journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au issn: 1443-5756

Volume 10 (2009), Issue 2, Article 44, 4 pp.

© 2009 Victoria University. All rights reserved.

A NOTE ON NEWTON'S INEQUALITY

SLAVKO SIMIC

MATHEMATICAL INSTITUTE SANU, KNEZA MIHAILA 36 11000 BELGRADE, SERBIA.

ssimic@turing.mi.sanu.ac.rs

Received 25 March, 2009; accepted 12 April, 2009 Communicated by S.S. Dragomir

ABSTRACT. We present a generalization of Newton's inequality, i.e., an inequality of mixed form connecting symmetric functions and weighted means. Two open problems are also stated.

Key words and phrases: Symmetric functions, Weighted means.

2000 Mathematics Subject Classification. 26E60.

1. Introduction

A well-known theorem of Newton [1] states the following:

Theorem 1.1. *If all the zeros of a polynomial*

$$(1.1) P_n(x) = e_0 x^n + e_1 x^{n-1} + \dots + e_k x^{n-k} + \dots + e_n, \quad e_0 = 1,$$

are real, then its coefficients satisfy

(1.2)
$$e_{k-1}e_{k+1} \le A_k^{(n)}e_k^2, \quad k = 1, 2, \dots, n-1;$$

where $A_k^{(n)} := \frac{k}{k+1} \frac{n-k}{n+1-k}$.

For a sequence $\mathbf{a} = \{a_i\}_{i=1}^n$ of real numbers, by putting

(1.3)
$$P_n(x) = \prod_{i=1}^n (x + a_i) = \sum_{k=0}^n e_k x^{n-k},$$

we see that the coefficient $e_k = e_k(\mathbf{a})$ represents the kth elementary symmetric function of \mathbf{a} , i.e. the sum of all the products, k at a time, of different $a_i \in \mathbf{a}$.

There are several generalizations of Newton's inequality [2], [3]. In this article we give another one. For this purpose define the sequences $\mathbf{a}_i' := \mathbf{a}/\{a_i\}, \quad i=1,2,\ldots,n$, and by $e_k(\mathbf{a}_i')$ denote the k-th elementary symmetric function over \mathbf{a}_i' . We have:

2 SLAVKO SIMIC

Theorem 1.2. Let $\mathbf{c} = \{c_i\}_{i=1}^n$ be a weight sequence of non-negative numbers satisfying

(1.4)
$$\sum_{i=1}^{n} c_i = 1,$$

and, for an arbitrary sequence $\mathbf{a} = \{a_i\}_{i=1}^n$ of real numbers, define

(1.5)
$$E_k^{(c)} := \sum_{i=1}^n c_i e_k(\mathbf{a}_i'), \quad E_0^{(c)} = 1,$$

or equivalently,

(1.6)
$$E_k^{(c)} = e_k - e_{k-1}f_1 + e_{k-2}f_2^2 - \dots + (-1)^r e_{k-r}f_r^r + \dots + (-1)^k f_k^k,$$

where

$$(1.7) f_s := \left(\sum_{i=1}^n c_i a_i^s\right)^{\frac{1}{s}}.$$

Then

(1.8)
$$E_{k-1}^{(c)} E_{k+1}^{(c)} \le A_k^{(n-1)} \left(E_k^{(c)} \right)^2, \qquad k = 1, 2, \dots, n-1.$$

Proof. We shall give an easy proof supposing that the sequence c consists of arbitrary *positive* rational numbers. Since a and c are independent of each other, the truthfulness of the above theorem follows by the continuity principle.

Therefore, let $\mathbf{p} = \{p_k\}_{k=1}^n$ be an arbitrary sequence of positive integers and put

(1.9)
$$c_i = \frac{p_i}{\sum_{1}^{n} p_k}, \quad i = 1, 2, \dots, n; \ \mathbf{p} \in \mathbb{N}.$$

Now, for a given real sequence a, consider the polynomial Q(x) defined by

(1.10)
$$Q(x) := \prod_{i=1}^{n} (x + a_i)^{p_i}.$$

Since all its zeros are real, by the well-known Gauss theorem, the zeros of Q'(x),

(1.11)
$$Q'(x) = Q(x) \sum_{i=1}^{n} \frac{p_i}{x + a_i},$$

are also real.

In particular, the same is valid for the polynomial R(x) defined by

(1.12)
$$R(x) := \prod_{i=1}^{n} (x + a_i) \sum_{i=1}^{n} \frac{c_i}{(x + a_i)}.$$

Since

(1.13)
$$R(x) = x^{n-1} + E_1^{(c)} x^{n-2} + \dots + E_k^{(c)} x^{n-1-k} + \dots + E_{n-1}^{(c)},$$

the result follows by simple application of Theorem 1.1.

Remark 1. Since $\sum_{i=1}^{n} e_k(\mathbf{a}'_i) = (n-k)e_k(\mathbf{a})$, putting $c_i = 1/n, \ i = 1, 2, \dots, n$ in (1.5) and (1.8), we obtain the assertion from Theorem 1.1. Hence our result represents a generalization of Newton's theorem.

Also, denoting by $f_s^{(c)}(\mathbf{a}) = f_s := \left(\sum_{i=1}^n c_i a_i^s\right)^{1/s}, \ s > 0$, the classical weighted mean (with weights c) of order s, and using the identity

$$(1.14) e_k(\mathbf{a}_i') = e_k(\mathbf{a}) - a_i e_{k-1}(\mathbf{a}_i'),$$

an equivalent form of $E_k^{(c)}$ arises, i.e.,

$$(1.15) E_k^{(c)} = e_k - e_{k-1}f_1 + e_{k-2}f_2^2 - \dots + (-1)^r e_{k-r}f_r^r + \dots + (-1)^k f_k^k.$$

Putting this in (1.8), we obtain a mixed inequality connecting elementary symmetric functions with weighted means of integer order.

Problem 1.1. An interesting fact is that non-negativity of c is not a necessary condition for (1.8) to hold. We shall illustrate this point by an example. For k = 1, n = 3, we have

$$(E_1^{(c)})^2 - 4E_0^{(c)}E_2^{(c)}$$

$$= (c_1(a_2 + a_3) + c_2(a_1 + a_3) + c_3(a_1 + a_2))^2 - 4(c_1a_2a_3 + c_2a_1a_3 + c_3a_1a_2)$$

$$= (1 - c_2)^2(a_1 - a_2)^2 + 2(c_1 - c_2c_3)(a_1 - a_2)(a_3 - a_1) + (1 - c_3)^2(a_3 - a_1)^2,$$

and this quadratic form is positive semi-definite whenever $c_1c_2c_3 \geq 0$.

Hence, in this case the inequality (1.8) is valid for all real sequences a with c satisfying

$$(1.16) c_1 + c_2 + c_3 = 1, c_1 c_2 c_3 \ge 0.$$

Therefore there remains the seemingly difficult problem of finding true bounds for the sequence c satisfying (1.4), such that the inequality (1.8) holds for an arbitrary real sequence a.

Problem 1.2. There is an interesting application of Theorem 1.2 to the well known Turan's problem. Under what conditions does the sequence of polynomials $\{Q_n(x)\}$ satisfy *Turan's inequality*

$$(1.17) Q_{n-1}(x)Q_{n+1}(x) \le (Q_n(x))^2,$$

for each $x \in [a, b]$ and $n \in [n_1, n_2]$?

This problem is solved for many classes of polynomials [4]. We shall consider here the following question [5].

An arbitrary sequence $\{d_i\}$, $i=1,2,\ldots$ of real numbers generates a sequence of polynomials $\{P_n(x)\}$, $n=0,1,2,\ldots$ defined by

$$(1.18) P_n(x) := x^n + d_1 x^{n-1} + d_2 x^{n-2} + \dots + d_{n-1} x + d_n, P_0(x) := 1.$$

Denote also by A_n the set of zeros of $P_n(x)$.

Now, if for some m > 1 the set A_m consists of real numbers only, then from Theorem 1.2, it follows that

$$(1.19) P_{n-1}(a)P_{n+1}(a) \le P_n^2(a),$$

for each $a \in A_m$ and $n \in [1, m-1]$.

Is it possible to establish some simple conditions such that the Turan inequality

$$(1.20) P_{n-1}(x)P_{n+1}(x) \le P_n^2(x),$$

holds for each $x \in [\min a, \max a]_{a \in A_m}$ and $n \in [1, m - 1]$.

4 SLAVKO SIMIC

REFERENCES

- [1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, *Inequalities*, Camb. Univ. Press, Cambridge, 1978.
- [2] J.N. WHITELEY, A generalization of a theorem of Newton, *Proc. Amer. Math. Soc.*, **13** (1962), 144–151.
- [3] K.V. MENON, Inequalities for symmetric functions, *Duke Math. J.*, **35** (1968), 37–45.
- [4] S. SIMIC, Turan's inequality for Appell polynomials, *J. Ineq. Appl.*, **1** (2006), 1–7.
- [5] S. SIMIC, A log-concave sequence, *Siam Problems and Solutions*, [ONLINE: http://www.siam.org].