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ABSTRACT. We give a generalization of Feng Qi’s result fram [5] by showing that if a function

f € C([a, b)) satisfiesf(a) > 0 andf’(z) > n(z — a)"~! for z € [a, b] and a positive integer
n+1

n thenfab [f(2)]" " de > (fab f(x)dx) holds. This follows from our answer to Feng Qi's

open problem.
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In the paperi[b] Feng Qi proved the following proposition.

Proposition 1. Suppose that € C"([a, b)) satisfiesf") (a) > 0 and ™ (z) > n! for z € [a, b],
where0 <i <n —1andn € N, then

@) / b [f ()] dx > ( / bf(x)dx)

This motivated him to propose an open problem.

n+1

Problem 1. Under what conditions does the inequality

@) / ) > ( / bf(x)dx)t_l

hold fort > 1?

In the joint paper [6], K.W. Yu and F. Qi obtained one answer to the above problem: inequality
is valid for all f € C([a, b]) such thaU;f(x)dx > (b—a)'~! for givent > 1. Many authors
considered different generalizations of Prob[gm 1 (cfl.[L] 2] 3, 4]).
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We will prove the following answer to Problgm 1 which will imply a generalization of Propo-
sition[d.

Theorem 2. Suppose thaf € C'([a, b)) satisfiesf(a) > 0 and f'(z) > (t — 2)(z — a)"3 for
x € |a,b] andt > 3. Then

3) / ) > ( / b f(a:)dx)

holds. The equality holds onlydf= b or f(z) = + — a andt = 3.

Proof. Let f be a function satisfying the conditions of Theorgm 2. Funcffas increasing
becausef’(x) > 0 for z € (a,b], so fromf (&) < f(x) for € [a, x] we obtain

@) f@e—a)= [ s forallse o]

Now we define i i .
Fa 2 [ s - ( / f<s>d§)
ThenF(a) = 0andF'(z) = f(x)G(z), where

Oa) = (@) — (t - 1) ( / mf@ds) -
Clearly,G(a) = [f(a)]""' > 0 and

-1

t—3

G'x) = (t - 1)f () ([f(w)]”’f’(w) —(t—2) ( / ' f(f)ds) ) .

From the conditions of Theorejm 2 and inequality (4) we have

® U@ 2 0@ - o)z - [ o)

ThusG'(z) > 0, sowithG(a) > 0 we getG(x) > 0. FromF(a) = 0andF’(z) = f(z)G(x) >
0 it follows that F'(z) > 0 for all x € [a, b], particularly

ro) = [ Lrede - ( / bf(ﬁ)d€> s

The equality in[(B) holds only if”(x) = 0 for all x € [a, b] which is equivalent tgf (a) = 0
andG’(x) = 0 and according to[ (5), it > 3, this is valid only forf(a) = 0, f'(z) =
(t—2)(z—a)'~3 andf constant ona, b]. But the last two conditions cannot hold simultaneously
if b # a. The other possibility for equality to hold is ff(a) = 0 andt = 3. In that case][(5)
implies thatf’(x) = 1 onJa,b] sof(z) = x — a. O
Corollary 3. Suppose thaf € C!([a,b]) satisfiesf(a) > 0 and f'(x) > n(z — a)"! for
x € |a, b] and a positive integen, then

[ ([ @)

Proof. Sett = n + 2 in Theorenm P. O

Remark 4. Now we show that Propositign 1 follows from Corollgry 3. Let the functjon
satisfy the conditions of Propositi@‘n 1. Sinf@& (x) > n!, successively integrating— 1 times
over[a, z] we getf'(z) > n(x — a)" !, x € [a,b]. Therefore the conditions of Corolldry 3 are
fulfilled.

n+1
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