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ABSTRACT. Integral inequalities of Ostrowski type are developedqfeitimes differentiable
mappings, with multiple branches, on theg, norm. Some particular inequalities are also inves-
tigated, which include explicit bounds for perturbed trapezoid, midpoint, Simpson’s, Newton-
Cotes and left and right rectangle rules. The results obtained provide sharper bounds than those
obtained by Dragomir |5] and Cerone, Dragomir and Roumeliotis [2].
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1. INTRODUCTION
In 1938 Ostrowski[18] obtained a bound for the absolute value of the difference of a function
to its average over a finite interval. The theorem is as follows.

Theorem 1.1.Let f : [a,b] — R be a differentiable mapping da, b] and let|f’ (t)| < M for
all t € (a,b), then the following bound is valid

(1.1) ‘f(:c)—bia/abf(t)dt’g(b—a)M R

! <—>]

forall x € [a, b].
The constant is sharp in the sense that it cannot be replaced by a smaller one.

Dragomir and Wang [12, 13] extended the result](1.1) and applied the extended result to
numerical quadrature rules and to the estimation of error bounds for some special means.
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2 A. SOFo

Dragomir [8) 9/ 10] further extended the res{ilt {1.1) to incorporate mappings of bounded varia-
tion, Lipschitzian mappings and monotonic mappings.

Cerone, Dragomir and Roumeliotis [3] as well as [@edilatic and Péaric [4] and Pearce,
Pe&aric, Ujevic and VaroSanec [19] further extended the regulf] (1.1) by consideriignes
differentiable mappings on an interior point [a, b|.

In particular, Cerone and Dragomit [1] proved the following result.

Theorem 1.2.Let f : [a,b] — R be a mapping such that™~1) is absolutely continuous on
[a, b], (AC]a, b] for short). Then for allz € [a, b] the following bound is valid:

n—1 ]+1 1\ _ J+l1 .
1.2) dt _ Z < "(1’](+ 3' (]J a) ) f(J) (x)
< ‘(‘n +‘1‘ (@ —a)"™ + (b —2)""") if f™ € Lyla,b],
where
1F™]| = sup [f™ (1) < oc.

te[a,b]
Dragomir also generalised the Ostrowski inequalityffqoints,z1, . . ., z; and obtained the
following theorem.

Theorem 1.3.Let], :==a = 29y < 21 < ... < 23,1 < x; = b be a division of the interval
la,b], a; (i =0,...,k+ 1) be “k + 2" points so thatay = a, o € [z;-1, 2] (i =1,..., k) and
agr1 = b If f:a,b] — Ris ACa, b], then we have the inequality

(1.3)

b k
/ f@)dr =3 (s — ) f (@)

1 k—1 k—1 T+ 2
7 i+1
< ngh%Z (a - T) ] 1
1=0 )

1 k—1 -
e h?2

1 /
<5 0=a)[[fllcv(n),

whereh; == z;41 —x; (i =0,....,k — 1) andv (h) := max{h;|i =0, ...,k — 1}.
The constant in the first inequality and the constajtin the second and third inequalities are
the best possible.

The main aim of this paper is to develop the upcoming Thegrem 3.1 (see page 10) of integral
inequalities forn—times differentiable mappings. The motivation for this work has been to
improve the order of accuracy of the results given by Dragdmir [5], and Cerone and Dragomir
[1]. In the case of Dragomif [5], the bound pf (IL.3) is of order 1, whilst in this paper we improve
the bound of{(1]3) to ordet.

We begin the process by obtaining the following integral equalities.

IN

2. INTEGRAL IDENTITIES

Theorem 2.1.Letl, :a =z < x1 < -+ < 21 < xx = b be a division of the intervdh, ]
ando; (i =0,...,k+ 1) be ‘k + 2’ points so thatvy = a, o; € [z;_1,2;] (1 =1,...,k)and
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OSTROWSKITYPE INEQUALITIES 3

a1 = b. If f: [a,b] — R is a mapping such that"~V is AC[a, b], then for allz; € [a, b] we
have the identity:

b no_ 1y kL o
@y [ s+ EEY {0 197 e
a j=1 T i=0

b
(=) 1970 @)} = (1" [ Ko ()50 0

where the Peano kernel

( (t —«
( - ) , t € la,x)
t—«
( ] 2) , tE [x,29)
t— _ n
%, t € [Th—2,Tk_1)
n!
(t — Oék)n
T t € [zp-1,0],

n andk are natural numbersy > 1,k > 1and f© (z) = f (2).

Proof. The proof is by mathematical induction. Fer= 1, from (2.1) we have the equality
k—1

(2.3) /abf (t) dt = Z [(-Ti-&-l - Oéi+1)j f ($i+1) - (371 - ai-i—l)j f (%)]

=0
b
- / Ko (8) £ (1) dt,

where
( (t— ), t € la,xq)

(t — o), t € [x1,22)

(t —ag—1), t€ [xr_2,Tp1)

L (t—Oék)7 t e [1’]@_1,6].
To prove [(2.B), we integrate by parts as follows
b
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4 A. SOFo

= [(zig1r — qiga) [ (i) — (@5 — qiga) f(25)] = Z/Ml f(t)dt.
/ f(t)dt + / Klk Z Tipr — ig1) f(@ig1) — (27 — i) f (1)) -

Hence[(2.B) is proved.
Assume thaf (2]1) holds for." and let us prove it for”, + 1'. We need to prove the equality

k—1 n+1
(2.4) / f(t)dt + Z Z { Tiy1 — i)’ JUY (1) — (i — ip1)’ fu (a:l)}
=0 j=1
e
= " / K nt+1) (t) dt,
where from((2.2)
( (t—oc1)"+1 "
CESINE € [a,71)
—« n+1
(t(nj)l)! ’ S [:El?'r?)
Kok (1) =
—an_ n+1
it (nk—&-i))! , L E (T2, Tp1)
—a n+1
. (t(ni)l)! , t€[zro,b].
Consider

b ) k=1 iy (t — ai+1>n+1 )
/ Koy () fOD (8 dt =) / Wf(’”)(t)dt
a i=0 Y Ti ’

and upon integrating by parts we have

/Knﬂk (t) fOHD (t) dt
— | (t =)™
(

n+1)!

LTi+1

f(”()

) /W (t— )" £ (t)dt]

. n!
T; v

k—1 ( )n+1 ( N )n+1
. Tit1 — O ON W G4 M) (.

Upon rearrangement we may write

n+1

b — (Tig1 — Qig1) (1"—04'+1)n+1
[ Husy 5 <t>dt:2{ S ir T ) S <x,->}

J. Inequal. Pure and Appl. Math3(2) Art. 21, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/
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Now substitute/” &, . (¢) f™ (¢) dt from the induction hypothesi.l) such that

{(%’H —ain1) fU (wi11)

o [ fwde Y [Z -

=0 j=1

— (2 — )’ fUTY (%)H

— (% 1 — Q4 1)n+1 n (mi—@i 1)n+1 n
{ +(n+1+)! /! )($i+1) - (n ++1)! /! )(xi)}

N

I
o

%

b
- / Ko (8) fOFD () dt.
Collecting the second and third terms and rearranging, we can state

k—1 n+1 (_1)j

/bf(t)dt+zz

1
i=0 j=1 J:

{(%‘H - @i+1)j f(jfl) (@it1) — (i — ai+1)j f(jil) (%)}
b
= (=) / Koy () 70 (1) dt,
which is identical to[(2.4), hence Theorém|2.1 is proved. O
The following corollary gives a slightly different representation of Thedrerm 2.1, which will

be useful in the following work.

Corollary 2.2. From Theorem 2|1, the equalify (2.1) may be represented as

’ VS y i\ -
@5) [ fupde+y > {@— e = (= aun) '} 97 (@)
b
1" [ K05 0t
Proof. From [2.1) consider the second term and rewrite it as

k-1
(2.6) 51+ 5= Z {= (@ig1 — i) f (@ig1) + (25 — 1) f (23)}
i=0

Sl Al

212

il
i=0 [ j=2 J:

{(sz‘+1 — 1)’ fUD (zi11)

- = a7 @)} |
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6 A. SOFo

Now
Si = (a—an)fla)+ (52— ) £ (1)
+k§:§{— (1 — i) £ (#5:0)} — (b= ) £ 1)
— (o—a) f(@)+ Z (0 — i) f (2)
+§{— (@1 — ) £ (2} — (b= ) £ ()
— (- —ki;(%‘ﬂ — i) £ ) — (b an) £ ()
Also,

SE s
_ Zj_j}](b—%)ﬂ FU=D (b)—ZZ(_jP (a—a1)’ fU77 (a)
k—1 n J .
B[S (-} 00)
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OSTROWSKITYPE INEQUALITIES 7

=
D (N IR S 1><b>]

Keeping in mind thaty = a, ag = 0, z, = b anday,; = b we may write

k
S48 = =3 (o —ai) £ ()

Jj=2 J! i=0
n j k | | |
— 2 (_‘7}) [Zz_; {(;];Z — ai)] o (:L‘z . ai+1)]} f(]—l) (:L‘z)] ‘

And substitutingS; + S, into the second term of (3.1) we obtain the idenfity |2.5). O

If we now assume that the points of the divisignare fixed, we obtain the following corol-
lary.

Corollary 2.3. Letl, :a =xg < x1 < --- < 21 < xx = b be a division of the intervdh, b|.
If f: [a,b] — Ris as defined in Theorem 2.1, then we have the equality

b n k
(2.7) / f<t>dt+22%j,[Z{—hﬁ+<—1>jhz_1}f“—l> <xi>]
a j=1 " Li=0

~ur Ko (1) 1 (1) dt,

whereh; := x;,1 — x;, h_1 := 0andh;, := 0.

Proof. Choose

o = a4« _a+t T o X+ X
0 - 1 1 — 2 y 2 — 2 g ey
oy = D2 Ter TRl F T ang g, = b
2 2
From Corollary 2.P, the term
k—1
(b—0x) f () + (01— ) f (@) + D (s — ) f ()
=1

k—1
1{h0f +Z (hi + hi-1) :z:z)+hk1f(b)},
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8 A. SOFo

the term

=1

Putting the last three terms in (2.5) we obtain

[ rwa- {hof (@) 3 (it ) () + s f <b>}

U a0 - o )

Yy @{hil (17 WL} 19 1><xz>]

=1 [Lj=2

b
=(-1" / Ko (t) £ (1) dt.

Collecting the inner three terms of the last expression, we have

/abf (1) dt—kzn: (;;)] zk: {hg_l (- )] h]} FU=D / Koxlt f(” (1) di

which is equivalent to the identity (2.7). O
The case of equidistant partitioning is important in practice, and with this in mind we obtain

the following corollary.

Corollary 2.4. Let

b_
(2.8) Ik::ci:a—l—i( a), i=0,.. .k
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OSTROWSKITYPE INEQUALITIES 9

be an equidistant partitioning df:, b], and f : [a,b] — R be a mapping such that™V is
ACla, b] , then we have the equality

(2.9) /f dt+2(b_a) ._[—f“”(@
+ X_: {<—1)j - 1} FOD (@) + (=1) FU7Y (b)]

)y / "l () £ (1) dt.

It is of some interest to note that the second ternj of (2.9) involves only even derivatives at all
interior pointsz;, i =1,...,k — 1.

Proof. Using [2.8) we note that

b—a b—a
o he—1 = (), — 2p—1) = o

—a b—a
L and hi—l =X; — Tj—1 = L

and substituting intd (2/7) we have

/abfu) dt+j§:ﬁ [— (b;k“)jf(j-l +k§j{ (b‘a)j

ry (2 )} 700 a4 oy (2 o <b>]
A [ K05 0

which simplifies to[(2.p) after some minor manipulation. O

hy = x1—x0=

hi = Tjy1 — T3 = s (7,21,,]{?—1)

The following Taylor-like formula with integral remainder also holds.

Corollary 2.5. Letg : [a,5] — R be a mapping such that™ is ACa,y]. Then for all
x; € [a,y] we have the identity

(2.10) g(y) = g(a) -, [Z = {(:Em — 1)’ g9 (wi41)

@11) g) =g - Y [Z{m—a»f'—(xi—aiﬂy}g(ﬂ <xi>]
0 [ K .09 @t

The proof of (2.1ID) and (2.11) follows directly frofn (2.1) and [2.5) respectively upon choos-
ingb=yandf =g
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10 A. SoFo

3. INTEGRAL INEQUALITIES

In this section we utilise the equalities of Secfign 2 and develop inequalities for the represen-
tation of the integral of a function with respect to its derivatives at a multiple number of points
within some interval.

Theorem 3.1.Let]; : a =z < 21 < --- < 1,1 < zx = b be a division of the intervdk, b|
ando; (i1 =0,...,k+ 1) be ‘k + 2’ points so thatvg = a, o; € [z;_1,7;] (1 =1,...,k)and
1 = b. If f: [a,b] — R is a mapping such that"~V is AC[a, b], then for allz; € [a, b] we
have the inequality:

/ab f(t)dt + Z S—%) [Z {(@ =0 = (@ = ap) } 707 M] |

=0

(3.1)

where

£, = sup [f*(t)] < oo,
t€[a,b]

h; = Tit1 — T and
v(h) = max{h|i=0,...,k—1}.

Proof. From Corollary 2.2 we may write

(3.2) ‘/ab f () dt+ i [zk: {(-Ti — o) — (z; — ai+1)j} FU=D (l'i)] ‘

=0

(-1
;!

and

\(—1)" / K (1) £ (1) dt' < £ / VKo (8) .

k—1

b Ti41 |t — o |n
/a|Kn7k(t)|dt = Z/x T“dt

=0 g

k—1 [eFRR] . —t n Tit1 f— o n
D =
i=0 L/ i n: @il n!
k-1
1 . .
T (n+ 1) {(dis1 —2)"™ + (i1 — i)™}

-
Il
o
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OSTROWSKITYPE INEQUALITIES 11

and thus

ol < WO
K ) t = (n—l—l)' {(az-i—l :L‘z) +($z+1 az+1) }

)

I
=)

Hence, from[(3.2), the first part of the inequalify (3.1) is proved. The second and third lines
follow by noting that

Hf(” - Hf(n -
1)! Z {(aip1 — )" g (i — )"t Z Byt
=0

1=0

since for0 < B < A < C'itis well known that

(3.3) (A= B)"™ +(C— Ay < (C - B
Also
Z hn+1 (n)”ooyn (h) — h, = Hf(n) H (b — a) (h)
! = (nt 1) —"" " (n+1) ’

wherev (h) := max {h;|i =0,...,k — 1} and therefore the third line of the inequalify (3.1)
follows, hence Theorein 3.1 is proved. O

When the points of the divisior, are fixed, we obtain the following inequality.

Corollary 3.2. Let f : [a,b] — R be a mapping such thgt™—Y is AC(a, b], and I, be defined
as in Corollary{ 2.3, then

mars Y G lz{ Mo} 197 @ >”

j=1 =0
BT NS

(3.4)

< 1on
(n+ 1)12n
for f™ € Ly, [a,b].
Proof. From Corollary 2.3 we choose
a—+ T
aQy = a, o = 5
oy = T2t Tee T TR b, = b
2 2
Now utilising the first line of the inequality (3.1), we may evaluate
k-1 k-1 n+1
{(cvig1 — 2)" T+ (i1 — i) n+1} = Z 2 ( )
i=0 1=0
and therefore the inequality (3.4) follows. O

For the equidistant partitioning case we have the following inequality.
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Corollary 3.3. Letf : [a,b] — R be a mapping such that"—Y is AC[a, b] and let], be defined
by (2.8). Then

" b—a)’ 1
t)dt+2( o ) =
j=1 J:

x [—f(“) @+ {17 =1} 7070 @) + (1) 070 (b)”

=1
17

(3.5)

S CES VIR
for f™ € Ly, [a,b].
Proof. We may utilise[(2.p) and from (3.1), note that
b— b—
hole—xoz—aandhi:xiﬂ—xi: a,izl,...,]{]—l
k k
in which case[(3]5) follows. O

The following inequalities for Taylor-like expansions also hold.
Corollary 3.4. Letg be defined as in Corolla@.S. Then we have the inequality

(3.6) gy )+ Z Z { Ti — Ofi)j — (i — Oé¢+1)j} g (901)] ‘

=0

Hg"“ H

R T Z { i1 — n+1 + (l’prl — Oéi+1)n+1} if g (n+1) 6 Loo [a, b]

forall x; € [a, y] Where

||g("+1)HOO ‘= sup ‘g("ﬂ) (t)} < 00.

Proof. Follows directly from[(2.1]1) and using the norm as[in[3.1). O

When the points of the divisior, are fixed we obtain the following.

Corollary 3.5. Let g be defined as in Corollafy 2.5 anfl : a« = zp < 21 < -+ < 241 <
x, = y be a division of the intervdh, y]. Then we have the inequality

B.7) |9(y) —g(a)+ Z 2%, [Z {—hf +(—1) hfﬂ} gt (xi)] ‘

g™Vl

_mzhn+llfgn+l GL [Cly]
Proof. The proof follows directly from using (2.7). O

For the equidistant partitioning case we have:
Corollary 3.6. Letg be defined as in Corollafy 2.5 and

[k:xi:aﬂ'.(y;a), i=0,... .k
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be an equidistant partitioning dé, y|, then we have the inequality:

@9 o) 9@+ > (L) L
' =g = 2k J!
k—1 A
x [—g@ (@) + Y {17 =1} g (@) + (1) g <y>] ‘
=1
“g(n+1)“oo (y _ Cl)n+1 |f g(n+1) c L [CL y]
(n+ 1)1 (2k)" oA
Proof. The proof follows directly upon using (2.9) witf = g andb = . O
4. THE CONVERGENCE OF A GENERAL QUADRATURE FORMULA
Let
Am:a:xém) <x§m) <~~'<:U,(;'1)1 <z =p

be a sequence of division f, b] and consider the sequence of real numerical integration for-

mula
m j—1 r
P8
r= 7=0 s=0

j r
s=0

wherew; (j =0, ..., m) are the quadrature weights and assumezljﬁzt0 wj(.m) =b—a.
The following theorem contains a sufficient condition for the Weigh@%’) so that

Lo (f. f ..o, f™, A, w,,) approximates the integrg(lcf’f (z) dz with an error expressed in
terms of|| f(||

@4.1) L (f. o f™, A wy)

=S (o) -
j=0

3

Theorem 4.1.Let f : [a,b] — R be a continuous mapping da, b] such thatf™~) is AC[a, b].

If the quadrature Weightsu](.m) satisfy the condition

(4.2) Z- —a<Zw <xz+1—af0ra||2—0 ,m—1

then we have the estimation

b
(4.3) Lo (fo 'y f™, A wny) —/ f ) dt‘

J. Inequal. Pure and Appl. Math3(2) Art. 21, 2002 http://jipam.vu.edu.au/
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(n+1)! = '
7. [v (K"™)] (b—a), where f™) € L [a,b]
(n+1)' ) bl M
Also
(m)y ._ (m)
v () = _max {0
W= ol =l

In particular, if | f™]|__ < oo, then

b
lim Im(f,f’,...,f(”),Am,wm):/f(t)dt

u(h(m))ﬂo
uniformly by the influence of the weights, .

Proof. Define the sequence of real numbers
agfl) ::a—l—Zw](-m), i=0,...,m.
§=0

Note that

agﬁ):a—l-z%(.m):a—i—b—a:b.
=0

By the assumptiorj (4.2), we have

agfl) € [xfm),ngl)} forall i=0,...,m—1.
Definea!™ = a and compute
agm) B OZ(()m) _ w(()m)

7 i—1
agi‘f —al™ = a~|—2w§m) —a— ij(-m) =w™ (i=0,...,m—1)
=0 =0

and

Consequently
> (ol — o) 1 (7)< 3wy ().

=0 =0
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(-1 % (m) S
i DR BRI
=2 ' Lj=0 s=0
j T
(e )
s=0

= I (faf,w"af(n)vAmawm) .
Applying the inequality[(3]1) we obtain the estimdte [4.3). O

The case when the partitioning is equidistant is important in practice. Consider the equidistant
partition

and let

Sl () -
§=0

3

—a
 =0,...
L (i=0,.m)

and define the sequence of numerical quadrature formulae

Lo (fof's oo f™, Ay i)
:iw(m)f<a+j<b_a)) - i j(b—a) _iw(m) '
=0 ’ " r=2 = =i

The following corollary holds.

Corollary 4.2. Let f : [a,b] — R be AGa,b]. If the quadrature weightsuj(.m) satisfy the
condition

m b
E,, ::a;z( Vi=a+i

i< w(m)<l+1

S, i ST 1=0,1,...,n—1,
=0

then the following bound holds:

b
I, (f, f/’,..,f(n)7Am,wm) —/ @) dt'

Hf(n) HOO m—1 i o b a n+1
= (n+1)! Yi T\ T
i=0 §=0

In particular, if || f™]| _ < oo, then

lim I, (f, f',. wm / f(t
uniformly by the influence of the weights,.
The proof of Corollary 42 follows directly from Theorém §.1.
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5. GRUSSTYPE INEQUALITIES

The Gruss inequality [15], is well known in the literature. It is an integral inequality which
establishes a connection between the integral of a product of two functions and the product of
the integrals of the two functions.

Theorem 5.1.Leth, g : [a,b] — R be two integrable functions such that< i (z) < ¢ and
v <g(zx) <Iforall z € [a,b], p,P,~vandI are constants. Then we have

(5.1) T ()| < 5 (@~ 0) (T ~7),

where
I I I
b—a/a h(x)g(x)dx—b_a/a h(x)dx-b_a/a g (z)dx

andthe inequalit 1) is sharp, in the sense that the con%taannot be replaced by a smaller
one.

(52)  T(hg):=

For a simple proof of this fact as well as generalisations, discrete variants, extensions and
associated material, see [17]. The Griss inequality is also utilised in the pagers [6, 7, 14] and
the references contained therein.

A prematureGruss inequality is the following.

Theorem 5.2. Let f and g be integrable functions defined ¢m b] and lety < ¢ (x) < T for
all x € [a,b]. Then

NI

53) T ()| < 5 (T (1)}

whereT (f, f) is as defined i (52).

Theorenj 5.2 was proved in 1999 by MatP&aric and Ujevt [16] and it provides a sharper
bound than the Griss inequalify (5.1). The tgarematureis used to highlight the fact that the
result [5.B) is obtained by not fully completing the proof of the Griiss inequality. The premature
Gruss inequality is completed if one of the functiofigyr g, is explicitly known.

We now give the following theorem based on the premature Griss inequality (5.3).

Theorem 5.3.Let], : a = 29 < 21 < --- < 731 < 7, = b be a division of the interval
la,b], a; (i=0,...,k+ 1) be 'k + 1" points such thatyy = a, a; € [z;_1, 7] (i =1,...,k)
anday, = b. If f : [a,b] — Ris ACa, b] andn time differentiable ona, b], then assuming that
then™ derivative f™ : (a,b) — R satisfies the condition

m < f™ < M forall z € (a,b),

we have the inequality

(5.4) ‘ /f )dt + (—1)"

. rg_; { (% - @-)j I (241) — (% n @-)j Fu=Y (m}]
R B () () 0]

T
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k-1 2n+1 2n+1 r
< (%il)in!)?;(%) " [Z ) {1+<—1>’“}]

k-1 1 [nt1 212

() B @) o))
i=0 r=0

where
h; = x;11 —x; and
5 = aiﬂ—x”le, P= 0, k-1

Proof. We utilise (5.} B) and 3) multiply through kY — @) and choosé: (t) := K, (t) as
defined by[(2.2) and (t) := f™ (t), ¢ € [a, b] such that

i (1) [ dt——/ fm dt-/abKn,k (1) dt‘
— [(b—a) /asz’k (t)dt — (/abKn,k (t) dt>2r

/ 5O (@)t = £ () = £ (a)

(5.5)

Now we may evaluate

and

Tit1 ]
= Z / —' (t — OéH_l)n dt

i=0 /@i
1 n+1 n+1
= m+ 1) Z {1 = ai)"™ + (i — )"}
=0

Using the definitions ok; andd; we have

Titl = Qi1 = 5 — 0i and @i - = 5 + d;

such that

“ =0 i D) : { (h? - 51)”“ i (% i &)M}
" +1 1)! ki [": <n_:1> =6y (%)HH +§ (n;H) g (%)M]
5 (T () aren
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Also,

b
Gy = /Kik(t)dt
_ Z/W t_%“ (t=oum)?,

- (2n + 1 2 Z { Tip1 — az+1 2n+ + (az+1 T )2n+1}

_ mz{<%—5>+<%+5)}

e ()X (Qh—?)r““—”’”}] -

From identity [2.1), we may write

/amek(t)f(”) /f )dt + (— ”i j,

J=1

" [Z {(%H - 04i+1)j f(jfl) (@it1) — (@ip1 — xi)j f(jfl) (xz)}]

=0
and from the left hand side df (5.5) we obtain

Gy = (— /f )dt + (— Z( Ly

Jlj'

X [zzoi { (% — 5¢) FI (m41) — (% + 5¢)j fUY (ifz)}]

(SRR B @) )]

r=0

after substituting for7;.
From the right hand side df (3.5) we substitute fgrandG, so that

Gy = (b—a)/bKik(t)dt— (/bKn,k(t)dtf

© v Z( ) [Z( DG o

1 -1 n+1 n+1 25i r . 2
_<(n+1)' [ hi> {1+ (-1) }]) :

1=0

Hence,
(€ < @z,

and Theorer 5|3 has been proved.
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Corollary 5.4. Let f, I;; and oy, be defined as in Theorgm .3 and further define

(5.6) 5= gy — LT
forall i =0,...,k — 1such that

r . .
(5.7) 9] < §m1n{hi|Z:1,...,k}.

The following inequality applies:

(5.8) ‘(—1)”/ f(t)dt+(—1>"2%

[y e G

(B ()

ST (Z’)W{H(—l)’“}]

_ ((nil)!’ig(”“)y( )nH 14 (-1 )})T

The proof follows directly from[(5]4) upon the substitution[of {5.6) and some minor simplifi-
cation.

M—-—m

Remark 5.5. If for any division[;, : a = g < 11 < - -+ < 231 < x = b of the intervalla, b],
we choose = 0 in (5.6), we have the inequality

(5.9) ‘ / f)dt+ (- Z X ; ( )j {(—1)]’ FO (g,0) — fUD (xi)}
-2 (f ("(bl)_(b;)—(nf:’jll))!<a)> ‘i‘; ( % >n+l

Fiwwnes Z( ) - <<nil>! <%>>]

1=

1
2

M—m
<
- 2

The proof follows directly from[(5]8).

Remark 5.6. Let £ be defined as in Theorém 5.3 and consider an equidistant partitiéhing
of the interval[a, b], where

b_
Ek::xi:a—l—i( ka>, i=0,... k.
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The following inequality applies

(5.10) ‘(—U”/@bf(t) dt+(—1)”é% (bQ—ka)j

. {(_1)jf(j1) (a(k—i—lk);%—b(i—l)) T (a(k—ki)ﬂ'b)}

() ()

< (M —m) nk (b—a)"Jrl
= (n+1)vV2n+1 \ 2k ‘
Proof. The proof follows upon noting that; = z;,1 — z; = (:2),i=0,...,k. O

6. SOME PARTICULAR INTEGRAL |NEQUALITIES

In this subsection we point out some special cases of the integral inequalities in $kction 3. In
doing so, we shall recover, subsume and extend the results of a number of previous published
papersl[2], 5].

We shall recover the left and right rectangle inequalities, the perturbed trapezoid inequality,
the midpoint and Simpson’s inequalities and the Newton-Cotes three eighths inequality, and a
Boole type inequality.

In the case when = 1, for the kernelk, ;, () of (2.3), the inequality[(3]1), reduces to the
results obtained by Dragomir![5] for the cases wifer|a, b] — R is absolutely continuous and
/' belongs to thd., [a, b] space.

Similarly, forn = 1, Dragomir [11] extended Theorgm B.1 for the case whénb| — R is
a function of bounded variation dn, b].

For the two branch Peano kernel,

t—a), tefa)
(61) Kn,Q (t) =

1
a(f—b)n, te (:L‘,b]

the inequality[(3.]L) reduces to the res[ilt {1.2) obtained by Cerone and Dragomir [1] and [3]. A
number of other particular cases are now investigated.

Theorem 6.1.Letf : [a,b] — R be an absolutely continuous mappingjeny] anda < z; < b,
a<a <z <as <b. Then we have

(6.2)

[ rwas > R a0 @

J!

#{(—a) = (@1 —a) £ (@) + (b= ) 1570 ()]
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(n)
S |<|T']:+ |j1())o ((al o a)’ﬂ-‘rl + (-Tl . Oél)n+1 + (a2 . xl)n—i-l + (b _ a2)n+1>
< ||f n)” ( T — a)n-i-l + (b — )n+1)
> (TL+ ) 1
1N gyt o
(n+1) —a)", ™ e Lylab].

Proof. Consider the divisiom = =y < x; < o = b and the numbersy = a, oy € [a, 1),
ay € (xq,b] andag = b,
From the left hand side of (3.1) we obtain

i ﬂ i {(5’71' — ;) = (- Oém)j} FUY ()

1l
j=1 J: i=0

=3 E - a1 @+ (- P = ()} £ ()

=

+(b—ag)’ fUTD(B)].
From the right hand side df (3.1) we obtain
Hf ; n+1 n+1
1)l Z {(Qivr — )™ + (21 — )" }
=0
_ ™l
(n+1)!

and hence the first line of the inequality (6.2) follows.
Notice that if we choosey, = a anday, = b in Theorem[ 6.l we obtain the inequality

()2 0
The following proposition embodies a number of results, including the Ostrowski inequality,
the midpoint and Simpson’s inequalities and the three-eighths Newton-Cotes inequality includ-

ing its generalisation.
Proposition 6.2. Let f be defined as in Theor.l anddet z; < b, anda < =D <
zy < =0 < for m a natural numbenn > 2, then we have the inequality

(1 — @)™ + (21 — @)™ + (g — )" + (b — a2)"™™)

(6.3) |Punl

0t + Z [(b ) e - s W)

+ {(<x1—a>— ”;1“) - (= —(b—xl))j}f“‘” <:c1>”
R ) o ()
+ (b—xl—(b;a))n+l> it £ e Lo[a,b].
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Proof. From Theorem 6]1 we note that

—1 b

b—a b—a
a—op = —|— s b—ap = —

T — o = ml—a—(b_a> and xl—agz(b_a)—(b—wl).
m m
From the left hand side of (6.2) we have

a+(m—1)b

so that

(a0 97 @)+ { (- @~ (- aa) U () + (0 ) J9 0
A e - 1 @)

m

)

From the right hand side df (6.2),

(041 _ a)nJrl + (IL‘1 . al)nJrl + <a2 . Il)n+1 + (b . a2)n+1

) e () (e ()

and the inequality] (6]3) follows, hence the proof is complete. O

The following corollary points out that the optimum of Propositjon] 6.2 occurs,at=

ator — aT“’ in which case we have:

Corollary 6.3. Let f be defined as in Propositi¢n 6.2 and let= “}* in which case we have
the inequality

P (a—l—b)‘
k 2

(6.4)

f)dt + Z [(b - ) {970 ) = (=1 1979 (0)}
+ ((m - ?ﬂib - a)) (1 - (_1)J‘) JE) (a ‘QF b) |
AU (5 (1 (25 o e

The proof follows directly from3) upon substituting = C‘T“’

A number of other corollaries follow naturally from Proposition|6.2 and Corollary 6.3 and
will now be investigated.

The following two corollaries generalise the Simpson inequality and follow directly from

(6.3) and|(6.14) forn = 6.
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Corollary 6.4. Let the conditions of Corollary 6.3 hold and put = 6. Then we have the
inequality

dt+z [”‘“ FU (B) = (1) f97 (a)}

n {( &1+b> ( (z+5b> }fU_D(ID]|
Mk (5 (a2

n+1
+(_m+“+5b) ) £ € Lo fa,b],

6

which is the generalised Simpson inequality.

Corollary 6.5. Let the conditions of Corollary 6.3 hold and put = 6,. Then at the midpoint
z1 = 2t we have the inequality

(“5 )|

(6.6)

dt+z [(b_a> {f<j—1) (b) — (—1)7 fU-D (a)}
+ (b;“> (1—(—1)]’) oy (“‘2”’) ‘

9 (n) _ n+1
<2l (b6a> (1+27), f™ € Loola,b].

(n+1)!
Remark 6.6. Choosing: = 1 in (6.6) we have

) (f<a>+4f (“5) +rm)]
—||f|| (b—a)*, f € Lela,b].

(57| = | [0 (5
=36

Remark 6.7. Choosing: = 2 in (6.6) we have a perturbed Simpson type inequality,

ne ("5)
[ ruyae- <"g“) <f<a>+4f(“§b) +f<b>)
() (Fem)

=T

(6.7)

(6.8)

1/ Nl » " € Log [a,B].
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Corollary 6.8. Let f be defined as in Corollafy 6.3 and let = 4, then we have the inequality

P (a;—b)‘ |
/abf(t)dtJr]Z:(_ij (b;a)]
. {<f(j_1) () — (—1) fGD (a)> + (1 - (—1)j> fon (a;rbﬂ ‘

17
~ (n+1)l4n
Remark 6.9. From (6.9) we choose = 2 and we have the inequality

Prs (a ; b)
[ (232) (1o s (42))
+(b;{Y<j%m;f%@)'

(b—a)®, f"€ Lola,b].

(6.9)

(b—a)"t, f™ e Lylab].

(6.10)

1Mo
96

Theorem 6.10.Let f : [a,b] — R be an absolutely continuous mapping nb] and let
a <z <x9 <banda; € [a,z1), as € [x1,22) andas € [z5,b]. Then we have the inequality

b noo 1V o
/a F ) dt + ; % [— (a—ar) £V (a)

<

(6.11)

+ (@1 —a)’ = (@1 —az)’) f97 ()
+ (@2 = aa)’ = (22— 00)) FU7 (2) + (b — a0 FU70 ()]
U }}: (j ’1‘37 ((ar — @)™ + (21— )™ + (ag — )"
(w9 — )" (ag —x)"T H (b—az)"™), ™ e Lofab].

<

Proof. Consider the division = zy < 21 < 22 = b, oy € [a,21), a9 € [x1,22), a3 € [T2,b],
ap = a, xy = a, r3 = b and puta, = b. From the left hand side df (3.1) we obtain

zn: (_1)] 23: {(a:Z — ;) — (x; — Ozi+1)j} F979 ()
" 1y

J!

+ ((:cl —ar)! = (&1 - Oéz)j> PO ()

+ ((1’2 - 042)j — (w9 — 063)j> Fuy (22) + (b— O‘3>j yoy (b)] '

—(a—a) 97 (@
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From the right hand side df (3.1) we obtain

n

2
1)l Z { Qip1 — g (@ig1 — Oéz‘+1)n+1}
=0

n+1

= ((041 — Cl)nH + (x — 041)7”1 + (ag — 1)
+ (22— a2)" (g — @)+ (b — ag))

and hence the first line of the inequality (6.11) follows and Thegrenj 6.10 is proved. O

Corollary 6.11. Let f be defined as in Theorgm 6|10 and consider the division

0 <an< (m—l)a+b§a2<a+(m—1)b
m m

<az<b

for m a natural numbern > 2. Then we have the inequality

(6.12) |Qmnl =

t) dt + Z (_j—l')] [— (a— 1)’ fU7D (a)

a{< o) (o)
Al ) - () Yo

+ (b—ag) f90 )]
f
= ‘(‘n+‘1‘) Han,
L R (ST

N (a2— (m—1)a+b>"“+ (a+(m—1)b_a2>"+l

m m

n+1
+ (&3 - W) + (b - a3)n+1> ) f(n) S Loo [a> b] :

Proof. Choose in Theoreth 610, = =**, andz, = =1 hence the theorem is

m

proved. O

Remark 6.12. For particular choices of the parametersandn, Corollary[6.1]1 contains a
generalisation of the three-eighths rule of Newton and Cotes.

The following corollary is a consequence of Corollary 6.11.
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Corollary 6.13. Let f be defined as in Theorgm 6]10 and choase= “* = #1522, then we
have the inequality

(613)  |Qua| =

t) dt + Z <_j—1')] [— (a— 1)’ f979 (a)

{ 21— ap) — (=1) <(m — ?ﬂib — “>>]} FO (1)

= (n+1)R
" e 1
=
2 (0 ay DY (o, et m Db
(-0 552 s o222
+(-a)"),  f"eLylal.

Proof. If(;/ve puta, = % = #1422 into (6.12), we obtain the inequality (6]13) and the corollary
IS prove 0

The following corollary contains an optimum estimate for the inequality {6.13).
Corollary 6.14. Let f be defined as in Theorgm 6|10 and make the choices

3m —4 4—m
ap = ( >a+(—>b and
2m 2m
B 4—m n 3m —4 b
4 = 2m “ 2m

then we have the best estimate

(614) |Qun
% [((b - a)QT(j - m))j {f(j—l) (b) _ (_1)1' f(j—l) (a)}
n ((b — CL)Qinm — 2))j {1 B (—l)j} (f(j_1) (1) + f(j—l) ($2))] |
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Proof. Using the choicer, = % = ©if22 ) = (m=Dath gpgy, — etlmolb

oo we may calculate

(o —a)= L=
and
(131 - 041) = (042 - I1) = (I2 - 042) = (043 - xz)
(m—2)(b—a)
N 2m ‘
Substituting in the inequality (6.1.3) we obtain the proof{of (6.14). O

Remark 6.15. Form = 3, we have the best estimation pf (§.14) such that

/mf@ﬁﬁ+§:&%2

. [(”g“)j (0w - )+ ()
o) (22 (052

17|
6" (n+1)!

Proof. From the right hand side df (6.[L4), consider the mapping

4_ n+1 —9 n+1
My e () (2
’ 2m 2m

0 (-2 (1-2))

and),, , attains its optimum when

(615)  |Qsn

(b— a)”Jrl , f(”) € Lo |a,b].

then

N | —
N —

2 1

m m’

in which casem = 3. Substitutingm = 3 into (6.14), we obtain[(6.15) and the corollary is
proved. O

Whenn = 2, then from [(6.1b) we have
b —a
[ rwa- (M50 ) w o+ s@)
w5 (550) o - 1)

() ) ()

(b—a)®, f"€ Lula,b].

‘ng‘ =

2
- 216

The next corollary encapsulates the generalised Newton-Cotes inequality.
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Corollary 6.16. Let f be defined as in Theorgm 6/10 and choose

B 2a + b _a+2b _a—l—b
xr, = 3 y, Lo = 3 , Qg = 5
1 b —1)b
S Gl L SN ol Gt L}
T T

Then forr a natural number; > 3, we have the inequality

(6.16) |7..|

0t + Z [(b - ) {7979 0) = (1) 199 (@)}
i {(“‘ ;( - 3))j (-1 (bg“)j} £ (2)
+{<H> (S i)
(5

2| f v 1
SNCESVE ” ” (b B " (Tn—i-l ) 6n+1> ’ f(n) € Lo [a’ b] ’

(n+1)!
Proof. From TheoreO, we put; = 2“;”, Ty = a+32b, Qo = GT“’ a = w and

az = M08 Then |(6.16) follows. O

Remark 6.17. The optimum estimate of the inequalify (6].16) occurs when6.
from (6.16) consider the mapping

1 r—3\"" 1
Mr,n = 7"n+1 + ( 371 ) + 6”+1

the M/, = — (n+1)r "2+ (%51 (2 — )" and M,,, attains its optimum wheh = £ — 1,

in WhICh case" = 6. In this case, we obtain the inequality (6.15) and specmcallyzf@f 1, we
obtain a Simpson type inequality

o= ("5 @+ 1)

(5 0 (5)(57)

1/l 2
S 19 (b—a) 5 feLoo[avb}u

‘Z

(6.17) ‘QM;Z

which is better than that given by (6.7).
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Corollary 6.18. Let f be defined as in Theorgm 6/10 and choose- 8 such thato,

__ Ta+b
=5
ar = 2 andaz = ¢ with z; = 22 andz, = 242, Then we have the inequality
(618) ‘TS,n’
b " (=1 b—a -
[ rwar+y Y [( ) (0 -1 9 @)
a j=1
b—a I ) d i i j j
Z) — (= G-1 — (=1 fU-1)
+(55°) ((4) ( 1)>(f () ~ (1) S w)”
< 2 ||f(n)||oo n+1 (3n+1 +4n+1 +5n+1) f( n) c L [a b]
= 1) \ 2 ’
Proof. From Theorem 6.10 we put
2a+ b a+2b Ta+0b a+7b
Ty = , Lo = , Qg = y Q3 =
3 3 8 8
anda, = “}* and the inequality| (6.18) is obtained. O

Whenn = 1 we obtain from[(6.18) the ‘three-eighths rule’ of Newton-Cotes.
Remark 6.19. From (6.16) withr = 3 we have

dt+z [(b‘“) (1579 ®) = (1 157 @)

N (b—a) {f” 1) _ fGD) (961)}”

2O e 1Y
W(b_a/)+1(ﬁ+6n+1)7f()€[/oo[a7b]

In particular, forn = 2, we have the inequality

t)dt — (b_Ta) (f () + f(a) + <b;a>2 (fl(b);f'(a)>
N (b;) (f (a§25> +f(2a3+b))

., (bga)2<f’(%2”);f’(2%")>|
[ral

7200 (b—a)®, f"€ Ly [a,b].

|T3,n‘

‘T3,2| =

<

The following theorem encapsulates Boole’s rule.

Theorem 6.20.Let f : [a,b] — R be an absolutely continuous mapping nb| and let

a<r <z <wz<banda; € [a,x1), s € [T1,22), a3 € [, 73) @aNday € [z3,b]. Then we
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have the inequality

(6.19) t)dt + Zn: (_P] [— (a—ay) fU7Y (a)
+(SL’1—O[1 1’1—0[2]>f] 1)
<1E2—042 !L‘2—OZ3 fjl)
( 3—043 — (v3 — o) )f b—@4) f(] 1)(b)H
(n
< H::—i— ‘1 (e + (21 — )"+ (g — 2y)"
(1;2 )nJrl (043 . $2)n+1 + (ZE3 o Oég)nJrl

+ (o —x3)" H (b—a)")if f™ e Lyab].

Proof. Follows directly from[(3.]L) with the points, = =y = a, z4 = a5 = b and the division

a=a9<x <Ty<T3=>b,1 € [a,T1), g € [, T2), a3 € [T, x3) ANy € [w3,D]. O
The following inequality arises from Theorém 6].20.
1la+b 11a+7b
Corollary 6.21. Let f be defined as in Theorgm 6]10 and choase= 14, = Lot
Ta+11b Qg = a+11b 7a+2b , T3 = 2a+7b a.ndﬂ? — 1’1+:B3 _ a+b then we can State

3 = T =

12

wcu4-§;<fj>j[(b;;“)j{fﬁ—”<b>—<—4»ff0-”<a>}

N (bga)j{<g>1 B (—1)J} {f(j_l) (7a49r2b) L1y 6D (m;?b)}
i (b;a)j{l—(—lv}fﬁ*>(ajb> '

9 n) N n+1
s<ylﬂf<b%a) (3" 44 5™ 6 i f) € Lo [a,b].

18

7. APPLICATIONS FOR NUMERICAL INTEGRATION

In this section we utilise the particular inequalities of the previous sections and apply them
to numerical integration.

Consider the partitioning of the interv@l, b] given byA,,, :a = 2o < 27 < -+ < Ty 1 <
Tm = b, puth; := x4 —x; (1=0,...,m—1)and putv (k) := max (h;|t =0,...,m —1).
The following theorem holds.
Theorem 7.1.Let f : [a,b] — R be AGa,b], k > 1 andm > 1. Then we have the composite
guadrature formula

b
(7.2) t/fWﬁZAH&mﬁ+RMAmﬁ
where
(72) Ak (Amaf) = _Tk: (Amaf) - Uk (Amaf)7
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(7.3) T (A, f) = (h—) l [—f(j‘l) (z;) + (=1) U1 ($z‘+1)]
L

pardl 2k ) 4!
and
G4y Uan =53 (1) Ly {(c1y =1} goo (BTt P
’ " =0 j=1 2k ‘7' r=1 k
is a perturbed quadrature formula. The remainder(4A,,, f) satisfies the estimation
I =
. < n+1
(7.5) [Ri (A, )] < 5 nH,anZh if f € Log [a,],

wherev (h) := max (h;|i =0,...,m —1).

Proof. We shall apply Corollary 3|3 on the interval;, z;11], (i =0,...,m —1). Thus we
obtain

/:iﬂf(t)dtvLi(?h_l;) j'[ FO (@) + (=1) f971 (2444)

+ ]::{(_1)1 _ 1}f<a‘—1> <(’f _T)$£+Txi+1)]‘

1 sup |f(n) (t)} (%Hk— xz)

< - -
N (n + 1)'2 te[:cl 1‘1+1]
Summing ovet from 0 to m — 1 and using the generalised triangle inequality, we have

; /frim dt+z (2/€> j‘ [ fO (@ ’)+<_1)jf(j_l) (Tit1)
k-1

+ 3 {1y -1} o <(k‘ —T)x];ntmiﬂ)”

r=1

n+1

1 m—1 hn_H

< i sup f(n) (t) )
(n + 1)!2“ — kntt telzs,ziq1] } ‘

+ W.H Y (g—)j% rl {(—1)j - 1}f(j—1) ((k—r) xé+mi+1) |

As sup |f™ ()] <[ f™|.. the inequalityin) follows and the theorem is proved]

t€[1i7x¢+1]

The following corollary holds.
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Corollary 7.2. Let f : [a,b] — R be a mapping such thgt™Y is AC[a, b], then we have the
equality

b
(7.7) / () dt = —Ty (Ao f) = Us (As £) + Ba (A 1)
where
m—1 n
T (8 f) (B 2[5 @t (17 797 i)
=0 j=1

Us (A, f) is the perturbed midpoint quadrature rule, containing only even derivatives

= S5 (B J ey ) oo (20)
my 2
0 j=1
and the remainder; (4,,, f) satisfies the estimation

o m—1 . .
|R2(Am»f)|§%2h“, if f" € Lo a,b].

Corollary 7.3. Let f andA,,, be defined as above. Then we have the equality

(7.8) / ()t = Ty (A £) — U (A )+ Ry (B ).
where a

13 1) = 5 5 (BY R[50 )+ (17 1970
and o

[

2

1 n ((—1)1—1) A
ST 3 Gy ()
« | £GD 2x; + T + fUD T+ 2754
3 3
and the remainder satisfies the bound

Hf(n)Hoo =« n+l ; (n)
|33(Am,f)|§m;hi if £ € Ly [a,b].

Il
o

J=1

Theorem 7.4.Let f and A,, be defined as in Theorem [7.1 and suppose ¢hat [z;, ;1]
(¢=0,...,m—1). Then we have the quadrature formula:

m—1 n

(7.9) /f t)dt = ZZ

=0 j=1

{ & —x) fUY ()

— (1) (@1 = &) 97 (@) | + R(E A, f)
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and the remaindei? (¢, A,,, f) satisfies the inequality

(7.10) |R (S, Am, f)|

,_.

s

=0

(xi—i-l — gi)TH-l) 3 |f f(n) < Loo [CL, b] .

Proof. From Theorerﬂl we puty = a, 79 = a, 11 = b, ay = banda; = «a € [a, b] such that

/f dt+z

Over the mterva[:)si, zit1) (1 =0,...,m — 1), we have

/%Mf(t)dt—kzn:(_

[ (a=a) f97V (@) + (b= a) fID0)] = R(EA ).

L [ = €07 59 i) = (417 (6 = 2 £ (@)

=R (A, f)

and therefore, using the generalised triangle inequality
R (&, A, f )]

1‘1+1 m—1 n . '
< Z t) dt + Z j, [ Tip1 — &) fUY (@ig1)
2 i=0 j=1 ’
W 6 1 00|
m—1

< ﬁ Z [SUP | F O] (& =)™ + (wi — &)™)
Y =0 te|Tq,Tit1

The inequality in|(7.11) follows, since we havesup | (¢)| < | /™|, and Theorem
tE[:z:i,x¢+1]

[7.4 is proved. O

The following corollary is a consequence of Theofenj 7.4.
Corollary 7.5. Let f andA,, be defined as in Theorgm 7.1. The following estimates apply.
(i) Then'™ order left rectangle rule

m—1 n

/f nar=3"3 = o Y 160 () 1 By (A )

=0 j=1

(ii) Then'™ order right rectangle rule

/f(t)dt ZZ Y (@i1) + R (A, f).

=0 j=1

(4ii) Then™ order trapezoidal rule

/abf(t)d
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where
£ = 1 r
|Rl (Amaf)l = |R7‘ (Am7f)| S (n+1)| hz Y If f [CL b]
=0

and

S il

|Rr (A, f)] < Q,U 0 +H1)v Zhi“, if e Ly a,b].
=0

Theorem 7.6.Consider the intervat; < oV < ¢ < a'® < 2;41,i=0,. —1, and letf

andA,, be defined as above. Then we have the equallty

m— n

Z 7! {(xi_o‘z@)jf(j_l)(%)

1
=0 j=1

(7.11) /f t)dt =

‘R( ) 51)7 Q; 7Am7f>‘ ||f || [m 1{(051(1) _xi>n+1+ (Ei_az('l)>n+1

0
n+1 n+1
(o) (o) e ot

The proof follows directly from Theorefn 8.1 on the intervls z;11], (i = 0,...,m — 1).
The following Riemann type formula also holds.

Corollary 7.7. Let f and A,, be defined as in Theorem 7.1 and chogsec [z;, 711,
(i =0,...,m—1). Then we have the equality

m—1 n

(7.12) /f t)dt = ZZ j, &—z)" = (& —2i) T} UV (&)

=0 j=1
+ RR (67 Ama f)
and the remainder satisfies the estimation

17
(n+1)!

-1

(& — )" (i — fi)nH) , if f™ € Lo[a,b].

3

|RR (§, Am, f)] <

I
o

7

The proof follows from|(7.11) where!") = z; anda? = z,,;.

Remark 7.8. If in (7.12) we choose the midpoi2; = x;, + z; we obtain the generalised
midpoint quadrature formula

(7.13)

/f Dt = S zn: Dl (h)j{1—(—1)j}f@—1)(%)+RM(Am,f)

1
=0 j=1
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and Ry (A, f) is bounded by
|Bar (A, )] < Zh”“, if ) € Ly [a,b].

Corollary 7.9. Consider a set of points

m—1)

& € {5%2%“,% +§x“1} (i=0,...

and letf andA,, be defined as in Theordm J7.1. Then we have the equality

(7.14) / f(t)dt = mZZ [( ) J”m)—f@—”(w}

=0 j=1

- {(& 5““’”’“) (6- “5:”’“) }f(j‘” €

and the remaindeik, (4,,, f) satisfies the bound

Hf'(n m—1 n+1 5xi+«7;i+1 n+1
A, f)] < i
ma s goE 2 (G) (e

=0
' ' n+1
+ <%5x+1 _fi) } if f) € Loo [a,b].

Ry (A, f)

Remark 7.10. If in () we choose the midpoigt = % we obtain a generalised Simp-
son formula:

1 n

/f dtmz

]' [<%) {(_1)j FUTD (@) = U7 (iml)}
_ (%)J {1- (-1} o0 (W)

Ry (Am, f)

and R, (A, f) is bounded by

() mol o\ ntl
R (B ) < W0y (14 ) )X (§) et

=0
The following is a consequence of Theorgm 7.6.

Corollary 7.11. Consider the interval

(1) o Tit1 + @

xlgal = 9 SOC,L@)SI'HJ (Z:()77m_1>7
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and letf andA,, be defined as in TheorgmJ7.1.
The following equality is obtained:

m— n

Z j! {(1 %(-i))jf“‘”(xi)

1
=0 j=1

_ Titr1 + T; _ 04(1) J _ Tiy1 + Z; _ CE@) J f(j_l) Ti+1 + T4
2 ‘ 2 ‘ 2

i
— (zis1 =) gm0 (azim} + Ry (a0l A, f).

(7.15) /f t)dt =

where the remainder satisfies the bound

‘RB <O%(1)7 051(2)7 Ama f) ’

n m—1 n+1
N T {( W _ ,>”+1+ (xi+1+$i _au)) ’
~ (n+1)! 2 i
=0
. . n+l n+1
N <a§2> _ %) (s — o) }

The following remark applies to Corollafy 7]11.
Remark 7.12. If in (7.15) we choose

Ozgl): T; + Tig1 anda(g) T; + O%iq1

7 4 [ - 4 )

we have the formula:

i cap) g (%)] Ry (B f).

The remainderRs (A,,, f) satisfies the bound

(n) mol g o\
IRp (A, f)| < % x4y (%) it f e Ly [a,b].

(TL =0

The following theorem incorporates the Newton-Cotes formula.

Theorem 7.13.Consider the interval

<ol <gV <ol <P <al <wyy (i=0,...,m-1),
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and letA,, and f be defined as in Theordm J7.1. This consideration gives us the equality

(7.17) /abf(t)dt = ZZ [(wl_a >f(J D (2:)

(6~ oY = (67 -} } 570 ()]
(a0, 0l & e A, 1)

The remainder satisfies the bound
’R( (2) 5(1) 5(2) Am f)’
Hf(")Hoo m—1 W n+1 W 1yt
< (e —m) (g -al)
n+1 n+1 n+1
+(a® =) 4 (6P =a) T+ (ol - )

n+1
+ <£EH_1 —al® >) } if f € Lo [a, b].

The following is a consequence of Theorgm 7.13.

Txi+Tip1

Corollary 7.14. Let f and A,, be defined as above and make the cho'mz%é =~

o) = st 00 — eitTren (1) _ 2nitran gngel® — 282t then we have the equality:

_ (%)j {4j _ (_5)j} F0-1) <“”Z +§xi+1)

where the remainder satisfies the bound

2 Hf(n) Hoo n+1 n+1 n+1 = & nH e £(n)
IRy (A, f)] < CES (3m a5 Y o ;i f™ e Lola,b].
' i=0

Whenmn = 1, we obtain from[(7.7]8) the three-eighths rule of Newton-Cotes.
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Remark 7.15. For n = 2 from (7.18), we obtained a perturbed three-eighths Newton-Cotes
formula:

/abf(t) dt = mi ((%) (f (z:) + f (2is1)) + (%)2 (f’ (z;) —2f’ ($i+1)>

7=

3]1, 21’1 + Tit+1 T; + 21’,‘4_1
(%) ((572) + o (52))
3hz 2 p(2@itxiv1\ g (®i+2Ti41
_< > {f( 3 ) f( 3 ) +RN<Am7f),
8 2
where the remainder satisfies the bound

[
192

m—1
> R}, if f" € Lo [a,b].

1=0

[Ry (A, f)] <

8. CONCLUSION

This paper has extended many previous Ostrowski type results. Integral inequalities for
n—times differentiable mappings have been obtained by the use of a generalised Peano kernel.
Some particular integral inequalities, including the trapezoid, midpoint, Simpson and Newton-
Cotes rules have been obtained and further developed into composite quadrature rules.

Further work in this area may be undertaken by considering the Chebychev and Lupas in-
equalities. Similarly, the following alternate Griss type results may be used to examine all the
interior point rules of this paper.

Leto (h(x)) = h(z) — M (g) where

M(h) = — /bh(t)dt.

:b—a

Then from [(5.2)
T (h,g) = M (hg) — M (h) M (g) .
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