Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 4, Article 135, 2006

A NOTE ON $\left|\bar{N}, p_{n}\right|_{k}$ SUMMABILITY FACTORS
 S.M. MAZHAR
 Department of Mathematics and Computer Science
 Kuwait University
 P.O. Box No. 5969, Kuwait - 13060.
 sm_mazhar@hotmail.com

Received 18 March, 2006; accepted 03 July, 2006
Communicated by H. Bor

AbSTRACT. In this note we investigate the relation between two theorems proved by Bor [2, 3] on $\left|\bar{N}, p_{n}\right|_{k}$ summability of an infinite series.

Key words and phrases: Absolute summability factors.

2000 Mathematics Subject Classification. 40D15, 40F05, 40G05.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with $\left\{s_{n}\right\}$ as the sequence of its n-th partial sums. Let $\left\{p_{n}\right\}$ be a sequence of positive constants such that $P_{n}=p_{0}+p_{1}+p_{2}+\cdots+p_{n} \longrightarrow \infty$ as $n \longrightarrow \infty$.

Let

$$
t_{n}=\frac{1}{P_{n}} \sum_{\nu=1}^{n} p_{\nu} s_{\nu}
$$

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|$ if $\sum_{1}^{\infty}\left|t_{n}-t_{n-1}\right|<\infty$. It is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$ [1] if

$$
\begin{equation*}
\sum_{1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

and bounded $\left[\bar{N}, p_{n}\right]_{k}, k \geq 1$ if

$$
\begin{equation*}
\sum_{1}^{n} p_{\nu}\left|s_{\nu}\right|^{k}=O\left(P_{n}\right), \quad n \longrightarrow \infty \tag{1.2}
\end{equation*}
$$

Concerning $\left|\bar{N}, p_{n}\right|$ summability factors of $\sum a_{n}$, T. Singh [6] proved the following theorem:

[^0]Theorem A. If the sequences $\left\{p_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ satisfy the conditions

$$
\begin{gather*}
\sum_{1}^{\infty} p_{n}\left|\lambda_{n}\right|<\infty, \tag{1.3}\\
P_{n}\left|\Delta \lambda_{n}\right| \leq C p_{n}\left|\lambda_{n}\right|, \tag{1.4}
\end{gather*}
$$

C is a constant, and if $\sum a_{n}$ is bounded $\left[\bar{N}, p_{n}\right]_{1}$, then $\sum a_{n} P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|$.
Earlier in 1968 N. Singh [5] had obtained the following theorem.
Theorem B. If $\sum a_{n}$ is bounded $\left[\bar{N}, p_{n}\right]_{1}$ and $\left\{\lambda_{n}\right\}$ is a sequence satisfying the following conditions

$$
\begin{gather*}
\sum_{1}^{\infty} \frac{p_{n}\left|\lambda_{n}\right|}{P_{n}}<\infty \tag{1.5}\\
\frac{P_{n}}{p_{n}} \Delta \lambda_{n}=O\left(\left|\lambda_{n}\right|\right), \tag{1.6}
\end{gather*}
$$

then $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|$.
In order to extend these theorems to the summability $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, Bor [2, 3] proved the following theorems.

Theorem C. Under the conditions (1.2), (1.3) and (1.4), the series $\sum a_{n} P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

Theorem D. If $\sum a_{n}$ is bounded $\left[\bar{N}, p_{n}\right]_{k}, k \geq 1$ and $\left\{\lambda_{n}\right\}$, is a sequence satisfying the conditions (1.4) and (1.5), then $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$.

2. Results

In this note we propose to examine the relation between Theorem C and Theorem D.
We recall that recently Sarigol and Ozturk [4] constructed an example to demonstrate that the hypotheses of Theorem A are not sufficient for the summability $\left|\bar{N}, p_{n}\right|$ of $\sum a_{n} P_{n} \lambda_{n}$. They proved that Theorem A holds true if we assume the additional condition

$$
\begin{equation*}
p_{n+1}=O\left(p_{n}\right) \tag{2.1}
\end{equation*}
$$

From (1.4) we find that

$$
\left|\frac{\Delta \lambda_{n}}{\lambda_{n}}\right|=\left|1-\frac{\lambda_{n+1}}{\lambda_{n}}\right| \leq \frac{C p_{n}}{P_{n}}
$$

Hence

$$
\begin{aligned}
\left|\frac{\lambda_{n+1}}{\lambda_{n}}\right| & =\left|\frac{\lambda_{n+1}}{\lambda_{n}}-1+1\right| \\
& \leq\left|1-\frac{\lambda_{n+1}}{\lambda_{n}}\right|+1 \\
& \leq \frac{C p_{n}}{P_{n}}+1 \leq C
\end{aligned}
$$

Thus $\left|\lambda_{n+1}\right| \leq C\left|\lambda_{n}\right|$, and combining this with (2.1) we get

$$
\begin{equation*}
p_{n+1}\left|\lambda_{n+1}\right| \leq C p_{n}\left|\lambda_{n}\right| \tag{2.2}
\end{equation*}
$$

Clearly (2.1) and (1.4) imply (2.2). However (2.2) need not imply (2.1) or (1.4). In view of

$$
\Delta\left(P_{n} \lambda_{n}\right)=P_{n} \Delta \lambda_{n}-p_{n+1} \lambda_{n+1}
$$

it is clear that if (2.2) holds, then the condition (1.4) is equivalent to the condition

$$
\begin{equation*}
\left|\Delta\left(P_{n} \lambda_{n}\right)\right| \leq C p_{n}\left|\lambda_{n}\right| . \tag{2.3}
\end{equation*}
$$

It can be easily verified that a corrected version of Theorem A and Theorem C and also a slight generalization of the result of Sarigol and Ozturk for $k=1$ can be stated as

Theorem 2.1. Under the conditions (1.2), (1.3) (2.2) and (2.3) the series $\sum a_{n} P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$

We now proceed to show that Theorem 2.1 holds good without condition (2.2).
Thus we have:
Theorem 2.2. Under the conditions (1.2), (1.3) and (2.3) the series $\sum a_{n} P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

To prove Theorem 2.2 we first prove the following lemma.
Lemma 2.3. Under the conditions of Theorem 2.2

$$
\begin{equation*}
\sum_{1}^{m} p_{n}\left|\lambda_{n}\right|\left|s_{n}\right|^{k}=O(1) \text { as } m \longrightarrow \infty . \tag{2.4}
\end{equation*}
$$

3. Proofs

Proof of Lemma 2.3. In view of (1.3) and (2.3)

$$
\sum_{1}^{\infty}\left|\Delta\left(\lambda_{n} P_{n}\right)\right| \leq C \sum_{1}^{\infty} p_{n}\left|\lambda_{n}\right|<\infty
$$

so it follows that $\left\{P_{n} \lambda_{n}\right\} \in B V$ and hence $P_{n}\left|\lambda_{n}\right|=O(1)$.
Now

$$
\begin{aligned}
\left.\sum_{1}^{m} p_{n} \lambda_{n}| | s_{n}\right|^{k} & =\sum_{1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{\nu=1}^{n} p_{\nu}\left|s_{\nu}\right|^{k}+\left|\lambda_{m}\right| \sum_{\nu=1}^{m} p_{\nu}\left|s_{\nu}\right|^{k} \\
& =O(1) \sum_{1}^{m-1}\left|\Delta \lambda_{n}\right| P_{n}+O\left(\left|\lambda_{m}\right| P_{m}\right) \\
& =O(1)\left(\sum_{1}^{m-1}\left|\Delta\left(P_{n} \lambda_{n}\right)\right|+p_{n+1}\left|\lambda_{n+1}\right|\right)+O(1) \\
& =O(1) \sum_{1}^{m-1} p_{n}\left|\lambda_{n}\right|+O(1) \sum_{1}^{m} p_{n+1}\left|\lambda_{n+1}\right|+O(1) \\
& =O(1)
\end{aligned}
$$

Proof of Theorem 2.2. Let T_{n} denote the $n^{\text {th }}\left(\bar{N}, p_{n}\right)$ means of the series $\sum a_{n} P_{n} \lambda_{n}$. Then

$$
\begin{aligned}
T_{n} & =\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} \sum_{r=0}^{\nu} a_{r} P_{r} \lambda_{r} \\
& =\frac{1}{P_{n}} \sum_{\nu=0}^{n}\left(P_{n}-P_{\nu-1}\right) a_{\nu} P_{\nu} \lambda_{\nu}
\end{aligned}
$$

so that for $n \geq 1$

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{\nu=1}^{n} P_{\nu-1} a_{\nu} P_{\nu} \lambda_{\nu} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{\nu=1}^{n-1} \Delta\left(P_{\nu-1} P_{\nu} \lambda_{\nu}\right) s_{\nu}+p_{n} \lambda_{n} s_{n} \\
& =L_{1}+L_{2}, \text { say }
\end{aligned}
$$

Thus to prove the theorem it is sufficient to show that

$$
\sum_{1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|L_{\nu}\right|^{k}<\infty, \quad \nu=1,2
$$

Now

$$
\begin{aligned}
\left|\Delta\left(P_{\nu-1} P_{\nu} \lambda_{\nu}\right)\right| & \leq p_{\nu} P_{\nu}\left|\lambda_{\nu}\right|+P_{\nu}\left|\Delta\left(P_{\nu} \lambda_{\nu}\right)\right| \\
& \leq C p_{\nu} P_{\nu}\left|\lambda_{\nu}\right|
\end{aligned}
$$

in view of (2.3). So

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|L_{1}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left(\sum_{\nu=1}^{n-1} p_{\nu} P_{\nu}\left|\lambda_{\nu}\right|\left|s_{\nu}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left(\sum_{\nu=1}^{n-1}\left(P_{\nu}\left|\lambda_{\nu}\right|\right)^{k}\left|s_{\nu}\right|^{k} p_{\nu}\right)\left(\sum_{\nu=1}^{n-1} p_{\nu}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{\nu=1}^{n-1} P_{\nu}\left|\lambda_{\nu}\right| p_{\nu}\left|s_{\nu}\right|^{k} \\
& =\left.O(1) \sum_{\nu=1}^{m} p_{\nu}\left|\lambda_{\nu}\right| s_{\nu}\right|^{k}=O(1)
\end{aligned}
$$

in view of the lemma and $P_{n}\left|\lambda_{n}\right|=O(1)$.
Also

$$
\begin{aligned}
\sum_{1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|L_{2}\right|^{k} & =O(1) \sum_{1}^{m+1} p_{n}\left|\lambda_{n}\right|^{k}\left|s_{n}\right|^{k} P_{n}^{k-1} \\
& =O(1) \sum_{1}^{m+1} p_{n}\left|\lambda_{n}\right|\left|s_{n}\right|^{k} \\
& =O(1)
\end{aligned}
$$

This proves Theorem 2.2.

Thus a generalization of a corrected version of Theorem C is Theorem 2.2. Writing $\lambda_{n}=$ $\mu_{n} P_{n}$ the conditions (1.5) and (1.4) become

$$
\begin{gather*}
\sum_{1}^{\infty} p_{n}\left|\mu_{n}\right|<\infty, \tag{3.1}\\
\left|\Delta\left(P_{n} \mu_{n}\right)\right| \leq C p_{n}\left|\mu_{n}\right|, \tag{3.2}
\end{gather*}
$$

consequently Theorem D can be stated as:
If $\sum a_{n}$ is bounded $\left[N, P_{n}\right]_{k}, k \geq 1$ and $\left\{\mu_{n}\right\}$ is a sequence satisfying (3.1) and (3.2) then $\sum a_{n} P_{n} \mu_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

Thus Theorem D is the same as Theorem 2.2 which is a generalization of the corrected version of Theorem C

References

[1] H. BOR, On $\left|\bar{N}, p_{n}\right|_{k}$ summability methods and $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Ph.D. Thesis (1982), Univ. of Ankara.
[2] H. BOR, On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, Proc. Amer. Math. Soc., 94 (1985), 419-422.
[3] H. BOR, On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Tamkang J. Math., 16 (1985), 13-20.
[4] M. ALI SARIGOL and E. OZTURK, A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Indian J. Math., 34 (1992), 167-171.
[5] N. SINGH, On $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series, Indian J. Math., 10 (1968), 19-24.
[6] T. SINGH, A note on $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series, J. Math. Sci., 12-13 (1977-78), 25-28.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 081-06

