1. We suppose $k<\xi$. Then the unique solution of problem (2.7), (2.1) can be written as

$$
\begin{aligned}
y(k)=-\sum_{l=1}^{k-1}(& k-l) u(l)+\frac{k}{T+1-\alpha \xi} \sum_{l=1}^{k-1}(T+1-l) u(l) \\
& +\frac{k}{T+1-\alpha \xi}\left[\sum_{l=k}^{\xi-1}(T+1-l) u(l)+\sum_{l=\xi}^{T}(T+1-l) u(l)\right] \\
& -\frac{\alpha k}{T+1-\alpha \xi}\left[\sum_{l=1}^{k-1}(\xi-l) u(l)+\sum_{l=k}^{\xi-1}(\xi-l) u(l)\right]
\end{aligned}
$$

Triple Solutions for a Higher-order Difference Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page

Contents
\square
Go Back
Close
Quit
Page 9 of 23

$$
\begin{aligned}
& =\sum_{l=1}^{k-1} \frac{l[T+1-k-\alpha(\xi-k)]}{T+1-\alpha \xi} u(l) \\
& \quad \quad+\sum_{l=k}^{\xi-1} \frac{k[T+1-l-\alpha(\xi-l)]}{T+1-\alpha \xi} u(l)+\sum_{l=\xi}^{T} \frac{k(T+1-l)}{T+1-\alpha \xi} u(l) \\
& = \\
& \sum_{l=1}^{T} g(k, l) u(l)
\end{aligned}
$$

Step 2. We suppose $k \geq \xi$. Then the unique solution of problem (2.7), (2.1) can be written as

$$
\begin{aligned}
y(k)=- & {\left[\sum_{l=1}^{\xi-1}(k-l) u(l)+\sum_{l=\xi}^{k-1}(k-l) u(l)\right] } \\
& +\frac{k}{T+1-\alpha \xi}\left[\sum_{l=1}^{\xi-1}(T+1-l) u(l)+\sum_{l=\xi}^{k-1}(T+1-l) u(l)\right. \\
& \left.+\sum_{l=k}^{T}(T+1-l) u(l)\right]-\frac{\alpha k}{T+1-\alpha \xi} \sum_{l=1}^{\xi-1}(\xi-l) u(l) \\
= & \sum_{l=1}^{\xi-1} \frac{l[T+1-k-\alpha(\xi-k)]}{T+1-\alpha \xi} u(l) \\
& +\sum_{l=\xi}^{k-1} \frac{l(T+1-k)+\alpha \xi(k-l)}{T+1-\alpha \xi} u(l)+\sum_{l=k}^{T} \frac{k(T+1-l)}{T+1-\alpha \xi} u(l)
\end{aligned}
$$

Triple Solutions for a Higher-order Difference Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page

Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 10 of 23	

J. Ineq. Pure and Appl. Math. 6(1) Art. 10, 2005

$$
=\sum_{l=1}^{T} g(k, l) u(l)
$$

Thus the unique solution of problem (2.7), (2.1) can be written as $y(k)=$ $\sum_{l=1}^{T} g(k, l) u(l)$.

We observe that the condition $\alpha \xi<T+1$ implies that $g(k, l)$ is nonnegative on $\mathbf{N}_{T+1} \times \mathbf{N}_{1, T}$, and positive on $\mathbf{N}_{1, T} \times \mathbf{N}_{1, T}$. From (2.3), we have

$$
y(k)=\sum_{l=1}^{T} g(k, l) u(l)
$$

where

$$
\begin{aligned}
g(k, l):=(T+1 & -\alpha \xi)^{-1}(k(T+1-l) \\
& \left.\quad-(k-l)(T+1-\alpha \xi) \chi_{[1, k-1]}(l)-\alpha k(\xi-l) \chi_{[1, \xi-1]}(l)\right)
\end{aligned}
$$

This is a positive function, which means that the finite set

$$
\{g(k, l) / g(k, k): k, l=1,2, \ldots, T\}
$$

takes positive values. Let M_{1}, M_{2} be its minimum and maximum values, respectively.

Triple Solutions for a Higher-order Difference

Equation
Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents
Go Back
Close
Quit
Page 11 of 23

3. Existence of Triple Solutions

In the following, we denote

$$
m=\min _{k \in \mathbf{N}_{\xi, T}} \sum_{l=\xi}^{T} g(k, l), \quad M=\max _{k \in \mathbf{N}_{T+1}} \sum_{l=1}^{T} g(k, l)
$$

and

$$
\widetilde{m}=\min _{k \in \mathbf{N}_{\xi, T}} g(k, k), \quad \widetilde{M}=\max _{k \in \mathbf{N}_{T+1}} g(k, k)
$$

Then $0<m<M, 0<\widetilde{m}<\widetilde{M}$.
Let E be the Banach space defined by

$$
E=\left\{y: \mathbf{N}_{T+n-1} \longrightarrow \mathbb{R}, \Delta^{i} y(0)=0, i=0,1, \ldots, n-2\right\}
$$

Define

$$
K=\left\{y \in E: \Delta^{n-2} y(k) \geq 0 \text { for } k \in \mathbf{N}_{T+1} \text { and } \min _{k \in \mathbf{N}_{\xi, T}} \Delta^{n-2} y(k) \geq \sigma\|y\|\right\}
$$

where $\sigma=\frac{M_{1} \tilde{m}}{M_{2} \tilde{M}} \in(0,1),\|y\|=\max _{k \in \mathbf{N}_{T+1}}\left|\Delta^{n-2} y(k)\right|$. It is clear that K is a cone in E.

Finally, let the nonnegative continuous concave functional $h: K \longrightarrow[0, \infty)$ be defined by

$$
h(y)=\min _{k \in \mathbf{N}_{\xi, T}} \Delta^{n-2} y(k), \quad y \in K
$$

Triple Solutions for a Higher-order Difference

Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents

44	$\stackrel{ }{ }$
4	-
Go Back	
Close	
Quit	

Page 12 of 23
Note that for $y \in K, h(y) \leq\|y\|$.

Remark 1. If $y \in K,\|y\| \leq c$, then

$$
0 \leq y(k) \leq q c, \quad k \in \mathbf{N}_{T+n-1}
$$

where

$$
q=q(n, T)=\frac{(T+n-1)(T+n) \cdots(T+2 n-4)}{(n-2)!}
$$

In fact, if $y \in K,\|y\| \leq c$, then $0 \leq \Delta^{n-2} y(k) \leq c, k \in \mathbf{N}_{T+1}$, i.e.,

$$
0 \leq \Delta\left(\Delta^{n-3} y(k)\right)=\Delta^{n-3} y(k+1)-\Delta^{n-3} y(k) \leq c
$$

Then one has

$$
\begin{gathered}
0 \leq \Delta^{n-3} y(1)-\Delta^{n-3} y(0) \leq c \\
0 \leq \Delta^{n-3} y(2)-\Delta^{n-3} y(1) \leq c \\
\vdots \\
0 \leq \Delta^{n-3} y(k)-\Delta^{n-3} y(k-1) \leq c
\end{gathered}
$$

We sum the above inequalities to obtain

$$
0 \leq \Delta^{n-3} y(k) \leq k c, \quad k \in \mathbf{N}_{T+2}
$$

Similarly, we have

$$
0 \leq \Delta^{n-4} y(k) \leq\left(\sum_{i=1}^{k} i\right) c=\frac{k(k+1)}{2!} c, \quad k \in \mathbf{N}_{T+3}
$$

Triple Solutions for a Higher-order Difference Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page

Contents

| $\mathbf{~ G o ~ B a c k ~}$ |
| :---: | :---: |
| Close |
| Quit |
| Page 13 of 23 |

By using the induction method, one has

$$
0 \leq y(k) \leq \frac{k(k+1) \cdots(k+n-3)}{(n-2)!} c, \quad k \in \mathbf{N}_{T+n-1}
$$

Then

$$
0 \leq y(k) \leq \frac{(T+n-1)(T+n) \cdots(T+2 n-4)}{(n-2)!} c=q c, \quad k \in \mathbf{N}_{T+n-1}
$$

Theorem 3.1. Assume that there exist constants a, b, c such that $0<a<b<$ $c \cdot \min \left\{\sigma, \frac{m}{M}\right\}$ and satisfy
$\left(H_{3}\right) f(k, y) \leq \frac{c}{M}, \quad(k, y) \in[0, T+n-1] \times[0, q c]$,
$\left(H_{4}\right) f(k, y)<\frac{a}{M}, \quad(k, y) \in[0, T+n-1] \times[0, q a]$,
$\left(H_{5}\right)$ There exists some $l_{0} \in[n-2, T+n-1]$, such that $f(k, y) \geq \frac{b}{m_{0}}, \quad(k, y) \in$ $[n-2, T+n-1] \times\left[b, \frac{q b}{\sigma}\right]$, where $m_{0}=\min _{k, l \in \mathbf{N}_{T}} g(k, l)>0$.

Then BVP (1.1) - (1.2) has at least three positive solutions y_{1}, y_{2} and y_{3}, such that

$$
\begin{equation*}
\left\|y_{1}\right\|<a, \quad h\left(y_{2}\right)>b \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{3}\right\|>a \quad \text { with } \quad h\left(y_{3}\right)<b \tag{3.2}
\end{equation*}
$$

Proof. Let the operator $S: K \longrightarrow E$ be defined by

$$
(S y)(k)=\sum_{l=1}^{T} G(k, l) f(l, y(l)), \quad k \in \mathbf{N}_{T+n-1}
$$

Triple Solutions for a Higher-order Difference

Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 14 of 23	

It follows that

$$
\begin{equation*}
\Delta^{n-2}(S y)(k)=\sum_{l=1}^{T} g(k, l) f(l, y(l)), \text { for } \quad k \in \mathbf{N}_{T+1} \tag{3.3}
\end{equation*}
$$

We shall now show that the operator S maps K into itself. For this, let $y \in K$, from $\left(H_{1}\right),\left(H_{2}\right)$, one has

$$
\begin{equation*}
\Delta^{n-2}(S y)(k)=\sum_{l=1}^{T} g(k, l) f(l, y(l)) \geq 0, \text { for } \quad k \in \mathbf{N}_{T+1} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{aligned}
\Delta^{n-2}(S y)(k) & =\sum_{l=1}^{T} g(k, l) f(l, y(l)) \\
& \leq M_{2} \sum_{l=1}^{T} g(k, k) f(l, y(l)) \\
& \leq M_{2} \widetilde{M} \sum_{l=1}^{T} f(l, y(l)), \quad \text { for } \quad k \in \mathbf{N}_{T+1}
\end{aligned}
$$

Thus

$$
\|S y\| \leq M_{2} \widetilde{M} \sum_{l=1}^{T} f(l, y(l))
$$

From $\left(H_{1}\right),\left(H_{2}\right)$, and (3.3), for $k \in \mathbf{N}_{\xi, T}$, we have

$$
\begin{aligned}
\Delta^{n-2}(S y)(k) & \geq M_{1} \sum_{l=1}^{T} g(k, k) f(l, y(l)) \\
& \geq M_{1} \widetilde{m} \sum_{l=1}^{T} f(l, y(l)) \geq \frac{M_{1} \widetilde{m}}{M_{2} \widetilde{M}}\|S y\|=\sigma\|S y\|
\end{aligned}
$$

Triple Solutions for a Higher-order Difference Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page

Contents

Go Back

Close
Quit
Page 15 of 23

$$
\begin{equation*}
\min _{k \in \mathbf{N}_{\xi, T}} \Delta^{n-2}(S y)(k) \geq \sigma\|S y\| \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5), we obtain $S y \in K$. Hence $S(K) \subseteq K$. Also standard arguments yield that $S: K \longrightarrow K$ is completely continuous.

We now show that all of the conditions of Theorem 2.1 are fulfilled. For all $y \in \overline{K_{c}}$, we have $\|y\| \leq c$. From assumption $\left(H_{3}\right)$, we get

$$
\begin{aligned}
\|S y\| & =\max _{k \in \mathbf{N}_{T+1}}\left|\Delta^{n-2}(S y)(k)\right| \\
& =\max _{k \in \mathbf{N}_{T+1}}\left|\sum_{l=1}^{T} g(k, l) f(l, y(l))\right| \\
& \leq \frac{c}{M} \max _{k \in \mathbf{N}_{T+1}} \sum_{l=1}^{T} g(k, l)=c .
\end{aligned}
$$

Hence $S: \overline{K_{c}} \longrightarrow \overline{K_{c}}$.
Similarly, if $y \in K_{a}$, then assumption $\left(H_{4}\right)$ yields $f(k, y)<\frac{a}{M}$, for $k \in$ \mathbf{N}_{T+1}. As in the argument above, we can show $S: \overline{K_{a}} \longrightarrow K_{a}$. Therefore, condition $\left(A_{2}\right)$ of Theorem 2.1 is satisfied.

Now we prove that condition $\left(A_{1}\right)$ of Theorem 2.1 holds. Let

$$
y^{*}(k)=\frac{k(k+1) \cdots(k+n-3) b}{(n-2)!\sigma}, \quad \text { for } \quad k \in \mathbf{N}_{\xi, T}
$$

Triple Solutions for a Higher-order Difference

Equation
Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents

$\$ 4$	
Go Back	
Close	
Quit	

Page 16 of 23

Then we can show that $y^{*} \in K\left(h, b, \frac{q b}{\sigma}\right)$ and $h\left(y^{*}\right) \geq \frac{b}{\sigma}>b$. So

$$
\left\{y \in K\left(h, b, \frac{b}{\sigma}\right): h(y)>b\right\} \neq \emptyset
$$

From assumptions $\left(H_{2}\right)$ and $\left(H_{5}\right)$, one has

$$
\begin{aligned}
h(S y) & =\min _{k \in \mathbf{N}_{\xi, T}} \sum_{l=1}^{T} g(k, l) f(l, y(l)) \\
& >\min _{k \in \mathbf{N}_{\xi, T}} \sum_{l=\xi}^{T} g(k, l) f(l, y(l)) \\
& \geq \min _{k \in \mathbf{N}_{\xi, T}} g\left(k, l_{0}\right) f\left(l_{0}, y\left(l_{0}\right)\right) \\
& \geq \frac{b}{m_{0}} \min _{k \in \mathbf{N}_{\xi, T}} g(k, l) \geq b .
\end{aligned}
$$

This shows that condition $\left(A_{1}\right)$ of Theorem 2.1 is satisfied.
Finally, suppose that $y \in K(h, b, c)$ with $\|S y\|>\frac{b}{\sigma}$, then

$$
h(S y)=\min _{k \in \mathbf{N}_{\xi, T}} \Delta^{n-2}(S y)(k) \geq \sigma\|S y\|>b
$$

Thus, condition $\left(A_{3}\right)$ of Theorem 2.1 is also satisfied. Therefore, Theorem 2.1 implies that BVP (1.1) - (1.2) has at least three positive solutions y_{1}, y_{2}, y_{3} described by (3.1) and (3.2).

Triple Solutions for a Higher-order Difference

Equation
Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents
Go Back
Close
Quit
Page 17 of 23

Corollary 3.2. Suppose that there exist constants

$$
0<a_{1}<b_{1}<c_{1} \cdot \min \left\{\sigma, \frac{m}{M}\right\}<a_{2}<b_{2}<c_{2} \cdot \min \left\{\sigma, \frac{m}{M}\right\}<\cdots<a_{p}
$$

p is a positive integer, such that the following conditions are satisfied:
$\left(H_{7}\right) f(k, y)<\frac{a_{i}}{M}, \quad(k, y) \in[0, T+n-1] \times\left[0, q a_{i}\right], i \in \mathbf{N}_{1, p} ;$
$\left(H_{8}\right)$ There exist $l_{i 0} \in[n-2, T+n-1]$, such that $f(k, y) \geq \frac{q b_{i}}{m_{0}}, \quad(k, y) \in$ $[n-2, T+n-1] \times\left[b_{i}, \frac{q b_{i}}{\sigma}\right], i \in \mathbf{N}_{1, p-1}$.

Then BVP (1.1) - (1.2) has at least $2 p-1$ positive solutions.
Proof. When $p=1$, from condition $\left(H_{7}\right)$, we show $S: \overline{K_{a_{1}}} \longrightarrow K_{a_{1}} \subseteq \overline{K_{a_{1}}}$. By using the Schauder fixed point theorem, we show that BVP (1.1) - (1.2) has at least one fixed point $y_{1} \in \overline{K_{a_{1}}}$. When $p=2$, it is clear that Theorem 3.1 holds (with $c_{1}=a_{2}$). Then we can obtain BVP $(1.1)-(1.2)$ has at least three positive solutions y_{1}, y_{2} and y_{3}, such that $\left\|y_{1}\right\|<a_{1}, h\left(y_{2}\right)>b_{1},\left\|y_{3}\right\|>a_{1}$, with $h\left(y_{3}\right)<b_{1}$. Following this way, we finish the proof by the induction method. The proof is completed.

If the case $n=2$, similar to the proof of Theorem 3.1, we obtain the following result.

Corollary 3.3. Assume that there exist constants a, b, c such that $0<a<b<$ $c \cdot \min \left\{\sigma, \frac{m}{M}\right\}$ and satisfy
$\left(H_{9}\right) f(k, y) \leq \frac{c}{M}, \quad(k, y) \in[0, T+n-1] \times[0, c]$,

Triple Solutions for a Higher-order Difference Equation

Zengji Du, Chunyan Xue and
Weigao Ge

| Title Page |
| :---: | :---: |
| Contents |
| Go Back |
| Close |
| Quit |

Page 18 of 23
$\left(H_{10}\right) f(k, y)<\frac{a}{M}, \quad(k, y) \in[0, T+n-1] \times[0, a]$, $\left(H_{11}\right) f(k, y) \geq \frac{b}{m}, \quad(k, y) \in[\xi, T+n-1] \times\left[b, \frac{b}{\sigma}\right]$.

Then BVP (1.1) - (1.2) has at least three positive solutions y_{1}, y_{2} and y_{3}, satisfying (3.1) and (3.2).

Finally, we give an example to illustrate our main result.
Example 3.1. Consider the following second order third point boundary value problem

$$
\begin{equation*}
\Delta^{2} y(k-1)+f(k, y)=0, \quad k \in \mathbf{N}_{1,6}, \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
y(0)=0, \quad y(7)=\frac{7}{9} y(3) \tag{3.7}
\end{equation*}
$$

where $f(k, y)=\frac{100}{k+100} a(y)$, and

$$
a(y)= \begin{cases}\frac{1}{720}+\sin ^{8} y, & \text { if } y \in\left[0, \frac{1}{30}\right] \\ \frac{1}{720}+6\left(y-\frac{1}{30}\right)+\sin ^{8} y, & \text { if } y \in\left[\frac{1}{30}, 3\right] \\ \frac{1}{720}+\frac{89}{5}+\frac{\sin ^{2}(y-3)}{2}+\sin ^{8} y, & \text { if } y \in[3,360]\end{cases}
$$

Then $T=6, n=3, \alpha=\frac{7}{9}<1, T+1-\alpha n=\frac{14}{3}>0$. Then the conditions

Triple Solutions for a Higher-order Difference

Equation
Zengji Du, Chunyan Xue and Weigao Ge

Title Page
Contents

44	-
4	-
Go Back	
Close	
Quit	

Page 19 of 23
$\left(H_{1}\right),\left(H_{2}\right)$ are satisfied, and the function

$$
G(k, l)=\frac{3}{14} \begin{cases}\frac{l(42-2 k)}{9}, & l \in \mathbf{N}_{1, k-1} \bigcap \mathbf{N}_{1,2} \\ \frac{3 l(7-k)+7(k-l)}{3}, & l \in \mathbf{N}_{3, k-1} \\ \frac{k(42-2 l)}{9}, & l \in \mathbf{N}_{k, 2} \\ k(7-l), & l \in \mathbf{N}_{k, 6} \bigcap \mathbf{N}_{3,6}\end{cases}
$$

is the Green's function of the problem $-\Delta^{2} y(k-1)=0, k \in \mathbf{N}_{1,6}$ with (3.7).
Thus we can compute $m=\frac{27}{2}, M=18, \widetilde{m}=\frac{9}{7}, \widetilde{M}=\frac{18}{7}, M_{1}=\frac{2}{9}, M_{2}=9$, $\sigma=\frac{1}{81}<\frac{m}{M}=\frac{3}{4}$. We choose that $a=\frac{1}{35}, b=\frac{1}{10}, c=360$, consequently,

$$
f(k, y)=\frac{100}{k+100} a(y)
$$

$$
\leq a(y) \leq \begin{cases}\frac{1}{720}+1<20=\frac{c}{M}, & (k, y) \in[0,7] \times\left[0, \frac{1}{30}\right] \\ \frac{1}{720}+6\left(3-\frac{1}{30}\right)+1<20=\frac{c}{M}, & (k, y) \in[0,7] \times\left[\frac{1}{30}, 3\right] \\ \frac{1}{720}+\frac{89}{5}+\frac{3}{2}<20=\frac{c}{M}, & (k, y) \in[0,7] \times[3,360]\end{cases}
$$

Thus

$$
f(k, y) \leq \frac{c}{M}, \quad(k, y) \in[0,7] \times[0,360]
$$

and

$$
f(k, y) \leq \frac{1}{720}+\sin ^{8} y<\frac{1}{630}=\frac{a}{M}, \quad(k, y) \in[0,7] \times\left[0, \frac{1}{35}\right]
$$

Triple Solutions for a Higher-order Difference Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents
Go Back
Quit
Page 20 of 23

$$
\begin{gathered}
f(k, y) \geq \frac{100}{107}\left[\frac{1}{720}+6\left(\frac{1}{10}-\frac{1}{30}\right)+\sin ^{8} y\right] \geq \frac{1}{135}=\frac{b}{m} \\
(k, y) \in[3,7] \times\left[\frac{1}{27}, 3\right]
\end{gathered}
$$

That is to say, all the conditions of Corollary 3.3 are satisfied. Then the boundary value problem (3.6), (3.7) has at least three positive solutions y_{1}, y_{2} and y_{3}, such that

$$
y_{1}(k)<\frac{1}{35}, \text { for } k \in \mathbf{N}_{7}, \quad y_{2}(k)>\frac{1}{27}, \text { for } k \in \mathbf{N}_{3,7}
$$

and

$$
\max _{k \in \mathbf{N}_{1,7}} y_{3}(k)>\frac{1}{35}, \text { for } k \in \mathbf{N}_{7} \text { with } \min _{k \in \mathbf{N}_{3,7}} y_{3}(k)<\frac{1}{27}
$$

Triple Solutions for a Higher-order Difference Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents
Go Back
Close
Qage 21 of 23

References

[1] X.M. HE AND W.G. GE, Triple solutions for second order three-point boundary value problems, J. Math. Anal. Appl., 268 (2002), 256-265.
[2] Y.P. GUO, W.G. GE and Y. GAO, Two Positive solutions for higher-order m-point boundary value problems with sign changing nonlinearities, Appl. Math. Comput., 146 (2003), 299-311.
[3] R.P. AGARWAL, D. O’REGAN And P.J.Y. WONG, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Boston, 1999.
[4] G.L. KARAKOSTAS, K.G. MAVRIDIS and P.Ch. TSAMATOS, Multiple positive solutions for a functional second order boundary value problem, J. Math. Anal. Appl., 282 (2003), 567-577.
[5] H.B. THOMPSON, Existence of multiple solutions for finite difference approximations to second-order boundary value problems, Nonlinear Anal., 53 (2003), 97-110.
[6] R.M. ABU-SARIS AND Q.M. AL-HASSAN, On global periodicity of difference equations, J. Math. Anal. Appl., 283 (2003), 468-477.
[7] Z.J. DU, W.G. GE And X.J. LIN, Existence of solution for a class of third order nonlinear boundary value problems, J. Math. Anal. Appl., 294 (2004), 104-112.

Triple Solutions for a Higher-order Difference

Equation

Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents
Go Back
Close
Page 22 of 23

[8] A. CABADA, Extremal solutions for the difference p-Laplacian problem with nonlinear functional boundary conditions, Comput. Math. Appl., 42 (2001), 593-601.
[9] R.Y. MA, Multiplicity of positive solutions for second order three-point boundary value problems, Comput. Math. Appl., 40 (2000), 193-204.
[10] R.Y. MA, Positive solutions of a nonlinear three-point boundary value problems, Electron J. Differential Equations, 34 (1999), 1-8.
[11] R.Y. MA, Positive solutions for second order three-point boundary value problems, Appl. Math. Lett., 14 (2001), 1-5.
[12] R.W. LEGGETT and L.R. WILLIAMS, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.

Triple Solutions for a Higher-order Difference

Equation
Zengji Du, Chunyan Xue and
Weigao Ge

Title Page
Contents
Go Back
Close
Quit

