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Abstract: This paper presents novel results about the structure of solutions for certain evo-

lutionary variational inequality problems. We show that existence of piecewise Close

solutions is dependant upon the form of the constraint set underlying the evolu-
tionary variational inequality problem considered. We discuss our results in the
context of double-layered dynamics theory and we apply them to the modelling
of traffic network equilibrium problems, in particular to the study of the evolution
of such problems in a neighbourhood of a steady state.
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1. Introduction

This paper presents results concerning solution classes for certain evolutionary vari-
ational inequality (EVI) problems. The results are then used in the context of the
double-layered dynamics (DLD) modelling of certain traffic network problems. The
novelty of the results in the first part of the paper resides in showing how the structure
of solutions of certain types of EVI is a direct consequence of the type of constraint
sets involved in their formulation. In the second part, we use this information in the
study of the evolution, in finite-time, from disequilibrium to equilibrium, of an ap-
plied equilibrium problem whose steady states are modelled by an EVI. Such a study,
started in ], is made possible by the recently introduced theory of double-layered
dynamics. The question of finite-time dynamics is extended here by introducing
the concept of--strongly pseudo-monotone mappings. The paper contains novel
illustrative examples and an application to traffic network problems which is more
detailed than the one ir7].

Evolutionary variational inequalities were first introduced in the 196@s46,
32)), and have been used in the study of partial differential equations and boundary
value problems. They are part of general variational inequalities theory, a large
area of research with important applications in control theory, optimization, op-

erations research, economics theory and transportation science (see for example

[2, 11, 12, 13, 14, 16, 17, 19, 20, 22, 25, 28, 30] and the references therein). The
form of EVI problems we consider in the present paper represents a unified formula-
tion coming from applied problems in traffic, spatial price and financial equilibrium
problems 1, 12, 13, 14] and were introduced first ir6]. The existence and unique-
ness theory for EVI problems has been studied in many contexts; here we use the
result in [L3]. In [8] the authors give a refinement of this existence result showing

1Research conducted during the author’s tenure 04-05/2006.
2Research funded by NSERC Discovery Grant 262899.
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under what conditions continuous solutions exist.3n7] the authors present com-
putational procedures for obtaining approximate solutions of an EVI problem of the
type considered here.

Building upon the existence results dfj 8] we show under what conditions
solutions to EVI problems are expected to be piecewise functions. This depends di-
rectly upon the form of the constraint set we work with; in particular, we consider
various forms of demand constraints (piecewise continuous functions, step func-
tions) and draw new conclusions about the type of solutions in each case.

In [6, 7] the authors introduce double-layered dynamics theory as the natural
combination of the theories of EVI and projected dynamical systems (PDS). PDS
theory has started to develop in the context of differential inclusid8s1[0, 1], but
was first formalized in16] on the Euclidean space and &(] 5] on arbitrary Hilbert
spaces. In essence, DLD consists of associating to an EVI on the Hilbert space
L*([0,T],R?), an infinite-dimensional PDS, whose critical points coincide exactly
with the solutions of the EVI problem and vice versa. In this paper we use DLD
theory to study the structure of EVI solutions for particular (step) demand functions.
DLD is further used to show how some equilibrium states can be reached in finite
time under suitable conditions.

We recall that variational inequalities theory has been used to formulate, qualita-
tively analyze, and solve a number of network equilibrium probleldsZ7, 28, 29,

30]. However DLD theory is also attractive for the modelling and analysis of equi-
librium problems because it allows the study of applications involving two types
of time dependency: one represented by the time-dependent equilibria (that can be
predicted for a given problem via EVI theory), and the other represented by the
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time-dependent behavior of the application around the predicted equilibrium curve
(obtained via PDS theory). The interpretation of the two timescales in DLD theory
was discussed irv] and it is further deepened in this paper with the help of what we
call the prediction timescalandthe adjustment timescale
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The structure of the paper is as follows: in Sectione present our results about
piecewise solutions of EVI in the generic context/dfspaces and a theoretical ex-
ample. In Sectio® we give brief introductions to PDS and DLD, and show that step
function solutions for EVI are possible. In Sectibmwe discuss the relation between
the prediction and adjustment timescales in DLD theory. We introduce here the
concept ofr-strong pseudo-monotonicity with degregwhich is similar but more

general than that of strong pseudo-monotonicity with degrg?, 28, 20]) and we Evolutionary Variational
show how this concept is useful in determining when an EVI solution can be reached Inequalities

in finite-time. Sectiorb presents a dynamic traffic equilibrium example following Monica-Gabriela Cojocaru
a computational procedure as @ [using an original MAPLE 8 code), illustrating vol. 8, iss. 3, art. €3, 2007

the theoretical results of the previous sections and their possible consequences for

traffic control. We close with conclusions and acknowledgements in Settion Title Page
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2. Piecewise Solutions of Evolutionary Variational Inequalities

Evolutionary variational inequalities were originally introduced by Lions and Stam-
pacchia P6] and Brezis #]. In this paper we use an EVI in the form initially
proposed in 13] but using the unified framework proposed first B [/]. These

EVI come from traffic network problems and economic equilibrium problems (see
[6, 11, 12, 13]) and are presented next. We consider a nonempty, convex, closed,
bounded subset of the reflexive Banach spadé0, 7], R?) given by:

(21) K= {u € LP([0, T],RY) | AM(t) < wu(t) < p(t) a.e.in[0,T];
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(2.2) findu € K such that({(F(u),v —u)) > 0, Yv € K.
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Theorem 2.1.1f F'in (2.2) satisfies either of the following conditions:

1. F'is hemicontinuous with respect to the strong topologyomnd there exist
A C K nonempty, compact, arfgl C K compact such that, for everye K\ A,
there exists: € B with ((F(u),v —u)) < 0;

2. F'is hemicontinuous with respect to the weak topolog¥on

Evolutionary Variational

3. F'is pseudo-monotone and hemicontinuous along line segments, Inequalities
Monica-Gabriela Cojocaru
then the EVI problemZ(2) admits a solution over the constraint &t vol. 8, iss. 3, art. 63, 2007

For a proof, seel3]. If F is strictly monotone, then the solution of.p) is
unique. Another result about uniqueness of solutiona 1) ¢an be found in{] and Title Page
we recall it in the next section.

Content
Remarkl. Theorem2.1 simply states that a measurable solution can be found for omens
an EVI problem of type4.2). We show next that this problem admits a piecewise < 44
solution, provided the constraint functiohs, p, satisfy\, u € LP([0,T],R?) and ; S
pi(t),j € {1,...,1}, are piecewise functions as presented below.
We consider sets FEgE T Eree
Go Back
(2.3) K= {u € LP([0, T],RY) [ A(t) < u(t) < pu(t) a.e.in(0,TT]; Full Screen
Close
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> &uilt) = pj(t) ae. inf0, 7], | -
i—1 journal of inequalities
in pure and applied
1} }7 mathematics
issn: 1443-575k

&ie{-1,0,1}ie{l,....q},je{1,...

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:mcojocar@uoguelph.ca
http://jipam.vu.edu.au

wherep; are given by

Cl(t, |f0§t§t1

)
p](t) _ Cg(t), if t1 <t <ty ’

Ck; (t), if tk:j—l <t< tk:j =T
A € LP([ta_1,t,),RY), foranyn € {1,... k;}

Remark2. Without loss of generality, we can consider thatgl(¢) partition the
interval[0, 7] in the same number of subintervals. Otherwise, we consider the set

l
A= {0t o, 1,0, TY

Jj=1

and we partitior[0, 7] according to the division sek, possibly rewriting the func-
tionsp;(t). Therefore, we consider sefsas in ¢.3) with

a(t), fo<t<t

CQ(t), if 1 <t<ty
p =9 ’

Ck(t), if tha<t<t,=T

ch e LP([ty—1,t,),R?), foranyn e {1,... k}.

Theorem 2.2. Assumé is of the form £.3) and assume that : K — L?([0, 7], R?)*
is strictly monotone and continuous. Then E¥ I} admits a unique piecewise so-
lution.
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Proof. We first prove the result for the case of sEtas in £.3) wherej := 1. These
are therefore of the form

2.4) K= {u e LP([0, T],RY) | A(t) < u(t) < u(t)

and Zghuz = p1(t) a.e. on[O,T]},

where¢;; € {0,1} andp;, is given by

C1 (t),

min={ >

Ck(t),

Foreachn € {1,...,

ifo<t<ty
ift1<t§t2

iftk,1<t§tk:T

cn € LP([th-1,t,),R?), foranyn e {1,... k}.

k} we consider the following set

Ky, == {u |, +,| v € K} which has the property that

Kng{zGLp([nl, n), RY) [A() < 2(2) < pu(?)

and thzl =c, )a.a.te[tn_l,tn]}.
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We also consider the evolutionary variational inequality /,, on the sekK,,, namely ||\'
S

tn &% e
findu € K, s.t. / (F(u)(t), v(t) — u(t))dt > 0, Vo € K, »
tn—1
Each of the setK,, is closed, convex and bounded, and the mappisatisfies The-
orem2.1(3) onK,,. According to this theorem eadliV' /,, has a unique measurable : _
solution. Let us denote it by*. We then consider the mapping : [0,7] — R¢ Evolutonan Teratons!
glven by nequalities

Monica-Gabriela Cojocaru

ui(t), ifo<t<t vol. 8, iss. 3, art. 63, 2007
us(t), it <t<t

(2.5) u*(t) = Title Page
up(t), ftpy <t<tpy=T Contents
We show that* € K. By the definition ofu* we see thah(t) < u*(t) < u(t), and K o
q < >
Y &uui(t) = pi(t) ae.on [0,7]. Page 10 of 35
=1
It remains to show that* € L?([0, 7], R?). This follows from the fact that Go Back
Full Screen
pe LP((0, TR and  |[[u"(£)], < |lu(®)]l, < oo,
Close
thusu* € K.
Suppose now that* is not a solution of the EVI problen®(?). Then there exists journal of inequalities
v € K so that in pure and applied
T mathematics
((F(u"),v —u")) <0 <= / (F(u")(t),v(t) — u*(t))dt < 0. issn: 1443-575k
0
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This is further equivalent to

S [ R0 - o) <o

Letw, :=v |, , +.]» We subsequently get

Evolutionary Variational

Inequalities
(26) Z/ n(t) — u;(t)>dt < 0. Monica-Gabriela Cojocaru
tn—1 vol. 8, iss. 3, art. 63, 2007
But on each seK,, we have thatzV' I, is solvable and so
Title Page
(2.7) ((F(ur),z—u)) >0,Vz € K,
Contents
— /n 1 ,2(t) —wr(t)))dt > 0, Vz € K,,. K 5
We note thatv,, defined above is an elementf,, so letz := w, in (2.7). Since < >
we can do this for each € {1, ..., k}, we get that Page 11 of 35
Go Back
2.8) Z/ () =t (O))dt >0, Vne{l,... k).
tn_1 Full Screen
We see now that(6) and @.6) lead to a contradiction. Heneé < K is a piecewise Close

solution of EVI (2.2).

Keeping in mind Remark, the case > 1 can be shown in a similar manner, by (et ey gl s

. in pure and applied
defining, for eactn € {1,..., k}, the set P
K, :={u |[tn_1,tn}| u € K} where issn: 1L443-575k
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K, C {z € LP([ty—1,ta), RY) [A < 2 <

q
and Zgjizl-(t) =d(t)aat €ty 1,t.,j €1{1,.. .,l}}.
=1

D Evolutionary Variational
Inequalities

Next we prove more about the structure of the solutions of an EVI probilef ( Monica-Gabriela Cojocaru
for the case of %([0, T, RY). vol. 8,iss. 3, art. 63, 2007
Corollary 2.3. Assume the hypotheses of Theore® wherep := 2, A\, u are
continuous functionsy; are piecewise continuous an is given byF(u)(t) = Title Page
A(t)u(t) + B(t), where A(t) is a positive definite matrix for eache [0,77] and
A, B are continuous. Then EVP(2) admits a piecewise continuous solution. Clorlieinis
Proof. EachEV I, has, under the present hypotheses, a continuous solytion « 44
This follows from [8]. Then by Theoren?.2 the solution of the EVIZ.2) is piece- < >
wise continuous. O]

] ) Page 12 of 35
Corollary 2.3 is also important from a computational point of view. We obtain

the solutionu*(¢) by computing the piecewise componenfgt), as shown in§, Go Back
or using the computational procedure &.[ Full Screen
Example2.1 Letp :=2,q:=4,T :=90, j := 2and¢;; := 1fori,j € {1,2}. We

setA(t) = (0,0,0,0) andu(t) = (100, 100, 100, 100) for ¢ in [0, 90], hence Close

journal of inequalities
K = < u e L*([0,90], R0 < «!(t) < 100 in pure and applied
' mathematics
issn: 1443-575k

a.e.inf0,90], i € {1,2}, j € {1,2}
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and Zu ) a.e. inf0,90], j € {1, 2}}

where
0 2t, if 0 <t¢<30 0 2, if0<t<30
PrE = —2t 4220, if30<t<90 palt) = t, if30<t<90
We consider:

F (uf, uy, uf,u3) (t)
= (uj(t) — 120, ub(t) — 120, 2ui(t) + u3(t) — 330, ui(t) + 2u3(t) — 330),
F : K — L*([0,90], R*) and the following EVI:
((F(u),v—u)) >0, VYvek.

We remark that” : K — L?([0,90], R?) satisfies the hypotheses of Corollarys.
Using a computational procedure as 6), [we obtain that the unique equilibrium
curve of this problem is given by the piecewise continuous function

* (tt.5.5). if 0 < <30
ui(t) =
(=t +110,—¢t + 110, %, %), if 30 < ¢ < 90.

In the next section we further refine our results by studying the structure of solu-
tions to EVI (2.2) in the context of double-layered dynamics theory.
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3. Double-layered Dynamics

In essence, EVI problems of the type considered in this paper can be viewed as a
1-parameter family of a static variational inequality, with parametErom here on,

we consider that our EVIX2) represents the model of an equilibrium problem (as,
for example, in 1L4]). In this context, the parametéewill be taken to mean physical

time. Ast varies ovell0, T'], the constraints of the equilibrium problem change, and
so the static states describe a curve of equilibria. Such an equilibrium curve can be
of the form ¢.5), asin Theoren2.2. DLD was introduced in§, 7] as a unifying tool

for deepening the study of an EVI problem with constraint Bets L*([0, 7], RY).

3.1. PDS

A thorough introduction to both theories and applications of EVI and PDS can be
found in [6]. DLD theory is presented in detail ir¥]. In this section we outline
only the necessary theoretical facts in order to insure a self-contained presentation
of this work. LetX be a Hilbert space of arbitrary (finite or infinite) dimension and
let K € X be a non-empty, closed, convex subset. We assume that the reader is
familiar with the concepts ofangent and normal cones t at x € K (Tk(x),
respectivelyN g (z)), andthe projection operator ok onto K, Pk : X — K given
by || Pic(2) = 2|| = in ||z - .

The properties of projection operators on Hilbert spaces are well-known (see for
instance B3]). The directional Gateaux derivative of the operaftaris defined, for
anyx € K and any element € X, as the limit (for a proof see3p)):
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Jim 5 ; moreover, g (z,v) = Pry ) (v).

Letllx : K x X — X be the operator given b, v) — Ik (x,v). Note thatll
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is discontinuous on the boundary of the sétIn [15, 21], several characterizations
of [ are given.

Theorem 3.1. Let X be a Hilbert space and< be a non-empty, closed, convex
subset. Lef’ : K — X be a Lipschitz continuous vector field angl € K. Then
the initial value problem

dx(r)
"0 — ().~ Pla(r)).

has a unique absolutely continuous solution on the intejalo).

For a proof, seeq, 5]. This result is a generalization of the one k6], where
X :=R", K was a convex polyhedron arfdhad linear growth.

(3.1)

z(0) =29 € K

Definition 3.2. A projected dynamical system is given by a mappin@R,. x K —
K which solves the initial value problem:

Q.ﬁ(T, l‘) = HK(¢(T7 x)v _F(¢(Tv {L‘))), ¢(07x) =1z € K.

3.2. DLD

Double-layer dynamics consists of intertwining an EVI problem and a PDS as fol-
lows: we letp := 2, X := L?([0,T],R?) and we consider sef& C L*([0, 7], R?),

as given by 2.1). Further, we consider the infinite-dimensional PDS define&on

by

dr :HK(U('7T>’_F(U)('7T>>a

u(-,0) = u() € K,
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where we assume the following hypothesis: : K — L2([0,7],R?) is strictly
pseudo-monotone and Lipschitz continuous. Note that this hypothesis is in the scope
of both Theoremg&.1and2.2. The following results hold (sed] for a proof of the

first and seefq] for a proof of the second):
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Theorem 3.3.

1. Assuming thaf' is strictly pseudo-monotone and Lipschitz continuous, the so-
lutions of the EVI probleni)( 2) are the same as the critical points of PDS4).
The converse is also true.

2. EVI (2.2) has a unique solution.

DLD theory helps establish the long time behaviour of the applied problem with
respect toits curve of equilibria. This has been don&Jinyhere infinite-dimensional
PDS theory was used to draw conclusions about the stability of such a curve. Next
we use a DLD setting to prove a new result about the solution structure of an EVI
problem.

Theorem 3.4. Assume a seK is as in €.4), wherep = 2, A(t) := A, u(t) == p
are constant functions, ang(¢) are step functions. Lef : K — L*([0,T],R),
F(u)(t) = Au(t) + B be strictly pseudo-monotone and Lipschitz continuoukon
Then the unique solution of EV2.Q) is a step function.

Proof. From Corollary2.3and Theoren3.3(2), we have that the unique solution of
the EVI problem 2.2) is of the form:

wi(t), fo<t<t

u*(t) = ’ , Where eachy) is continuousp € {1,...,k}.

L UZ(t), if th1 <t<t,=T

From Theorens.3(1), we have that this solution curve constitutes the unique equi-
librium of PDS (3.2). Let us now arbitrarily fixx € {1,2,...,k} andt € (t,_1,t,).
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We denote by’ D S, the finite-dimensional projected dynamical system given by the

flow of the equation:

33 ) Mg i), ~Fi(wl),

where

k
K(t) := {w =u(t) e RT | XN <w <y, andeﬂ-wi =d,je {1,...,1}} and

i=1
F, : K(t) — R?, given byF;(w) := Aw + B.

DLD theory implies that the unique equilibrium point of this systemjét). Sim-
ilarly, choosingt’ € (t,-1,t,] andt # t’, the unique equilibrium point oP DS,

is u:(t'). However, the constraint sef§(¢) andK(¢') coincide, and the mappings
F, and I}, are the same, hendeDS; and PDS; are given by the same differen-
tial equation £.3). Thereforeu’ () = w}(t'). Sincet, t' were arbitrarily chosen on
(tn_1,t,], thenu? (t) =constant: u on the interval(t,_,t¢,]. Sincen was also
arbitrarily chosen i1, ..., k}, the solutionu* is a step function. ]
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4. Adjustment to Equilibria in Double-Layered Dynamics

Recall that we consider an EV2 (9) as the model of an equilibrium problem. The
solution of this EVI is interpreted as a curve of equilibrium states of the underlying
problem over the time interval, T']. These are all thpotentialequilibrium states
the problem can reach. Therefore we ¢@ll’] the prediction timescale

We further associate to EVP(2) a PDS 8.2). By Theorem3.3, the equilibrium
curve is stationary in the projected dynamigs’j, hencer € [0, oc) represents the
evolution time of the problem from disequilibrium to equilibrium. Therefore we call
[0, 00) the adjustment scal®©ur DLD models include the following assumptions:

1. t, 7 represent physical time;
2. time unit is the same,;

3. time flows forward.

The modelling questions we want to answer here are of the following type: does
an equilibrium problem modelled via DLD reach one of its predicted equilibrium
statesn finite time starting from an observed initial statét,), at some, € [0,7]?

A first answer to this question was given ifj [Theorem 4.2), where it is shown
that for a fixedty, under strong pseudo-monotonicity with degeee: 2 of F}, the
PDS,, (as defined in¥.3) above) admits a finite-time attractor, namely,). An
estimate for the time necessary for a trajectory offfieS,, to reachu*(t) is given
and is denoted by, . In [7], I;, is interpreted as an instantaneous adjustment of the
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equilibrium problems. In the second subsection we use this estimate in the context
of the two timescales (prediction and adjustment).

In this part of the paper we prove a generalization of our resulf]i(spe Lemma
4.2 below). In order to do so, we need to introduce first a new concept, that of
r-strong pseudo-monotonicity as follows:

Definition 4.1. Let K C X be closed, convex, whePe is a generic Hilbert space.
Let((-,-)) be the inner product oiX and f : K — X a mapping. Then:

1. f is called locallyr-strongly pseudo-monotone with degreet x* € K if,
for a givenr > 0, there exists a neighbourhoad(z*) C K of the pointz*
with the property that for any point € N (z*)\ B[z*, r], there exists a positive
scalarn(r) > 0 so that

(f@®),x—2%)) 20 = ((f(x),x —a") = n(r)|le— =[]

2. f is calledr-strongly pseudo-monotone with degreat z* € K if the above
holds for allz € K\ B[z*, r].

Remark3.

1. Definition 4.1 is a generalization of strong pseudo-monotonicity with degree
« atz* (first introduced in 20]); strong pseudo-monotonicity with degreds
itself a generalization of the notions of local and global strong monotonicity
with degreex introduced in P4, 28].

2. Definition4.1is not vacuous; note that any (locally) strongly pseudo-monotone
mappingf with degreex atz* satisfies Definition!. 1.

3. There exist mappings satisfyimgstrong pseudo-monotonicity withatx*, but
which do not satisfy strong pseudo-monotonicity witfat that point (see our
example in Sectiob and the justification in the Appendix).
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We are ready to prove the following:

Lemma 4.2. Assume thaf : K — X satisfies condition (1) (respectively (2)) of

Definition 4.1 with degree0 < « < 2, is Lipschitz continuous, and that is a
critical point of the projected dynamical system givenfon K:

T M), f ().

Given an initial statex(0) € N(z*)\B[z*,r] (respectively:(0) € K\B[z*,r]), the
unique trajectory of the projected system starting:@t) reaches) B[z*, r] after

_lle(0) — B = e
M2 =)

Proof. Assumef to be locallyr-strongly pseudo-monotone with degree< 2 at
x* € K there exists a neighbourhodd(z*) andn(r) > 0 so that

(f@®),x—=27) 20 = ({f(z),z =) n(r)[|z —2"[|".

Letz(0) € N(z*)\Bz*,r| andz(7) the unique trajectory of PDS starting&0).
Assume that

units of time

(4.1) |x(r) — 2| —r>0,Vr >0 = |a(r) —2*|| >r > 0.

This implies that

1
D(r) = EHIE(T) —z**>0, Vr>0.
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We have

:<<di )= 2 ,x(T)—x*>>

Mg ((7), =f((7))), () — 7))

é << (m(T)),w(T) — %))
Sincex* is an equilibrium point, theflx (z*, — f(z*)) = 0 & —f(z*) € Nk(z*), Evolufonary ariatons!
hence | reaiees
Monica-Gabriela Cojocaru
(4.2) —{((f(x"),z(1) —x")) <0. vol. 8, iss. 3, art. 63, 2007
Based on4.2), from the hypothesis we have that
(4.3) — {((f(2(7)),2(1) — 27)) < —n(r)[|z(r) — 27| e (Peage
and so from4.2) and ¢.3) we have that Contents
d . : <« >
d—D(T) < —n(r)||x(r) = 2*||* <0 = 7+ ||z(7) — 2" is decreasing
-
< >
Following a similar computation as i (proof of Theorem 4.2), integrating from
0 to 7, we obtain Page 21 of 35
lo(7) = 2" *7 < [|2(0) — 2™ — 7 (r)[2 — a]. o B
The last inequality is equivalent to Full Screen
la(r) = %l = 7 < [o(0) = 2|~ = r(r)[2 = a]| " =7, Close
and we see that our assumptienlj is contradicted because we can find a moment journal of igequollllitigs
7 > 0, (which we will denote from now on b, to keep a notation consistency with N pure and appie
[7]) so that mathematics

issn: 1443-575k
la(7) — ™[] =7 <0,
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namely

_ Nlw(0) — @K — e

@4 TR -

O

Remark4. The result of Lemmal.2 is a generalization of the one in Theorem 4.1
in [7]. In that case, we simply have= 0 and a strong pseudo-monotone mapping
with « < 2, thusz* is a finite-time attractor and the adjustment time of the dynamics
from the initial stater(0) to the equilibriumz* is given by

_ (0) = 25
(4.5) lo == = OMR

We return now to the study of an equilibrium problem modelled with DLD. We
assume that we start observing the problem at sgme [0, T, with initial data
u(to, 0) € K(to), where

i=1

q
K(tg) = {w =u(ty) € R | Ato) < w < ul(ty), Zfﬁwi = p;(to), 7 €4{1,... ,l}} :
We considerPDS,, and F;, : K(¢y) — R? as in 8.3); according to DLD the-
ory, its unique equilibrium is.*(¢y). Letw(7) := u(to, 7) be the solution of the
PDS,, starting atu(to,0). Then Lemmal.2implies that: wheneveF; is r-strongly
pseudo-monotone with degree< 2 atu*(t,), then by {.4) we have that
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However, time passes uniformly on both prediction and adjustment scales. Formula
(4.6) indicates that} units have passed on the adjustment scale, but none have
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passed on the prediction scale. Tha<\ makes sense only if there exists > 0
so that

u* (to) = U*(to + At) andAt = l:o.
The last formula gives us the following interpretation:

ther-neighbourood of the equilibriuma* (¢,+At) is reached in finite time starting
from the disequilibrium state*(t,,0), if [j, = At.

Remark5. In the more particular case of a mappihgwhich is strongly pseudo-
monotone with degree < 2 at z*, keeping in mind 4.5), we have that the equi-
librium u*(ty + At) is reached in finite time starting from the disequilibrium state
U*(to, 0), if lto = At.

In the next section we present a novel traffic network example to illustrate our
results.
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5. Application to Traffic Network Equilibrium Problems

In the example below we consider that the demanah the network is a piece-
wise continuous function of and we illustrate our interpretation of adjustment to
the neighbourhood of a predicted equilibrium state of the network. Such an exam-
ple represents a novelty for the DLD applications present in the literature so far.
Moreover, in this example we present a new use of formdld @s follows: if an
equilibrium state takes place twice in the time interi@all’], namely in our previ-
ous notationu*(tg) = u*(to + At), then we can determine for which initial states
u(ty), formula ¢.6) takes place. In other words, we can determine from which initial
disequilibrium states the traffic will adjust to (a neighbourhood of) the equilibrium
We consider a traffic network with one origin destination pair having two links (as
depicted in Figure 1) and the following constraint set corresponding to this network
configuration

K := {u € L*([0,110],R?) | 0 < u(t) < 120, uy(t)+ua(t) = pi(t) a.a.t € [0,110]},

where
(41, t €0, 15],
60, t € (15,20],
p1(t) =< 3t, t € (20,40],
120, t € (40,91],
—t+211, te (91,110].

\

We consider the time unit to be a minute and the time intefydl10] to corre-
spond to 6:30 am - 8:20 am during a weekday. Let the flows on each link be denoted
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1
uz
Evolutionary Variational
Inequalities
. Monica-Gabriela Cojocaru
Figure 1 :
vol. 8, iss. 3, art. 63, 2007
Title Page
120 Contents
100
3 44 44
B0
flow demand 61}—; 4 >
41}—; Page 25 of 35
20_; Go Back
¢ 20 40 60 S0 100 120 =l SereEn
t
Close
Figure 2
journal of inequalities
in pure and applied
by u1, u, and the demand by, (Figure 2 depicts the demand). We see that during mathematics
the hight of rush hour, 7:10-8:00 am (i.e< (40, 91]) the demand is highest. issn: 1443-575k
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Let us also consider the cost on each link to be given by the mapping

F: K — L*([0,110],R?), F((uy,u2)) = (u; + 151, uy + 60).

The dynamic equilibria for such a problem are given by the EVI (see aa7)

110
/0 <F<u> (t)7 U(t) - u(t)> dt Z O? VU € K Evolutionary Variational
Inequalities
The mapping is Lipschitz continuous with constahnd F'(u) := Au+ B with A amEEHER el C e
positive definite; by Corollary .3, the unique solution of the above EVI is piecewise vol. 8, iss. 3, art. 63, 2007

continuous; moreover, by Theore#y, the solution has a constant value over the
intervals[15, 20] and [40, 91]. By the method proposed ]} implemented with a

Title P
MAPLE 8 code, we compute an approximate solution to be B
Contents
((0,4t), € [0, 15],
<« >
0,60 ,
(0,60), < (15.20 —
0,3t =1,
u*(t) = ( ) ( 3 ] Page 26 of 35
(452, 25), e (30
37 ’ Go Back
(14.5,105. 5) € (40, 91],
Full Screen
t+120 —t+302
\ ( =302 ¢ e (91,110). .
The graph of this solution is presented in Figure 3. We note that the Wardrop equi- s .
librium conditions are satisfied for this solution, namely all paths with positive flow journat ot inequatties
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:mcojocar@uoguelph.ca
http://jipam.vu.edu.au

Figure 3

in equilibrium have equal minimal costs, as can be seen below:

( (151, 4t + 60), € [0,15],
(151,120), t € (15,20],
* (151,3t +60), € (20,%],
F(u™)(t) = ( 3t4211 3t+211) t e (2 4()]
) 3 )
(165.5,165.5), ¢ € (40,91],
| (2 =22) e (91, 110).

2

We see here that users prefer the second road to the first, however, during the rush
hour peak, they will use both routes, as they become equally expensive.
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So far, the EVI model of this problem has provided the approximate equilibrium
curve for the traffic, given a certain structure of the demand function. In general
however, the traffic may be in disequilibrium, in which case we want to know if/how
it will evolve towards a steady state. This type of question is answered via the DLD
model of this network, namely considering the PDS:

u(t, )
dr

Let¢, € [0, 110] be fixed and consider the projected dynamicgaP DS,,, given
by

= Mg (u(t, ), —F(u)(t, 1)).

dw(T)
dr

— HK(tO)(w(T), —F, (w(T)))’

where
K(tg) = {u(t) := w € R* | (0,0) < (w1, ws) < (120,120), w1 +wy = p1(t)},

andF, : K(t) — R2, F,,(w) = (w; + 151, w, + 60).

We can study whether the traffic approaches a small given neighbourhood of a
steady state. Moreover, as we show below, this has consequences for traffic control,
as one could find a flow distribution at the initial timgeso that at a later time the
traffic will adjust "close enough" to an equilibrium.

Lett¢, := 35 (i.e. 7:05 am) and we have that(35) = (7,98) cars/min; but we
also note that there existst := 71 min with the property that
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The mappingF;,—ss is 1-strongly pseudo-monotone with degree= 1 andn :=
V2 atu*(35) (see Appendix for a proof). Using formulé.{), we can find a flow
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distribution att, = 35 so that

[u(35,0) —u*(35)]| — 1
V2

This means that if &, = 35 the flow distribution is, for exampley(35,0) = (79, 26)

cars/min, the traffic could adjust closedt(35 + At) = u*(106) = (7, 98) cars/min
after approximately 71 minutes.

Iy = At & —71min = [|u(35,0) —u*(35)] ~ 7L.7.

5.1. Appendix

We remark that for the s& in our application the following holds: for any+# v €
K with u := (uy,uz) andv := (v1,v,), it is always the case that () + uq(t) =
v1(t) + v2(t) = p1(t). This implies that

(5.1) ur(t) — vi(t) = —(ua(t) — va(t)), fora.a.t € [0, 110].
This further implies that a pair # v € K satisfies:; # v, anduy # ve a.a. on0, 110].

1. We show first that;(w) = (w; + 151, we + 60) is strongly pseudo-monotone
with o := 1 andn := \/LE whenevernw, < 90, fora.a.t € [0,%]. Letw,v € K(t)
and we evaluate

(5.1

(Fy(v),w — v) = (4151) (w —v1) + (02+60) (wa—vs) > E" (0 —05+91) (wy—vy).

Then(v; — vg +91)(wy —v1) > 0 ifand only ifv; — ve +91 > 0 andw; — vy > 0.
Now, we evaluate

by (5.1

(Fy(w),w—v) YLV

We takea = 1 and want to find; > 0 so that

(U)l — Wo + 91)(1111 - ’Ul).

by (5.1)
(w1 — we + 91)(wy — vy) > n\/(wl — 1) + (wy — vg)? v 8 \/§n|w1 — ).
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Sincew; > v; andw # v, we can divide the last inequality by, — v; and so
(wy —wy +91) > N

But w; > 0 from the hypothesis, so i, < 90 — —w, > —90, then we find
1

ni= 75

2. Here we show that choosing= 1, F;_35(w) := (w; 4+ 151, wy+60) is 1-strongly
pseudo-monotone with degree= 1 andn(1) = v/2 atu*(35) = (7,98). We have
that

(F((7,98)), (wy — 7,wy — 98))
= ((158,158), (w1 — T,ws — 98)) Y EV 0 F,(7,98), (w1 — 7,ws — 98)
therefore
(Fy(w), (wy — T, wy — 98)) ¥E7 (w1 — wy + 91)(w; — 7) 27 20wy — 772
We findn(1) > 0 so that
2wy — 712 > V2n(1)|wy, — 7| = n(1) := min {\/§|w1 — 7|} = V2r =2

Note thatF; is not strongly pseudo-monotone with< 2 atu*(35).
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6. Conclusions and Acknowledgements

In this paper we presented new results about the solution form of anZ=XyISub-

ject to various types of constraint sets. These results have consequences for the study
and modelling of equilibrium problems, in particular here, traffic network equilib-
rium problems. We have further demonstrated how the recently developed theory of
double-layered dynamics, which combines evolutionary variational inequalities and
projected dynamical systems over a unified constraint set, can be used for the mod-
elling, analysis, and computation of solutions to time-dependent equilibrium prob-
lems; concretely, we presented here a novel interpretation of the timescales present
in a DLD model of an equilibrium problem, more general than the on&Jin\[Ve

also answered questions regarding the finite-time adjustment to equilibrium states
for traffic network problems by the introduction of a new type of monotonicity. This
type, calledr-strong pseudo-monotonicity, implies a stability property of a small
neighbourhood around an equilibrium of a projected dynamical system.

The author thanks A. Nagurney and P. Daniele for fruitful discussions, and grate-
fully acknowledges the support received for the present work from the Natural Sci-
ences and Engineering Research Council (NSERC) of Canada, as well as The Fields
Institute for Research in Mathematical Science and Harvard University (Division of
Engineering and Applied Science) during the spring semester of 2006.

The author also thanks the referee for excellent suggestions and comments which
led to a clearer presentation of this work.
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