

A NOTE ON NEWTON'S INEQUALITY

SLAVKO SIMIC

Mathematical Institute SANU, Kneza Mihaila 36 11000 Belgrade, Serbia. EMail: ssimic@turing.mi.sanu.ac.rs

Received:	25 March, 2009	
Accepted:	12 April, 2009	
Communicated by:	S.S. Dragomir	
2000 AMS Sub. Class.:	26E60.	
Key words:	Symmetric functions, Weighted means.	
Abstract:	We present a generalization of Newton's inequality, i.e., an inequality of mixed form connecting symmetric functions and weighted means. Two open problems are also stated.	

Newton's Inequality Slavko Simic vol. 10, iss. 2, art. 44, 2009

Title Page			
Contents			
••	••		
•	►		
Page 1 of 8			
Go Back			
Full Screen			
Close			
urnal of inequalitie			

journal of inequalities in pure and applied mathematics

Contents

1 Introduction

3

Μ

*

journal of inequalities in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

1. Introduction

A well-known theorem of Newton [1] states the following:

Theorem 1.1. If all the zeros of a polynomial

(1.1) $P_n(x) = e_0 x^n + e_1 x^{n-1} + \dots + e_k x^{n-k} + \dots + e_n, \quad e_0 = 1,$

are real, then its coefficients satisfy

(1.2) $e_{k-1}e_{k+1} \le A_k^{(n)}e_k^2, \quad k = 1, 2, \dots, n-1;$

where $A_k^{(n)} := \frac{k}{k+1} \frac{n-k}{n+1-k}$.

For a sequence $\mathbf{a} = \{a_i\}_{i=1}^n$ of real numbers, by putting

(1.3)
$$P_n(x) = \prod_{i=1}^n (x+a_i) = \sum_{k=0}^n e_k x^{n-k}$$

we see that the coefficient $e_k = e_k(\mathbf{a})$ represents the kth elementary symmetric function of \mathbf{a} , i.e. the sum of all the products, k at a time, of different $a_i \in \mathbf{a}$.

There are several generalizations of Newton's inequality [2], [3]. In this article we give another one. For this purpose define the sequences $\mathbf{a}'_i := \mathbf{a}/\{a_i\}, i = 1, 2, \ldots, n$, and by $e_k(\mathbf{a}'_i)$ denote the k-th elementary symmetric function over \mathbf{a}'_i . We have:

Theorem 1.2. Let $\mathbf{c} = \{c_i\}_{i=1}^n$ be a weight sequence of non-negative numbers satisfying

(1.4)
$$\sum_{i=1}^{n} c_i = 1$$

journal of inequalities in pure and applied mathematics

and, for an arbitrary sequence $\mathbf{a} = \{a_i\}_{i=1}^n$ of real numbers, define

(1.5)
$$E_k^{(c)} := \sum_{i=1}^n c_i e_k(\mathbf{a}_i'), \quad E_0^{(c)} = 1,$$

or equivalently,

(1.6)
$$E_k^{(c)} = e_k - e_{k-1}f_1 + e_{k-2}f_2^2 - \dots + (-1)^r e_{k-r}f_r^r + \dots + (-1)^k f_k^k,$$

where

(1.7)
$$f_s := \left(\sum_{i=1}^n c_i a_i^s\right)^{\frac{1}{s}}.$$

Then

(1.8)
$$E_{k-1}^{(c)} E_{k+1}^{(c)} \le A_k^{(n-1)} \left(E_k^{(c)} \right)^2, \qquad k = 1, 2, \dots, n-1.$$

Proof. We shall give an easy proof supposing that the sequence c consists of arbitrary *positive rational numbers.* Since a and c are independent of each other, the truthfulness of the above theorem follows by the continuity principle.

Therefore, let $\mathbf{p} = \{p_k\}_{k=1}^n$ be an arbitrary sequence of positive integers and put

(1.9)
$$c_i = \frac{p_i}{\sum_{1}^{n} p_k}, \quad i = 1, 2, ..., n; \mathbf{p} \in \mathbb{N}.$$

Now, for a given real sequence a, consider the polynomial Q(x) defined by

(1.10)
$$Q(x) := \prod_{i=1}^{n} (x+a_i)^{p_i}.$$

Newton's Inequality			
Slavko Simic vol. 10, iss. 2, art. 44, 2009			
Title Page			
Contents			
	••		
•	•		
Page 4 of 8			
Go Back			
Full Screen			
Close			

journal of inequalities in pure and applied mathematics

Since all its zeros are real, by the well-known Gauss theorem, the zeros of Q'(x),

(1.11)
$$Q'(x) = Q(x) \sum_{i=1}^{n} \frac{p_i}{x + a_i},$$

are also real.

In particular, the same is valid for the polynomial R(x) defined by

(1.12)
$$R(x) := \prod_{i=1}^{n} (x+a_i) \sum_{i=1}^{n} \frac{c_i}{(x+a_i)}$$

Since

(1.13)
$$R(x) = x^{n-1} + E_1^{(c)} x^{n-2} + \dots + E_k^{(c)} x^{n-1-k} + \dots + E_{n-1}^{(c)},$$

the result follows by simple application of Theorem 1.1.

Remark 1. Since $\sum_{i=1}^{n} e_k(\mathbf{a}'_i) = (n-k)e_k(\mathbf{a})$, putting $c_i = 1/n$, i = 1, 2, ..., n in (1.5) and (1.8), we obtain the assertion from Theorem 1.1. Hence our result represents a generalization of Newton's theorem.

Also, denoting by $f_s^{(c)}(\mathbf{a}) = f_s := \left(\sum_{i=1}^n c_i a_i^s\right)^{1/s}, s > 0$, the classical weighted mean (with weights c) of order s, and using the identity

(1.14)
$$e_k(\mathbf{a}'_i) = e_k(\mathbf{a}) - a_i e_{k-1}(\mathbf{a}'_i),$$

an equivalent form of $E_k^{(c)}$ arises, i.e.,

(1.15)
$$E_k^{(c)} = e_k - e_{k-1}f_1 + e_{k-2}f_2^2 - \dots + (-1)^r e_{k-r}f_r^r + \dots + (-1)^k f_k^k.$$

Putting this in (1.8), we obtain a mixed inequality connecting elementary symmetric functions with weighted means of integer order.

in pure and applied mathematics

Problem 1.1. An interesting fact is that non-negativity of c *is not* a necessary condition for (1.8) to hold. We shall illustrate this point by an example. For k = 1, n = 3, we have

$$(E_1^{(c)})^2 - 4E_0^{(c)}E_2^{(c)}$$

= $(c_1(a_2 + a_3) + c_2(a_1 + a_3) + c_3(a_1 + a_2))^2 - 4(c_1a_2a_3 + c_2a_1a_3 + c_3a_1a_2)$
= $(1 - c_2)^2(a_1 - a_2)^2 + 2(c_1 - c_2c_3)(a_1 - a_2)(a_3 - a_1) + (1 - c_3)^2(a_3 - a_1)^2$

and this quadratic form is positive semi-definite whenever $c_1c_2c_3 \ge 0$.

Hence, in this case the inequality (1.8) is valid for all real sequences a with c satisfying

$$(1.16) c_1 + c_2 + c_3 = 1, c_1 c_2 c_3 \ge 0.$$

Therefore there remains the seemingly difficult problem of finding true bounds for the sequence c satisfying (1.4), such that the inequality (1.8) holds for an arbitrary real sequence a.

Problem 1.2. There is an interesting application of Theorem 1.2 to the well known Turan's problem. Under what conditions does the sequence of polynomials $\{Q_n(x)\}$ satisfy *Turan's inequality*

(1.17)
$$Q_{n-1}(x)Q_{n+1}(x) \le (Q_n(x))^2$$

for each $x \in [a, b]$ and $n \in [n_1, n_2]$?

This problem is solved for many classes of polynomials [4]. We shall consider here the following question [5].

An arbitrary sequence $\{d_i\}, i = 1, 2, ...$ of real numbers generates a sequence of polynomials $\{P_n(x)\}, n = 0, 1, 2, ...$ defined by

(1.18)
$$P_n(x) := x^n + d_1 x^{n-1} + d_2 x^{n-2} + \dots + d_{n-1} x + d_n, \quad P_0(x) := 1.$$

journal of inequalities in pure and applied mathematics

Denote also by A_n the set of zeros of $P_n(x)$.

Now, if for some m > 1 the set A_m consists of real numbers only, then from Theorem 1.2, it follows that

(1.19)
$$P_{n-1}(a)P_{n+1}(a) \le P_n^2(a),$$

for each $a \in A_m$ and $n \in [1, m - 1]$.

Is it possible to establish some simple conditions such that the Turan inequality

(1.20)
$$P_{n-1}(x)P_{n+1}(x) \le P_n^2(x),$$

holds for each $x \in [\min a, \max a]_{a \in A_m}$ and $n \in [1, m - 1]$.

References

- [1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, *Inequalities*, Camb. Univ. Press, Cambridge, 1978.
- [2] J.N. WHITELEY, A generalization of a theorem of Newton, *Proc. Amer. Math. Soc.*, **13** (1962), 144–151.
- [3] K.V. MENON, Inequalities for symmetric functions, *Duke Math. J.*, **35** (1968), 37–45.
- [4] S. SIMIC, Turan's inequality for Appell polynomials, J. Ineq. Appl., 1 (2006), 1–7.
- [5] S. SIMIC, A log-concave sequence, *Siam Problems and Solutions*, [ONLINE: http//:www.siam.org].

journal of inequalities in pure and applied mathematics