# A NOTE ON NEWTON'S INEQUALITY 

SLAVKO SIMIC<br>Mathematical Institute SANU, Kneza Mihaila 36<br>11000 Belgrade, Serbia.<br>ssimic@turing.mi.sanu.ac.rs

Received 25 March, 2009; accepted 12 April, 2009
Communicated by S.S. Dragomir


#### Abstract

We present a generalization of Newton's inequality, i.e., an inequality of mixed form connecting symmetric functions and weighted means. Two open problems are also stated.


Key words and phrases: Symmetric functions, Weighted means.
2000 Mathematics Subject Classification. 26E60.

## 1. Introduction

A well-known theorem of Newton [1] states the following:
Theorem 1.1. If all the zeros of a polynomial

$$
\begin{equation*}
P_{n}(x)=e_{0} x^{n}+e_{1} x^{n-1}+\cdots+e_{k} x^{n-k}+\cdots+e_{n}, \quad e_{0}=1 \tag{1.1}
\end{equation*}
$$

are real, then its coefficients satisfy

$$
\begin{equation*}
e_{k-1} e_{k+1} \leq A_{k}^{(n)} e_{k}^{2}, \quad k=1,2, \ldots, n-1 ; \tag{1.2}
\end{equation*}
$$

where $A_{k}^{(n)}:=\frac{k}{k+1} \frac{n-k}{n+1-k}$.
For a sequence $\mathbf{a}=\left\{a_{i}\right\}_{i=1}^{n}$ of real numbers, by putting

$$
\begin{equation*}
P_{n}(x)=\prod_{i=1}^{n}\left(x+a_{i}\right)=\sum_{k=0}^{n} e_{k} x^{n-k} \tag{1.3}
\end{equation*}
$$

we see that the coefficient $e_{k}=e_{k}(\mathbf{a})$ represents the $k$ th elementary symmetric function of a, i.e. the sum of all the products, $k$ at a time, of different $a_{i} \in \mathbf{a}$.

There are several generalizations of Newton's inequality [2], [3]. In this article we give another one. For this purpose define the sequences $\mathbf{a}_{i}^{\prime}:=\mathbf{a} /\left\{a_{i}\right\}, \quad i=1,2, \ldots, n$, and by $e_{k}\left(\mathbf{a}_{i}^{\prime}\right)$ denote the $k$-th elementary symmetric function over $\mathbf{a}_{i}^{\prime}$. We have:

Theorem 1.2. Let $\mathbf{c}=\left\{c_{i}\right\}_{i=1}^{n}$ be a weight sequence of non-negative numbers satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} c_{i}=1 \tag{1.4}
\end{equation*}
$$

and, for an arbitrary sequence $\mathbf{a}=\left\{a_{i}\right\}_{i=1}^{n}$ of real numbers, define

$$
\begin{equation*}
E_{k}^{(c)}:=\sum_{i=1}^{n} c_{i} e_{k}\left(\mathbf{a}_{i}^{\prime}\right), \quad E_{0}^{(c)}=1, \tag{1.5}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
E_{k}^{(c)}=e_{k}-e_{k-1} f_{1}+e_{k-2} f_{2}^{2}-\cdots+(-1)^{r} e_{k-r} f_{r}^{r}+\cdots+(-1)^{k} f_{k}^{k} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{s}:=\left(\sum_{i=1}^{n} c_{i} a_{i}^{s}\right)^{\frac{1}{s}} . \tag{1.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
E_{k-1}^{(c)} E_{k+1}^{(c)} \leq A_{k}^{(n-1)}\left(E_{k}^{(c)}\right)^{2}, \quad k=1,2, \ldots, n-1 \tag{1.8}
\end{equation*}
$$

Proof. We shall give an easy proof supposing that the sequence consists of arbitrary positive rational numbers. Since a and $\mathbf{c}$ are independent of each other, the truthfulness of the above theorem follows by the continuity principle.

Therefore, let $\mathbf{p}=\left\{p_{k}\right\}_{k=1}^{n}$ be an arbitrary sequence of positive integers and put

$$
\begin{equation*}
c_{i}=\frac{p_{i}}{\sum_{1}^{n} p_{k}}, \quad i=1,2, \ldots, n ; \mathbf{p} \in \mathbb{N} \tag{1.9}
\end{equation*}
$$

Now, for a given real sequence a, consider the polynomial $Q(x)$ defined by

$$
\begin{equation*}
Q(x):=\prod_{i=1}^{n}\left(x+a_{i}\right)^{p_{i}} . \tag{1.10}
\end{equation*}
$$

Since all its zeros are real, by the well-known Gauss theorem, the zeros of $Q^{\prime}(x)$,

$$
\begin{equation*}
Q^{\prime}(x)=Q(x) \sum_{i=1}^{n} \frac{p_{i}}{x+a_{i}}, \tag{1.11}
\end{equation*}
$$

are also real.
In particular, the same is valid for the polynomial $R(x)$ defined by

$$
\begin{equation*}
R(x):=\prod_{i=1}^{n}\left(x+a_{i}\right) \sum_{i=1}^{n} \frac{c_{i}}{\left(x+a_{i}\right)} \tag{1.12}
\end{equation*}
$$

Since

$$
\begin{equation*}
R(x)=x^{n-1}+E_{1}^{(c)} x^{n-2}+\cdots+E_{k}^{(c)} x^{n-1-k}+\cdots+E_{n-1}^{(c)} \tag{1.13}
\end{equation*}
$$

the result follows by simple application of Theorem 1.1 .
Remark 1. Since $\sum_{i=1}^{n} e_{k}\left(\mathbf{a}_{i}^{\prime}\right)=(n-k) e_{k}(\mathbf{a})$, putting $c_{i}=1 / n, i=1,2, \ldots, n$ in (1.5) and (1.8), we obtain the assertion from Theorem 1.1. Hence our result represents a generalization of Newton's theorem.

Also, denoting by $f_{s}^{(c)}(\mathbf{a})=f_{s}:=\left(\sum_{i=1}^{n} c_{i} a_{i}^{s}\right)^{1 / s}, s>0$, the classical weighted mean (with weights $c$ ) of order $s$, and using the identity

$$
\begin{equation*}
e_{k}\left(\mathbf{a}_{i}^{\prime}\right)=e_{k}(\mathbf{a})-a_{i} e_{k-1}\left(\mathbf{a}_{i}^{\prime}\right), \tag{1.14}
\end{equation*}
$$

an equivalent form of $E_{k}^{(c)}$ arises, i.e.,

$$
\begin{equation*}
E_{k}^{(c)}=e_{k}-e_{k-1} f_{1}+e_{k-2} f_{2}^{2}-\cdots+(-1)^{r} e_{k-r} f_{r}^{r}+\cdots+(-1)^{k} f_{k}^{k} \tag{1.15}
\end{equation*}
$$

Putting this in (1.8), we obtain a mixed inequality connecting elementary symmetric functions with weighted means of integer order.

Problem 1.1. An interesting fact is that non-negativity of $\mathbf{c}$ is not a necessary condition for (1.8) to hold. We shall illustrate this point by an example. For $k=1, n=3$, we have

$$
\begin{aligned}
& \left(E_{1}^{(c)}\right)^{2}-4 E_{0}^{(c)} E_{2}^{(c)} \\
& =\left(c_{1}\left(a_{2}+a_{3}\right)+c_{2}\left(a_{1}+a_{3}\right)+c_{3}\left(a_{1}+a_{2}\right)\right)^{2}-4\left(c_{1} a_{2} a_{3}+c_{2} a_{1} a_{3}+c_{3} a_{1} a_{2}\right) \\
& =\left(1-c_{2}\right)^{2}\left(a_{1}-a_{2}\right)^{2}+2\left(c_{1}-c_{2} c_{3}\right)\left(a_{1}-a_{2}\right)\left(a_{3}-a_{1}\right)+\left(1-c_{3}\right)^{2}\left(a_{3}-a_{1}\right)^{2},
\end{aligned}
$$

and this quadratic form is positive semi-definite whenever $c_{1} c_{2} c_{3} \geq 0$.
Hence, in this case the inequality 1.8 is valid for all real sequences a with $\mathbf{c}$ satisfying

$$
\begin{equation*}
c_{1}+c_{2}+c_{3}=1, \quad c_{1} c_{2} c_{3} \geq 0 . \tag{1.16}
\end{equation*}
$$

Therefore there remains the seemingly difficult problem of finding true bounds for the sequence c satisfying (1.4), such that the inequality (1.8) holds for an arbitrary real sequence a.

Problem 1.2. There is an interesting application of Theorem 1.2 to the well known Turan's problem. Under what conditions does the sequence of polynomials $\left\{Q_{n}(x)\right\}$ satisfy Turan's inequality

$$
\begin{equation*}
Q_{n-1}(x) Q_{n+1}(x) \leq\left(Q_{n}(x)\right)^{2}, \tag{1.17}
\end{equation*}
$$

for each $x \in[a, b]$ and $n \in\left[n_{1}, n_{2}\right]$ ?
This problem is solved for many classes of polynomials [4]. We shall consider here the following question [5].

An arbitrary sequence $\left\{d_{i}\right\}, i=1,2, \ldots$ of real numbers generates a sequence of polynomials $\left\{P_{n}(x)\right\}, n=0,1,2, \ldots$ defined by

$$
\begin{equation*}
P_{n}(x):=x^{n}+d_{1} x^{n-1}+d_{2} x^{n-2}+\cdots+d_{n-1} x+d_{n}, \quad P_{0}(x):=1 . \tag{1.18}
\end{equation*}
$$

Denote also by $A_{n}$ the set of zeros of $P_{n}(x)$.
Now, if for some $m>1$ the set $A_{m}$ consists of real numbers only, then from Theorem 1.2, it follows that

$$
\begin{equation*}
P_{n-1}(a) P_{n+1}(a) \leq P_{n}^{2}(a), \tag{1.19}
\end{equation*}
$$

for each $a \in A_{m}$ and $n \in[1, m-1]$.
Is it possible to establish some simple conditions such that the Turan inequality

$$
\begin{equation*}
P_{n-1}(x) P_{n+1}(x) \leq P_{n}^{2}(x), \tag{1.20}
\end{equation*}
$$

holds for each $x \in[\min a, \max a]_{a \in A_{m}}$ and $n \in[1, m-1]$.

## References

[1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Camb. Univ. Press, Cambridge, 1978.
[2] J.N. WHITELEY, A generalization of a theorem of Newton, Proc. Amer. Math. Soc., 13 (1962), 144-151.
[3] K.V. MENON, Inequalities for symmetric functions, Duke Math. J., 35 (1968), 37-45.
[4] S. SIMIC, Turan's inequality for Appell polynomials, J. Ineq. Appl., 1 (2006), 1-7.
[5] S. SIMIC, A log-concave sequence, Siam Problems and Solutions, [ONLINE: http//:www. siam.orgl.

