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Abstract: This paper presents novel results about the structure of solutions for certain evo-
lutionary variational inequality problems. We show that existence of piecewise
solutions is dependant upon the form of the constraint set underlying the evolu-
tionary variational inequality problem considered. We discuss our results in the
context of double-layered dynamics theory and we apply them to the modelling
of traffic network equilibrium problems, in particular to the study of the evolution
of such problems in a neighbourhood of a steady state.
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1. Introduction

This paper presents results concerning solution classes for certain evolutionary vari-
ational inequality (EVI) problems. The results are then used in the context of the
double-layered dynamics (DLD) modelling of certain traffic network problems. The
novelty of the results in the first part of the paper resides in showing how the structure
of solutions of certain types of EVI is a direct consequence of the type of constraint
sets involved in their formulation. In the second part, we use this information in the
study of the evolution, in finite-time, from disequilibrium to equilibrium, of an ap-
plied equilibrium problem whose steady states are modelled by an EVI. Such a study,
started in [7], is made possible by the recently introduced theory of double-layered
dynamics. The question of finite-time dynamics is extended here by introducing
the concept ofr-strongly pseudo-monotone mappings. The paper contains novel
illustrative examples and an application to traffic network problems which is more
detailed than the one in [7].

Evolutionary variational inequalities were first introduced in the 1960’s ([4, 26,
32]), and have been used in the study of partial differential equations and boundary
value problems. They are part of general variational inequalities theory, a large
area of research with important applications in control theory, optimization, op-
erations research, economics theory and transportation science (see for example
[2, 11, 12, 13, 14, 16, 17, 19, 20, 22, 25, 28, 30] and the references therein). The
form of EVI problems we consider in the present paper represents a unified formula-
tion coming from applied problems in traffic, spatial price and financial equilibrium
problems [11, 12, 13, 14] and were introduced first in [6]. The existence and unique-
ness theory for EVI problems has been studied in many contexts; here we use the
result in [13]. In [8] the authors give a refinement of this existence result showing

1Research conducted during the author’s tenure 04-05/2006.
2Research funded by NSERC Discovery Grant 262899.
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under what conditions continuous solutions exist. In [3, 7] the authors present com-
putational procedures for obtaining approximate solutions of an EVI problem of the
type considered here.

Building upon the existence results of [13, 8] we show under what conditions
solutions to EVI problems are expected to be piecewise functions. This depends di-
rectly upon the form of the constraint set we work with; in particular, we consider
various forms of demand constraints (piecewise continuous functions, step func-
tions) and draw new conclusions about the type of solutions in each case.

In [6, 7] the authors introduce double-layered dynamics theory as the natural
combination of the theories of EVI and projected dynamical systems (PDS). PDS
theory has started to develop in the context of differential inclusions [18, 10, 1], but
was first formalized in [16] on the Euclidean space and in [20, 5] on arbitrary Hilbert
spaces. In essence, DLD consists of associating to an EVI on the Hilbert space
L2([0, T ], Rq), an infinite-dimensional PDS, whose critical points coincide exactly
with the solutions of the EVI problem and vice versa. In this paper we use DLD
theory to study the structure of EVI solutions for particular (step) demand functions.
DLD is further used to show how some equilibrium states can be reached in finite
time under suitable conditions.

We recall that variational inequalities theory has been used to formulate, qualita-
tively analyze, and solve a number of network equilibrium problems [14, 27, 28, 29,
30]. However DLD theory is also attractive for the modelling and analysis of equi-
librium problems because it allows the study of applications involving two types
of time dependency: one represented by the time-dependent equilibria (that can be
predicted for a given problem via EVI theory), and the other represented by the
time-dependent behavior of the application around the predicted equilibrium curve
(obtained via PDS theory). The interpretation of the two timescales in DLD theory
was discussed in [7] and it is further deepened in this paper with the help of what we
call the prediction timescaleandthe adjustment timescale.
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The structure of the paper is as follows: in Section2 we present our results about
piecewise solutions of EVI in the generic context ofLp-spaces and a theoretical ex-
ample. In Section3 we give brief introductions to PDS and DLD, and show that step
function solutions for EVI are possible. In Section4 we discuss the relation between
the prediction and adjustment timescales in DLD theory. We introduce here the
concept ofr-strong pseudo-monotonicity with degreeα (which is similar but more
general than that of strong pseudo-monotonicity with degreeα [24, 28, 20]) and we
show how this concept is useful in determining when an EVI solution can be reached
in finite-time. Section5 presents a dynamic traffic equilibrium example following
a computational procedure as in [6] (using an original MAPLE 8 code), illustrating
the theoretical results of the previous sections and their possible consequences for
traffic control. We close with conclusions and acknowledgements in Section6.
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2. Piecewise Solutions of Evolutionary Variational Inequalities

Evolutionary variational inequalities were originally introduced by Lions and Stam-
pacchia [26] and Brezis [4]. In this paper we use an EVI in the form initially
proposed in [13] but using the unified framework proposed first in [6, 7]. These
EVI come from traffic network problems and economic equilibrium problems (see
[6, 11, 12, 13]) and are presented next. We consider a nonempty, convex, closed,
bounded subset of the reflexive Banach spaceLp([0, T ], Rq) given by:

(2.1) K =

{
u ∈ Lp([0, T ], Rq) |λ(t) ≤ u(t) ≤ µ(t) a.e. in[0, T ];

q∑
i=1

ξjiui(t) = ρj(t) a.e. in[0, T ],

ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}

}
.

Recall that

〈〈φ, u〉〉 :=
∫ T

0

〈φ(u)(t), u(t)〉dt

is the duality mapping onLp([0, T ], Rq), whereφ ∈ (Lp([0, T ], R2q))∗ and u ∈
Lp([0, T ], Rq). Let F : K → (Lp([0, T ], Rq))∗; the standard form of the EVI we
work with is therefore:

(2.2) findu ∈ K such that〈〈F (u), v − u〉〉 ≥ 0, ∀v ∈ K.
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Theorem 2.1. If F in (2.2) satisfies either of the following conditions:

1. F is hemicontinuous with respect to the strong topology onK, and there exist
A ⊆ K nonempty, compact, andB ⊆ K compact such that, for everyv ∈ K\A,
there existsu ∈ B with 〈〈F (u), v − u〉〉 < 0;

2. F is hemicontinuous with respect to the weak topology onK;

3. F is pseudo-monotone and hemicontinuous along line segments,

then the EVI problem (2.2) admits a solution over the constraint setK.

For a proof, see [13]. If F is strictly monotone, then the solution of (2.2) is
unique. Another result about uniqueness of solutions to (2.2) can be found in [7] and
we recall it in the next section.

Remark1. Theorem2.1 simply states that a measurable solution can be found for
an EVI problem of type (2.2). We show next that this problem admits a piecewise
solution, provided the constraint functionsλ, µ, ρ, satisfyλ, µ ∈ Lp([0, T ], Rq) and
ρj(t), j ∈ {1, . . . , l}, are piecewise functions as presented below.

We consider sets

(2.3) K =

{
u ∈ Lp([0, T ], Rq) |λ(t) ≤ u(t) ≤ µ(t) a.e. in[0, T ];

q∑
i=1

ξjiui(t) = ρj(t) a.e. in[0, T ],

ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}

}
,
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whereρj are given by

ρj(t) =


c1(t), if 0 ≤ t ≤ t1
c2(t), if t1 < t ≤ t2
· · · · · ·
ckj

(t), if tkj−1 < t ≤ tkj
= T

,

cj
n ∈ Lp([tn−1, tn], Rq), for anyn ∈ {1, . . . , kj}

Remark2. Without loss of generality, we can consider that allρj(t) partition the
interval[0, T ] in the same number of subintervals. Otherwise, we consider the set

∆ :=
l⋃

j=1

{0, t1, t2, , tkj−1, T}

and we partition[0, T ] according to the division set∆, possibly rewriting the func-
tionsρj(t). Therefore, we consider setsK as in (2.3) with

ρj(t) =


c1(t), if 0 ≤ t ≤ t1

c2(t), if t1 < t ≤ t2

· · · · · ·
ck(t), if tk−1 < t ≤ tk = T

,

cj
n ∈ Lp([tn−1, tn], Rq), for anyn ∈ {1, . . . , k}.

Theorem 2.2.AssumeK is of the form (2.3) and assume thatF : K → Lp([0, T ], Rq)∗

is strictly monotone and continuous. Then EVI (2.2) admits a unique piecewise so-
lution.
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Proof. We first prove the result for the case of setsK as in (2.3) wherej := 1. These
are therefore of the form

(2.4) K =

{
u ∈ Lp([0, T ], Rq) |λ(t) ≤ u(t) ≤ µ(t)

and
q∑

i=1

ξ1iui(t) = ρ1(t) a.e. on[0, T ]

}
,

whereξ1i ∈ {0, 1} andρ1 is given by

ρ1(t) =


c1(t), if 0 ≤ t ≤ t1

c2(t), if t1 < t ≤ t2

· · · · · ·
ck(t), if tk−1 < t ≤ tk = T

,

cn ∈ Lp([tn−1, tn], Rq), for anyn ∈ {1, . . . , k}.

For eachn ∈ {1, . . . , k} we consider the following set

Kn := {u |[tn−1,tn]| u ∈ K} which has the property that

Kn ⊆

{
z ∈ Lp([tn−1, tn], Rq) | λ(t) ≤ z(t) ≤ µ(t)

and
q∑

i=1

ξ1izi(t) = cn(t) a.a.t ∈ [tn−1, tn]

}
.
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We also consider the evolutionary variational inequalityEV In on the setKn, namely

find u ∈ Kn s.t.
∫ tn

tn−1

〈F (u)(t), v(t)− u(t)〉dt ≥ 0, ∀v ∈ Kn.

Each of the setsKn is closed, convex and bounded, and the mappingF satisfies The-
orem2.1(3) onKn. According to this theorem eachEV In has a unique measurable
solution. Let us denote it byu∗n. We then consider the mappingu∗ : [0, T ] → Rq

given by:

(2.5) u∗(t) =


u∗1(t), if 0 ≤ t ≤ t1

u∗2(t), if t1 < t ≤ t2

· · · · · ·
u∗k(t), if tk−1 < t ≤ tk = T

.

We show thatu∗ ∈ K. By the definition ofu∗ we see thatλ(t) ≤ u∗(t) ≤ µ(t), and

q∑
i=1

ξ1iu
∗
i (t) = ρ1(t) a.e. on [0, T ].

It remains to show thatu∗ ∈ Lp([0, T ], Rq). This follows from the fact that

µ ∈ Lp([0, T ], Rq) and ||u∗(t)||p ≤ ||µ(t)||p < ∞,

thusu∗ ∈ K.
Suppose now thatu∗ is not a solution of the EVI problem (2.2). Then there exists

v ∈ K so that

〈〈F (u∗), v − u∗〉〉 < 0 ⇐⇒
∫ T

0

〈F (u∗)(t), v(t)− u∗(t)〉dt < 0.
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This is further equivalent to

k∑
n=1

∫ tn

tn−1

〈F (u∗n)(t), v(t)− u∗n(t)〉dt < 0.

Let wn := v |[tn−1,tn]; we subsequently get

(2.6)
k∑

n=1

∫ tn

tn−1

〈F (u∗n)(t), wn(t)− u∗n(t)〉dt < 0.

But on each setKn we have thatEV In is solvable and so

(2.7) 〈〈F (u∗n), z − u∗n〉〉 ≥ 0, ∀z ∈ Kn

⇐⇒
∫ tn

tn−1

〈F (u∗n)(t), z(t)− u∗n(t))〉dt ≥ 0, ∀z ∈ Kn.

We note thatwn defined above is an element ofKn, so letz := wn in (2.7). Since
we can do this for eachn ∈ {1, . . . , k}, we get that

(2.8)
k∑

n=1

∫ tn

tn−1

〈F (u∗n)(t), wn(t)− u∗n(t))〉dt ≥ 0, ∀n ∈ {1, . . . , k}.

We see now that (2.6) and (2.8) lead to a contradiction. Henceu∗ ∈ K is a piecewise
solution of EVI (2.2).

Keeping in mind Remark2, the casej > 1 can be shown in a similar manner, by
defining, for eachn ∈ {1, . . . , k}, the set

Kn := {u |[tn−1,tn]| u ∈ K} where
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Kn ⊆

{
z ∈ Lp([tn−1, tn], Rq) | λ ≤ z ≤ µ

and
q∑

i=1

ξjizi(t) = cj
n(t) a.a.t ∈ [tn−1, tn], j ∈ {1, . . . , l}

}
.

Next we prove more about the structure of the solutions of an EVI problem (2.2)
for the case ofL2([0, T ], Rq).

Corollary 2.3. Assume the hypotheses of Theorem2.2, wherep := 2, λ, µ are
continuous functions,ρj are piecewise continuous andF is given byF (u)(t) =
A(t)u(t) + B(t), whereA(t) is a positive definite matrix for eacht ∈ [0, T ] and
A, B are continuous. Then EVI (2.2) admits a piecewise continuous solution.

Proof. EachEV In has, under the present hypotheses, a continuous solutionu∗n(t).
This follows from [3]. Then by Theorem2.2 the solution of the EVI (2.2) is piece-
wise continuous.

Corollary 2.3 is also important from a computational point of view. We obtain
the solutionu∗(t) by computing the piecewise componentsu∗n(t), as shown in [8],
or using the computational procedure in [6].

Example2.1. Let p := 2, q := 4, T := 90, j := 2 andξji := 1 for i, j ∈ {1, 2}. We
setλ(t) = (0, 0, 0, 0) andµ(t) = (100, 100, 100, 100) for t in [0, 90], hence

K =

{
u ∈ L2([0, 90], R4)|0 ≤ uj

i (t) ≤ 100

a.e. in [0, 90], i ∈ {1, 2}, j ∈ {1, 2}
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and
2∑

i=1

uj
i (t) = ρj(t) a.e. in[0, 90], j ∈ {1, 2}

}
,

where

ρ1(t) =

{
2t, if 0 ≤ t ≤ 30

−2t + 220, if 30 < t ≤ 90
, ρ2(t) =

{
t2, if 0 ≤ t ≤ 30

t, if 30 < t ≤ 90
.

We consider:

F
(
u1

1, u
1
2, u

2
1, u

2
2

)
(t)

= (u1
1(t)− 120, u1

2(t)− 120, 2u2
1(t) + u2

2(t)− 330, u2
1(t) + 2u2

2(t)− 330),

F : K → L2([0, 90], R4) and the following EVI:

〈〈F (u), v − u〉〉 ≥ 0, ∀v ∈ K.

We remark thatF : K → L2([0, 90], R4) satisfies the hypotheses of Corollary2.3.
Using a computational procedure as in [6], we obtain that the unique equilibrium
curve of this problem is given by the piecewise continuous function

u∗(t) =


(
t, t, t2

2
, t2

2

)
, if 0 ≤ t ≤ 30(

−t + 110,−t + 110, t
2
, t

2

)
, if 30 < t ≤ 90.

In the next section we further refine our results by studying the structure of solu-
tions to EVI (2.2) in the context of double-layered dynamics theory.
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3. Double-layered Dynamics

In essence, EVI problems of the type considered in this paper can be viewed as a
1-parameter family of a static variational inequality, with parametert. From here on,
we consider that our EVI (2.2) represents the model of an equilibrium problem (as,
for example, in [14]). In this context, the parametert will be taken to mean physical
time. Ast varies over[0, T ], the constraints of the equilibrium problem change, and
so the static states describe a curve of equilibria. Such an equilibrium curve can be
of the form (2.5), as in Theorem2.2. DLD was introduced in [6, 7] as a unifying tool
for deepening the study of an EVI problem with constraint setsK ⊆ L2([0, T ], Rq).

3.1. PDS

A thorough introduction to both theories and applications of EVI and PDS can be
found in [6]. DLD theory is presented in detail in [7]. In this section we outline
only the necessary theoretical facts in order to insure a self-contained presentation
of this work. LetX be a Hilbert space of arbitrary (finite or infinite) dimension and
let K ⊂ X be a non-empty, closed, convex subset. We assume that the reader is
familiar with the concepts oftangent and normal cones toK at x ∈ K (TK(x),
respectivelyNK(x)), andthe projection operator ofX ontoK, PK : X → K given
by ||PK(z)− z|| = inf

x∈K
||x− z||.

The properties of projection operators on Hilbert spaces are well-known (see for
instance [33]). The directional Gateaux derivative of the operatorPK is defined, for
anyx ∈ K and any elementv ∈ X, as the limit (for a proof see [33]):

ΠK(x, v) := lim
δ→0+

PK(x + δv)− x

δ
; moreover, ΠK(x, v) = PTK(x)(v).

Let ΠK : K ×X → X be the operator given by(x, v) 7→ ΠK(x, v). Note thatΠK
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is discontinuous on the boundary of the setK. In [15, 21], several characterizations
of ΠK are given.

Theorem 3.1. Let X be a Hilbert space andK be a non-empty, closed, convex
subset. LetF : K → X be a Lipschitz continuous vector field andx0 ∈ K. Then
the initial value problem

(3.1)
dx(τ)

dτ
= ΠK(x(τ),−F (x(τ)), x(0) = x0 ∈ K

has a unique absolutely continuous solution on the interval[0,∞).

For a proof, see [9, 5]. This result is a generalization of the one in [16], where
X := Rn, K was a convex polyhedron andF had linear growth.

Definition 3.2. A projected dynamical system is given by a mappingφ : R+×K →
K which solves the initial value problem:

φ̇(τ, x) = ΠK(φ(τ, x),−F (φ(τ, x))), φ(0, x) = x0 ∈ K.

3.2. DLD

Double-layer dynamics consists of intertwining an EVI problem and a PDS as fol-
lows: we letp := 2, X := L2([0, T ], Rq) and we consider setsK ⊆ L2([0, T ], Rq),
as given by (2.1). Further, we consider the infinite-dimensional PDS defined onK
by

(3.2)
du(·, τ)

dτ
= ΠK(u(·, τ),−F (u)(·, τ)), u(·, 0) = u(·) ∈ K,

where we assume the following hypothesis:F : K → L2([0, T ], Rq) is strictly
pseudo-monotone and Lipschitz continuous. Note that this hypothesis is in the scope
of both Theorems2.1and2.2. The following results hold (see [8] for a proof of the
first and see [6] for a proof of the second):
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Theorem 3.3.

1. Assuming thatF is strictly pseudo-monotone and Lipschitz continuous, the so-
lutions of the EVI problem (2.2) are the same as the critical points of PDS (3.2).
The converse is also true.

2. EVI (2.2) has a unique solution.

DLD theory helps establish the long time behaviour of the applied problem with
respect to its curve of equilibria. This has been done in [7], where infinite-dimensional
PDS theory was used to draw conclusions about the stability of such a curve. Next
we use a DLD setting to prove a new result about the solution structure of an EVI
problem.

Theorem 3.4. Assume a setK is as in (2.4), wherep = 2, λ(t) := λ, µ(t) := µ
are constant functions, andρj(t) are step functions. LetF : K → L2([0, T ], R),
F (u)(t) = Au(t) + B be strictly pseudo-monotone and Lipschitz continuous onK.
Then the unique solution of EVI (2.2) is a step function.

Proof. From Corollary2.3and Theorem3.3(2), we have that the unique solution of
the EVI problem (2.2) is of the form:

u∗(t) =



u∗1(t), if 0 ≤ t ≤ t1

u∗2(t), if t1 < t ≤ t2

· · · · · ·

u∗k(t), if tk−1 < t ≤ tk = T

, where eachu∗n is continuous,n ∈ {1, . . . , k}.

From Theorem3.3(1), we have that this solution curve constitutes the unique equi-
librium of PDS (3.2). Let us now arbitrarily fixn ∈ {1, 2, . . . , k} andt ∈ (tn−1, tn].
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We denote byPDSt the finite-dimensional projected dynamical system given by the
flow of the equation:

(3.3)
dw(τ)

dτ
= ΠK(t)(w(τ),−Ft(w(τ))),

where

K(t) :=

{
w := u(t) ∈ Rq | λ ≤ w ≤ µ, and

k∑
i=1

ξjiwi = cj
n, j ∈ {1, . . . , l}

}
and

Ft : K(t) → Rq, given byFt(w) := Aw + B.

DLD theory implies that the unique equilibrium point of this system isu∗n(t). Sim-
ilarly, choosingt′ ∈ (tn−1, tn] and t 6= t′, the unique equilibrium point ofPDSt′

is u∗n(t′). However, the constraint setsK(t) andK(t′) coincide, and the mappings
Ft andFt′ are the same, hencePDSt andPDSt′ are given by the same differen-
tial equation (3.3). Thereforeu∗n(t) = u∗n(t′). Sincet, t′ were arbitrarily chosen on
(tn−1, tn], thenu∗n(t) =constant=: u∗n on the interval(tn−1, tn]. Sincen was also
arbitrarily chosen in{1, . . . , k}, the solutionu∗ is a step function.
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4. Adjustment to Equilibria in Double-Layered Dynamics

Recall that we consider an EVI (2.2) as the model of an equilibrium problem. The
solution of this EVI is interpreted as a curve of equilibrium states of the underlying
problem over the time interval[0, T ]. These are all thepotentialequilibrium states
the problem can reach. Therefore we call[0, T ] the prediction timescale.

We further associate to EVI (2.2) a PDS (3.2). By Theorem3.3, the equilibrium
curve is stationary in the projected dynamics (3.2), henceτ ∈ [0,∞) represents the
evolution time of the problem from disequilibrium to equilibrium. Therefore we call
[0,∞) the adjustment scale. Our DLD models include the following assumptions:

1. t, τ represent physical time;

2. time unit is the same;

3. time flows forward.

The modelling questions we want to answer here are of the following type: does
an equilibrium problem modelled via DLD reach one of its predicted equilibrium
statesin finite time, starting from an observed initial stateu(t0), at somet0 ∈ [0, T ]?

A first answer to this question was given in [7] (Theorem 4.2), where it is shown
that for a fixedt0, under strong pseudo-monotonicity with degreeα < 2 of Ft0, the
PDSt0 (as defined in (3.3) above) admits a finite-time attractor, namelyu∗(t0). An
estimate for the time necessary for a trajectory of thePDSt0 to reachu∗(t0) is given
and is denoted bylt0. In [7], lt0 is interpreted as an instantaneous adjustment of the
dynamics at timet0 to its corresponding equilibrium att0. This kind of interpreta-
tion may be applicable to problems where the adjustment dynamics take place very
rapidly, for example internet traffic problems. Here, in the first subsection below, we
give a new more general time estimate, more readily applicable to the modelling of
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equilibrium problems. In the second subsection we use this estimate in the context
of the two timescales (prediction and adjustment).

In this part of the paper we prove a generalization of our result in [7] (see Lemma
4.2 below). In order to do so, we need to introduce first a new concept, that of
r-strong pseudo-monotonicity as follows:

Definition 4.1. Let K ⊆ X be closed, convex, whereX is a generic Hilbert space.
Let 〈〈·, ·〉〉 be the inner product onX andf : K → X a mapping. Then:

1. f is called locallyr-strongly pseudo-monotone with degreeα at x∗ ∈ K if,
for a givenr > 0, there exists a neighbourhoodN(x∗) ⊂ K of the pointx∗

with the property that for any pointx ∈ N(x∗)\B[x∗, r], there exists a positive
scalarη(r) > 0 so that

〈〈f(x∗), x− x∗〉〉 ≥ 0 =⇒ 〈〈f(x), x− x∗〉〉 ≥ η(r)||x− x∗||α.

2. f is calledr-strongly pseudo-monotone with degreeα at x∗ ∈ K if the above
holds for allx ∈ K\B[x∗, r].

Remark3.

1. Definition 4.1 is a generalization of strong pseudo-monotonicity with degree
α atx∗ (first introduced in [20]); strong pseudo-monotonicity with degreeα is
itself a generalization of the notions of local and global strong monotonicity
with degreeα introduced in [24, 28].

2. Definition4.1is not vacuous; note that any (locally) strongly pseudo-monotone
mappingf with degreeα atx∗ satisfies Definition4.1.

3. There exist mappings satisfyingr-strong pseudo-monotonicity withα atx∗, but
which do not satisfy strong pseudo-monotonicity withα at that point (see our
example in Section5 and the justification in the Appendix).
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We are ready to prove the following:

Lemma 4.2. Assume thatf : K → X satisfies condition (1) (respectively (2)) of
Definition 4.1 with degree0 < α < 2, is Lipschitz continuous, and thatx∗ is a
critical point of the projected dynamical system given by−f onK:

dx(τ)

dτ
= ΠK(x(τ),−f(x(τ))).

Given an initial statex(0) ∈ N(x∗)\B[x∗, r] (respectivelyx(0) ∈ K\B[x∗, r]), the
unique trajectory of the projected system starting atx(0) reaches∂B[x∗, r] after

τ :=
||x(0)− x∗||2−α

X − r2−α

η(r)(2− α)
units of time.

Proof. Assumef to be locallyr-strongly pseudo-monotone with degreeα < 2 at
x∗ ∈ K; there exists a neighbourhoodN(x∗) andη(r) ≥ 0 so that

〈〈f(x∗), x− x∗〉〉 ≥ 0 =⇒ 〈〈f(x), x− x∗〉〉 η(r)||x− x∗||α.

Let x(0) ∈ N(x∗)\B[x∗, r] andx(τ) the unique trajectory of PDS starting atx(0).
Assume that

(4.1) ‖x(τ)− x∗‖ − r > 0, ∀τ ≥ 0 =⇒ ‖x(τ)− x∗‖ > r > 0.

This implies that

D(τ) :=
1

2
||x(τ)− x∗||2 > 0, ∀τ > 0.
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We have

d

dτ
D(τ) =

〈〈
d

dτ
(x(τ)− x∗), x(τ)− x∗

〉〉
= 〈〈ΠK(x(τ),−f(x(τ))), x(τ)− x∗〉〉
≤ − 〈〈f(x(τ)), x(τ)− x∗〉〉 .

Sincex∗ is an equilibrium point, thenΠK(x∗,−f(x∗)) = 0 ⇔ −f(x∗) ∈ NK(x∗),
hence

(4.2) −〈〈f(x∗), x(τ)− x∗〉〉 ≤ 0.

Based on (4.2), from the hypothesis we have that

(4.3) −〈〈f(x(τ)), x(τ)− x∗〉〉 ≤ −η(r)||x(τ)− x∗||α

and so from (4.2) and (4.3) we have that

d

dτ
D(τ) ≤ −η(r)||x(τ)− x∗||α ≤ 0 =⇒ τ 7→ ‖x(τ)− x∗‖ is decreasing.

Following a similar computation as in [7] (proof of Theorem 4.2), integrating from
0 to τ , we obtain

‖x(τ)− x∗‖2−α ≤ ‖x(0)− x∗‖2−α − τη(r)[2− α].

The last inequality is equivalent to

‖x(τ)− x∗‖ − r ≤
[
‖x(0)− x∗‖2−α − τη(r)[2− α]

] 1
2−α − r,

and we see that our assumption (4.1) is contradicted because we can find a moment
τ > 0, (which we will denote from now on bylr0 to keep a notation consistency with
[7]) so that

‖x(τ)− x∗‖ − r ≤ 0,
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namely

(4.4) lr0 :=
‖x(0)− x∗‖2−α

X − r2−α

η(r)[2− α]
.

Remark4. The result of Lemma4.2 is a generalization of the one in Theorem 4.1
in [7]. In that case, we simply haver = 0 and a strong pseudo-monotone mapping
with α < 2, thusx∗ is a finite-time attractor and the adjustment time of the dynamics
from the initial statex(0) to the equilibriumx∗ is given by

(4.5) l0 :=
||x(0)− x∗||2−α

Rq

(2− α)η
.

We return now to the study of an equilibrium problem modelled with DLD. We
assume that we start observing the problem at somet0 ∈ [0, T ], with initial data
u(t0, 0) ∈ K(t0), where

K(t0) =

{
w := u(t0) ∈ Rq | λ(t0) ≤ w ≤ µ(t0),

q∑
i=1

ξjiwi = ρj(t0), j ∈ {1, . . . , l}

}
.

We considerPDSt0 and Ft0 : K(t0) → Rq as in (3.3); according to DLD the-
ory, its unique equilibrium isu∗(t0). Let w(τ) := u(t0, τ) be the solution of the
PDSt0 starting atu(t0, 0). Then Lemma4.2implies that: wheneverFt0 is r-strongly
pseudo-monotone with degreeα < 2 atu∗(t0), then by (4.4) we have that

(4.6) ‖u(t0, l
r
t0
)− u∗(t0)‖ = r.

However, time passes uniformly on both prediction and adjustment scales. Formula
(4.6) indicates thatlrt0 units have passed on the adjustment scale, but none have
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passed on the prediction scale. Thus (4.6) makes sense only if there exists∆t > 0
so that

u∗(t0) = u∗(t0 + ∆t) and∆t = lrt0 .

The last formula gives us the following interpretation:

ther-neighbourood of the equilibriumu∗(t0+∆t) is reached in finite time starting
from the disequilibrium stateu∗(t0, 0), if lrt0 = ∆t.

Remark5. In the more particular case of a mappingF which is strongly pseudo-
monotone with degreeα < 2 at x∗, keeping in mind (4.5), we have that the equi-
librium u∗(t0 + ∆t) is reached in finite time starting from the disequilibrium state
u∗(t0, 0), if lt0 = ∆t.

In the next section we present a novel traffic network example to illustrate our
results.
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5. Application to Traffic Network Equilibrium Problems

In the example below we consider that the demandρ on the network is a piece-
wise continuous function oft and we illustrate our interpretation of adjustment to
the neighbourhood of a predicted equilibrium state of the network. Such an exam-
ple represents a novelty for the DLD applications present in the literature so far.
Moreover, in this example we present a new use of formula (4.6) as follows: if an
equilibrium state takes place twice in the time interval[0, T ], namely in our previ-
ous notationu∗(t0) = u∗(t0 + ∆t), then we can determine for which initial states
u(t0), formula (4.6) takes place. In other words, we can determine from which initial
disequilibrium states the traffic will adjust to (a neighbourhood of) the equilibrium
u∗(t0 + ∆t).

We consider a traffic network with one origin destination pair having two links (as
depicted in Figure 1) and the following constraint set corresponding to this network
configuration

K := {u ∈ L2([0, 110], R2) | 0 ≤ u(t) ≤ 120, u1(t)+u2(t) = ρ1(t) a.a.t ∈ [0, 110]},

where

ρ1(t) =



4t, t ∈ [0, 15],

60, t ∈ (15, 20],

3t, t ∈ (20, 40],

120, t ∈ (40, 91],

−t + 211, t ∈ (91, 110].

We consider the time unit to be a minute and the time interval[0, 110] to corre-
spond to 6:30 am - 8:20 am during a weekday. Let the flows on each link be denoted
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A

B

u1
u2

Figure 1

Figure 2

by u1, u2 and the demand byρ1 (Figure 2 depicts the demand). We see that during
the hight of rush hour, 7:10-8:00 am (i.e.,t ∈ (40, 91]) the demand is highest.

http://jipam.vu.edu.au
mailto:mcojocar@uoguelph.ca
http://jipam.vu.edu.au


Evolutionary Variational
Inequalities

Monica-Gabriela Cojocaru

vol. 8, iss. 3, art. 63, 2007

Title Page

Contents

JJ II

J I

Page 26 of 35

Go Back

Full Screen

Close

Let us also consider the cost on each link to be given by the mapping

F : K → L2([0, 110], R2), F ((u1, u2)) = (u1 + 151, u2 + 60).

The dynamic equilibria for such a problem are given by the EVI (see also [14, 7])∫ 110

0

〈F (u)(t), v(t)− u(t)〉 dt ≥ 0, ∀v ∈ K.

The mappingF is Lipschitz continuous with constant1 andF (u) := Au+B with A
positive definite; by Corollary2.3, the unique solution of the above EVI is piecewise
continuous; moreover, by Theorem3.4, the solution has a constant value over the
intervals[15, 20] and[40, 91]. By the method proposed in [6], implemented with a
MAPLE 8 code, we compute an approximate solution to be

u∗(t) =



(0, 4t), t ∈ [0, 15],

(0, 60), t ∈ (15, 20],

(0, 3t), t ∈
(
20, 91

3

]
,(

3t−91
2

, 3t+91
2

)
, t ∈

(
91
3
, 40

]
,

(14.5, 105.5), t ∈ (40, 91],(−t+120
2

, −t+302
2

)
, t ∈ (91, 110].

The graph of this solution is presented in Figure 3. We note that the Wardrop equi-
librium conditions are satisfied for this solution, namely all paths with positive flow

http://jipam.vu.edu.au
mailto:mcojocar@uoguelph.ca
http://jipam.vu.edu.au


Evolutionary Variational
Inequalities

Monica-Gabriela Cojocaru

vol. 8, iss. 3, art. 63, 2007

Title Page

Contents

JJ II

J I

Page 27 of 35

Go Back

Full Screen

Close

Figure 3

in equilibrium have equal minimal costs, as can be seen below:

F (u∗)(t) =



(151, 4t + 60), t ∈ [0, 15],

(151, 120), t ∈ (15, 20],

(151, 3t + 60), t ∈
(
20, 91

3

]
,(

3t+211
2

, 3t+211
2

)
, t ∈

(
91
3
, 40

]
,

(165.5, 165.5), t ∈ (40, 91],(−t+422
2

, −t+422
2

)
, t ∈ (91, 110].

We see here that users prefer the second road to the first, however, during the rush
hour peak, they will use both routes, as they become equally expensive.
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So far, the EVI model of this problem has provided the approximate equilibrium
curve for the traffic, given a certain structure of the demand function. In general
however, the traffic may be in disequilibrium, in which case we want to know if/how
it will evolve towards a steady state. This type of question is answered via the DLD
model of this network, namely considering the PDS:

u(t, τ)

dτ
= ΠK(u(t, τ),−F (u)(t, τ)).

Let t0 ∈ [0, 110] be fixed and consider the projected dynamics att0, PDSt0 , given
by

dw(τ)

dτ
= ΠK(t0)(w(τ),−Ft0(w(τ))),

where

K(t0) = {u(t) := w ∈ R2 | (0, 0) ≤ (w1, w2) ≤ (120, 120), w1 + w2 = ρ1(t)},

andFt0 : K(t) → R2, Ft0(w) = (w1 + 151, w2 + 60).
We can study whether the traffic approaches a small given neighbourhood of a

steady state. Moreover, as we show below, this has consequences for traffic control,
as one could find a flow distribution at the initial timet0 so that at a later time the
traffic will adjust "close enough" to an equilibrium.

Let t0 := 35 (i.e. 7:05 am) and we have thatu∗(35) = (7, 98) cars/min; but we
also note that there exists∆t := 71 min with the property that

u∗(35) = u∗(35 + ∆t) = u∗(106) = (7, 98).

The mappingFt0=35 is 1-strongly pseudo-monotone with degreeα := 1 andη :=√
2 at u∗(35) (see Appendix for a proof). Using formula (4.4), we can find a flow
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distribution att0 = 35 so that

l135 = ∆t ⇔ ‖u(35, 0)− u∗(35)‖ − 1√
2

= 71 min =⇒ ‖u(35, 0)−u∗(35)‖ ≈ 71.7.

This means that if att0 = 35 the flow distribution is, for example,u(35, 0) = (79, 26)
cars/min, the traffic could adjust close tou∗(35 + ∆t) = u∗(106) = (7, 98) cars/min
after approximately 71 minutes.

5.1. Appendix

We remark that for the setK in our application the following holds: for anyu 6= v ∈
K with u := (u1, u2) andv := (v1, v2), it is always the case thatu1(t) + u2(t) =
v1(t) + v2(t) = ρ1(t). This implies that

(5.1) u1(t)− v1(t) = −(u2(t)− v2(t)), for a.a.t ∈ [0, 110].

This further implies that a pairu 6= v ∈ K satisfiesu1 6= v1 andu2 6= v2 a.a. on[0, 110].

1. We show first thatFt(w) = (w1 + 151, w2 + 60) is strongly pseudo-monotone
with α := 1 andη := 1√

2
wheneverw2 ≤ 90, for a.a. t ∈ [0, 91

3
]. Let w, v ∈ K(t)

and we evaluate

〈Ft(v), w − v〉 = (v1+151)(w1−v1)+(v2+60)(w2−v2)
by (5.1)

= (v1−v2+91)(w1−v1).

Then(v1 − v2 + 91)(w1 − v1) ≥ 0 if and only if v1 − v2 + 91 ≥ 0 andw1 − v1 ≥ 0.
Now, we evaluate

〈Ft(w), w − v〉 by (5.1)
= (w1 − w2 + 91)(w1 − v1).

We takeα = 1 and want to findη > 0 so that

(w1 − w2 + 91)(w1 − v1) ≥ η
√

(w1 − v1)2 + (w2 − v2)2
by (5.1)

=
√

2η|w1 − v1|.
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Sincew1 ≥ v1 andw 6= v, we can divide the last inequality byw1 − v1 and so

(w1 − w2 + 91) ≥
√

2η.

But w1 ≥ 0 from the hypothesis, so ifw2 ≤ 90 =⇒ −w2 ≥ −90, then we find
η := 1√

2
.

2. Here we show that choosingr = 1, Ft=35(w) := (w1 +151, w2 +60) is 1-strongly
pseudo-monotone with degreeα = 1 andη(1) =

√
2 at u∗(35) = (7, 98). We have

that

〈Ft((7, 98)), (w1 − 7, w2 − 98)〉

= 〈(158, 158), (w1 − 7, w2 − 98)〉 by (5.1)
= 0 : Ft (7, 98) , (w1 − 7, w2 − 98) ,

therefore

〈Ft(w), (w1 − 7, w2 − 98)〉 by (5.1)
= (w1 − w2 + 91)(w1 − 7)

w1+w2=105
= 2(w1 − 7)2.

We findη(1) > 0 so that

2|w1 − 7|2 ≥
√

2η(1)|w1 − 7| =⇒ η(1) := min
{√

2|w1 − 7|
}

=
√

2r =
√

2.

Note thatF35 is not strongly pseudo-monotone withα < 2 atu∗(35).
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6. Conclusions and Acknowledgements

In this paper we presented new results about the solution form of an EVI (2.2) sub-
ject to various types of constraint sets. These results have consequences for the study
and modelling of equilibrium problems, in particular here, traffic network equilib-
rium problems. We have further demonstrated how the recently developed theory of
double-layered dynamics, which combines evolutionary variational inequalities and
projected dynamical systems over a unified constraint set, can be used for the mod-
elling, analysis, and computation of solutions to time-dependent equilibrium prob-
lems; concretely, we presented here a novel interpretation of the timescales present
in a DLD model of an equilibrium problem, more general than the one in [7]. We
also answered questions regarding the finite-time adjustment to equilibrium states
for traffic network problems by the introduction of a new type of monotonicity. This
type, calledr-strong pseudo-monotonicity, implies a stability property of a small
neighbourhood around an equilibrium of a projected dynamical system.
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ences and Engineering Research Council (NSERC) of Canada, as well as The Fields
Institute for Research in Mathematical Science and Harvard University (Division of
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