## A NOTE ON NEWTON'S INEQUALITY

## SLAVKO SIMIC

Mathematical Institute SANU, Kneza Mihaila 36 11000 Belgrade, Serbia.
EMail: ssimic@turing.mi.sanu.ac.rs

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.
Key words:
Abstract:

25 March, 2009
12 April, 2009
S.S. Dragomir

26E60.
Symmetric functions, Weighted means.
We present a generalization of Newton's inequality, i.e., an inequality of mixed form connecting symmetric functions and weighted means. Two open problems are also stated.

Newton's Inequality
Slavko Simic
vol. 10, iss. 2, art. 44, 2009

Title Page
Contents


Full Screen

Close
journal of inequalities in pure and applied mathematics

## Contents

1 Introduction 3

Slavko Simic
vol. 10, iss. 2, art. 44, 2009

Title Page
Contents

| 44 | $>$ |
| :---: | :---: |
| $\mathbf{4}$ | $>$ |

Page 2 of 8
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

## 1. Introduction

A well-known theorem of Newton [1] states the following:
Theorem 1.1. If all the zeros of a polynomial

$$
\begin{equation*}
P_{n}(x)=e_{0} x^{n}+e_{1} x^{n-1}+\cdots+e_{k} x^{n-k}+\cdots+e_{n}, \quad e_{0}=1, \tag{1.1}
\end{equation*}
$$

are real, then its coefficients satisfy

$$
\begin{equation*}
e_{k-1} e_{k+1} \leq A_{k}^{(n)} e_{k}^{2}, \quad k=1,2, \ldots, n-1 \tag{1.2}
\end{equation*}
$$

## Newton's Inequality

Slavko Simic
vol. 10, iss. 2, art. 44, 2009

Title Page
Contents

$$
\begin{equation*}
P_{n}(x)=\prod_{i=1}^{n}\left(x+a_{i}\right)=\sum_{k=0}^{n} e_{k} x^{n-k}, \tag{1.3}
\end{equation*}
$$

we see that the coefficient $e_{k}=e_{k}(\mathbf{a})$ represents the $k$ th elementary symmetric func-
tion of a, i.e. the sum of all the products, $k$ at a time, of different $a_{i} \in \mathbf{a}$.
There are several generalizations of Newton's inequality $[2],[3]$. In this article
we give another one. For this purpose define the sequences $\mathbf{a}_{i}^{\prime}:=\mathbf{a} /\left\{a_{i}\right\}, i=$
$1,2, \ldots, n$, and by $e_{k}\left(\mathbf{a}_{i}^{\prime}\right)$ denote the $k$-th elementary symmetric function over $\mathbf{a}_{i}^{\prime}$.
we see that the coefficient $e_{k}=e_{k}(\mathbf{a})$ represents the $k$ th elementary symmetric func-
tion of a, i.e. the sum of all the products, $k$ at a time, of different $a_{i} \in \mathbf{a}$.
There are several generalizations of Newton's inequality [2], [3]. In this article
we give another one. For this purpose define the sequences $\mathbf{a}_{i}^{\prime}:=\mathbf{a} /\left\{a_{i}\right\}, i=$
$1,2, \ldots, n$, and by $e_{k}\left(\mathbf{a}_{i}^{\prime}\right)$ denote the $k$-th elementary symmetric function over $\mathbf{a}_{i}^{\prime}$.
we see that the coefficient $e_{k}=e_{k}(\mathbf{a})$ represents the $k$ th elementary symmetric func-
tion of a, i.e. the sum of all the products, $k$ at a time, of different $a_{i} \in \mathbf{a}$.
There are several generalizations of Newton's inequality [2], [3]. In this article
we give another one. For this purpose define the sequences $\mathbf{a}_{i}^{\prime}:=\mathbf{a} /\left\{a_{i}\right\}, i=$
$1,2, \ldots, n$, and by $e_{k}\left(\mathbf{a}_{i}^{\prime}\right)$ denote the $k$-th elementary symmetric function over $\mathbf{a}_{i}^{\prime}$.
we see that the coefficient $e_{k}=e_{k}(\mathbf{a})$ represents the $k$ th elementary symmetric func-
tion of a, i.e. the sum of all the products, $k$ at a time, of different $a_{i} \in \mathbf{a}$.
There are several generalizations of Newton's inequality [2], [3]. In this article
we give another one. For this purpose define the sequences $\mathbf{a}_{i}^{\prime}:=\mathbf{a} /\left\{a_{i}\right\}, i=$
$1,2, \ldots, n$, and by $e_{k}\left(\mathbf{a}_{i}^{\prime}\right)$ denote the $k$-th elementary symmetric function over $\mathbf{a}_{i}^{\prime}$.
we see that the coefficient $e_{k}=e_{k}(\mathbf{a})$ represents the $k$ th elementary symmetric func-
tion of a, i.e. the sum of all the products, $k$ at a time, of different $a_{i} \in \mathbf{a}$.
There are several generalizations of Newton's inequality $[2]$, $[3]$. In this article
we give another one. For this purpose define the sequences $\mathbf{a}_{i}^{\prime}:=\mathbf{a} /\left\{a_{i}\right\}, i=$
$1,2, \ldots, n$, and by $e_{k}\left(\mathbf{a}_{i}^{\prime}\right)$ denote the $k$-th elementary symmetric function over $\mathbf{a}_{i}^{\prime}$. We have:

Theorem 1.2. Let $\mathbf{c}=\left\{c_{i}\right\}_{i=1}^{n}$ be a weight sequence of non-negative numbers satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} c_{i}=1 \tag{1.4}
\end{equation*}
$$

where $A_{k}^{(n)}:=\frac{k}{k+1} \frac{n-k}{n+1-k}$.
For a sequence $\mathbf{a}=\left\{a_{i}\right\}_{i=1}^{n}$ of real numbers, by putting

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and, for an arbitrary sequence $\mathbf{a}=\left\{a_{i}\right\}_{i=1}^{n}$ of real numbers, define

$$
\begin{equation*}
E_{k}^{(c)}:=\sum_{i=1}^{n} c_{i} e_{k}\left(\mathbf{a}_{i}^{\prime}\right), \quad E_{0}^{(c)}=1, \tag{1.5}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
E_{k}^{(c)}=e_{k}-e_{k-1} f_{1}+e_{k-2} f_{2}^{2}-\cdots+(-1)^{r} e_{k-r} f_{r}^{r}+\cdots+(-1)^{k} f_{k}^{k}, \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{s}:=\left(\sum_{i=1}^{n} c_{i} a_{i}^{s}\right)^{\frac{1}{s}} . \tag{1.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
E_{k-1}^{(c)} E_{k+1}^{(c)} \leq A_{k}^{(n-1)}\left(E_{k}^{(c)}\right)^{2}, \quad k=1,2, \ldots, n-1 \tag{1.8}
\end{equation*}
$$

Proof. We shall give an easy proof supposing that the sequence consists of arbitrary positive rational numbers. Since a and care independent of each other, the truthfulness of the above theorem follows by the continuity principle.

Therefore, let $\mathbf{p}=\left\{p_{k}\right\}_{k=1}^{n}$ be an arbitrary sequence of positive integers and put

$$
\begin{equation*}
c_{i}=\frac{p_{i}}{\sum_{1}^{n} p_{k}}, \quad i=1,2, \ldots, n ; \quad \mathbf{p} \in \mathbb{N} . \tag{1.9}
\end{equation*}
$$

Now, for a given real sequence a, consider the polynomial $Q(x)$ defined by

$$
\begin{equation*}
Q(x):=\prod_{i=1}^{n}\left(x+a_{i}\right)^{p_{i}} . \tag{1.10}
\end{equation*}
$$

## Newton's Inequality

Slavko Simic
vol. 10, iss. 2, art. 44, 2009

Title Page
Contents


Page 4 of 8
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since all its zeros are real, by the well-known Gauss theorem, the zeros of $Q^{\prime}(x)$,

$$
\begin{equation*}
Q^{\prime}(x)=Q(x) \sum_{i=1}^{n} \frac{p_{i}}{x+a_{i}} \tag{1.11}
\end{equation*}
$$

are also real.
In particular, the same is valid for the polynomial $R(x)$ defined by

$$
\begin{equation*}
R(x):=\prod_{i=1}^{n}\left(x+a_{i}\right) \sum_{i=1}^{n} \frac{c_{i}}{\left(x+a_{i}\right)} \tag{1.12}
\end{equation*}
$$

Newton's Inequality
Slavko Simic
vol. 10, iss. 2, art. 44, 2009

Title Page
Contents
the result follows by simple application of Theorem 1.1.
Remark 1. Since $\sum_{i=1}^{n} e_{k}\left(\mathbf{a}_{i}^{\prime}\right)=(n-k) e_{k}(\mathbf{a})$, putting $c_{i}=1 / n, i=1,2, \ldots, n$ in (1.5) and (1.8), we obtain the assertion from Theorem 1.1. Hence our result represents a generalization of Newton's theorem.

Also, denoting by $f_{s}^{(c)}(\mathbf{a})=f_{s}:=\left(\sum_{i=1}^{n} c_{i} a_{i}^{s}\right)^{1 / s}, s>0$, the classical weighted mean (with weights $c$ ) of order $s$, and using the identity

$$
\begin{equation*}
e_{k}\left(\mathbf{a}_{i}^{\prime}\right)=e_{k}(\mathbf{a})-a_{i} e_{k-1}\left(\mathbf{a}_{i}^{\prime}\right) \tag{1.14}
\end{equation*}
$$

an equivalent form of $E_{k}^{(c)}$ arises, i.e.,

$$
\begin{equation*}
E_{k}^{(c)}=e_{k}-e_{k-1} f_{1}+e_{k-2} f_{2}^{2}-\cdots+(-1)^{r} e_{k-r} f_{r}^{r}+\cdots+(-1)^{k} f_{k}^{k} \tag{1.15}
\end{equation*}
$$

Putting this in (1.8), we obtain a mixed inequality connecting elementary symmetric functions with weighted means of integer order.
Since

$$
\begin{equation*}
R(x)=x^{n-1}+E_{1}^{(c)} x^{n-2}+\cdots+E_{k}^{(c)} x^{n-1-k}+\cdots+E_{n-1}^{(c)} \tag{1.13}
\end{equation*}
$$



Page 5 of 8
Go Back
Full Screen

## Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Problem 1.1. An interesting fact is that non-negativity of $\mathbf{c}$ is not a necessary condition for (1.8) to hold. We shall illustrate this point by an example. For $k=1, n=3$, we have

$$
\begin{aligned}
& \left(E_{1}^{(c)}\right)^{2}-4 E_{0}^{(c)} E_{2}^{(c)} \\
& =\left(c_{1}\left(a_{2}+a_{3}\right)+c_{2}\left(a_{1}+a_{3}\right)+c_{3}\left(a_{1}+a_{2}\right)\right)^{2}-4\left(c_{1} a_{2} a_{3}+c_{2} a_{1} a_{3}+c_{3} a_{1} a_{2}\right) \\
& =\left(1-c_{2}\right)^{2}\left(a_{1}-a_{2}\right)^{2}+2\left(c_{1}-c_{2} c_{3}\right)\left(a_{1}-a_{2}\right)\left(a_{3}-a_{1}\right)+\left(1-c_{3}\right)^{2}\left(a_{3}-a_{1}\right)^{2},
\end{aligned}
$$

and this quadratic form is positive semi-definite whenever $c_{1} c_{2} c_{3} \geq 0$.
Hence, in this case the inequality (1.8) is valid for all real sequences a with $\mathbf{c}$ satisfying

$$
\begin{equation*}
c_{1}+c_{2}+c_{3}=1, \quad c_{1} c_{2} c_{3} \geq 0 \tag{1.16}
\end{equation*}
$$

Therefore there remains the seemingly difficult problem of finding true bounds for the sequence $\mathbf{c}$ satisfying (1.4), such that the inequality (1.8) holds for an arbitrary real sequence a.
Problem 1.2. There is an interesting application of Theorem 1.2 to the well known Turan's problem. Under what conditions does the sequence of polynomials $\left\{Q_{n}(x)\right\}$ satisfy Turan's inequality

$$
\begin{equation*}
Q_{n-1}(x) Q_{n+1}(x) \leq\left(Q_{n}(x)\right)^{2} \tag{1.17}
\end{equation*}
$$

Newton's Inequality
Slavko Simic
vol. 10, iss. 2, art. 44, 2009

Title Page
Contents


Page 6 of 8
Go Back
Full Screen

## Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Denote also by $A_{n}$ the set of zeros of $P_{n}(x)$.
Now, if for some $m>1$ the set $A_{m}$ consists of real numbers only, then from Theorem 1.2, it follows that

$$
\begin{equation*}
P_{n-1}(a) P_{n+1}(a) \leq P_{n}^{2}(a) \tag{1.19}
\end{equation*}
$$

for each $a \in A_{m}$ and $n \in[1, m-1]$.

Is it possible to establish some simple conditions such that the Turan inequality

$$
\begin{equation*}
P_{n-1}(x) P_{n+1}(x) \leq P_{n}^{2}(x) \tag{1.20}
\end{equation*}
$$

Newton's Inequality
Slavko Simic
vol. 10, iss. 2, art. 44, 2009
holds for each $x \in[\min a, \max a]_{a \in A_{m}}$ and $n \in[1, m-1]$.
$\Delta$
m
A

Title Page
Contents


Page 7 of 8
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

## References

[1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Camb. Univ. Press, Cambridge, 1978.
[2] J.N. WHITELEY, A generalization of a theorem of Newton, Proc. Amer. Math. Soc., 13 (1962), 144-151.
[3] K.V. MENON, Inequalities for symmetric functions, Duke Math. J., 35 (1968), 37-45.
[4] S. SIMIC, Turan's inequality for Appell polynomials, J. Ineq. Appl., 1 (2006), 1-7.
[5] S. SIMIC, A log-concave sequence, Siam Problems and Solutions, [ONLINE: http//:www.siam.org].

Newton's Inequality
Slavko Simic
vol. 10, iss. 2, art. 44, 2009

Title Page
Contents


Page 8 of 8
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

