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Abstract

We analyze the relations of three coefficient conditions of different type implying
one by one the absolute convergence of the Haar series. Furthermore we
give a sharp condition which guaranties the equivalence of these coefficient
conditions.
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1. Introduction
A known result of P.L. Ul’janov [4] asserts that the condition

(1.1) σ1 :=
∞∑

n=3

an√
n

< ∞ (an ≥ 0)

implies the absolute convergence of the Haar series, i.e.

∞∑
m=0

2m∑
k=1

∣∣b(k)
m χ(k)

m (x)
∣∣ ≡ ∞∑

n=0

|an χn(x)| < ∞

almost everywhere in(0, 1). He also verified, among others, that if the sequence
{an} is monotone then the condition (1.1) is not only sufficient, but also neces-
sary to the absolute convergence of the Haar series.

In [1] we verified that if the condition

(1.2) σ2 :=
∞∑

m=1

{
2m+1∑

n=2m+1

a2
n

} 1
2

< ∞

holds then the Haar series is absolute(C, α)-summable for anyα ≥ 0, conse-
quently the condition (1.2) also guarantees the absolute convergence of the Haar
series.

Recently, in [3], we showed that if the sequence{an} is only locally quasi
decreasing, i.e. if

an ≤ K am for m ≤ n ≤ 2m and for all m,
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and the Haar series is absolute(C, α ≥ 0)-summable almost everywhere, then
(1.2) holds.

Here and in the sequel,K andKi will denote positive constants, not neces-
sarily the same at each occurrence. Furthermore we shall say that a sequence
{an} is quasi decreasingif

(0 ≤)an ≤ K am

holds for anyn ≥ m. This will be denoted by{an} ∈ QDS, and if the sequence
{an} is a locally quasi decreasing, then we use the short notion{an} ∈ LQDS.

P.L. Ul’janov [5], implicitly, gave a further condition in the form

(1.3) σ3 :=
∞∑

m=3

1

m(log m)
1
2

{
∞∑

n=m

a2
n

} 1
2

< ∞

which also implies the absolute convergence of the Haar series.
These results propose the question: What is the relation among these condi-

tions?
We shall show that the condition (1.3) claims more than (1.2), and (1.2)

demands more than (1.1); and in general, they cannot be reversed. In order to
get an opposite implication, a certain monotonicity condition on the sequence
{an} is required.
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2. Results
We establish the following theorem.

Theorem 2.1. Suppose thata := {an} is a sequence of nonnegative numbers.
Then the following assertions hold:

(2.1) σ1 ≤ K σ2,

and ifa ∈ LQDS then

(2.2) σ2 ≤ K σ1.

Similarly

(2.3) σ2 ≤ K σ3,

and if the sequence{Am} defined by

Am :=

{
2m+1∑

k=2m+1

a2
k

} 1
2

belongs toQDS then

(2.4) σ3 ≤ K σ2.

Finally

(2.5) σ1 ≤ K σ3,

and if the sequence{n a2
n} ∈ QDS then

(2.6) σ3 ≤ K σ1.
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Corollary 2.2. If the sequence{n a2
n} ∈ QDS then the conditions (1.1), (1.2)

and (1.3) are equivalent.

Next we show that the assumption{n a2
n} ∈ QDS in a certain sense is sharp.

Namely if we claim only that the sequence{nα a2
n} ∈ QDS with α < 1, then

already the implication (1.1) ⇒ (1.3), in general, does not hold.

Proposition 2.3. If (0 ≤) α < 1 then there exists a sequence{an} such that the
sequence{nα a2

n} ∈ QDS, furthermore

σ1 < ∞ but σ3 = ∞.

Finally we verify the following.

Proposition 2.4. The requirements

(2.7) {n a2
n} ∈ QDS

and the following two assumptions jointly

(2.8) {Am} ∈ QDS and {an} ∈ LQDS

are equivalent.

Acknowledgement 1. I would like to sincerest thanks to the referee for his
worthy suggestions, exceptionally for the remark that the inequality (2.6) also
follows from (2.2), (2.4) and Proposition2.4.
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3. Lemma
We require the following lemma being a special case of a theorem proved in [2,
Satz] appended with the inequality (3.2) which was also verified, in the same
paper, in the proof of the "Hilfssatz" (see p. 217).

Lemma 3.1. The inequality (1.3) holds if and only if there exists a nondecreas-
ing sequence{µn} of positive numbers with the properties

(3.1)
∞∑

n=1

1

n µn

< ∞ and
∞∑

n=1

a2
n µn < ∞.

Furthermore

(3.2)
∞∑

n=3

1

n(log n)
1
2

{
∞∑

k=n

a2
k

} 1
2

≤ K

{
∞∑

n=3

a2
n µn

} 1
2
{
∞∑

n=1

1

n µn

} 1
2

also holds.
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4. Proofs
Proof of Theorem2.1. The inequality (2.1) can be verified by then Hölder in-
equality. Namely

σ1 =
∞∑

m=1

2m+1∑
n=2m+1

an√
n
≤

∞∑
m=1

{
2m+1∑

n=2m+1

a2
n

} 1
2
{

2m+1∑
n=2m+1

1

n

} 1
2

≤ σ2.

To prove the inequality (2.2) we utilize the monotonicity assumption and thus
we get that

σ2 ≤ K
∞∑

m=1

2m/2a2m+1 ≤ K1

∞∑
m=1

2m+1∑
n=2m+1

1√
n

an = K1σ1.

The inequality (2.3) also comes via the Hölder inequality. LetRm :=

{
∞∑

n=m

a2
n

} 1
2

.

Then

σ2 =
∞∑

ν=0

2ν+1−1∑
m=2ν

{
2m+1∑

n=2m+1

a2
n

} 1
2

≤
∞∑

ν=0

2ν/2


22ν+1∑

n=22ν
+1

a2
n


1
2

≤
∞∑

ν=0

2ν/2


∞∑

n=22ν
+1

a2
n


1
2
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≤ R3 + K
∞∑

ν=1

22ν∑
n=22ν−1

+1

1

n(log n)
1
2

R22ν
+1 ≤ K1

∞∑
n=3

1

n(log n)
1
2

Rn = K1σ3.

In order to prove (2.4) first we define a nondecreasing sequence{µn} as follows.
Let

µn := max
1≤k≤m

A−1
k for 2m < n ≤ 2m+1, m = 1, 2, . . . ,

furthermore letµ1 = µ2 = µ3. It is clear by{Am} ∈ QDS that

(4.1) A−1
m ≤ µ2m+1 ≤ K A−1

m (m ≥ 1),

holds. Hence we obtain by (1.2) and (4.1) that

(4.2)
∞∑

m=1

2m+1∑
n=2m+1

a2
n µn ≤ K σ2 < ∞

and
∞∑

n=1

1

n µn

≤ K
∞∑

n=3

1

n µn

= K
∞∑

m=1

2m+1∑
n=2m+1

1

n µn

≤ K1

∞∑
m=1

1

µ2m+1

(4.3)

≤ K1

∞∑
m=1

Am = K1σ2 < ∞.
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Finally, using the inequality (3.2), the estimations (4.2) and (4.3) clearly imply
the statement (2.4).

The assertion (2.5) is an immediate consequence of (2.1) and (2.3).
The proof of the declaration (2.6) is analogous to that of (2.4). The assump-

tion {n a2
n} ∈ QDS enables us to define again a nondecreasing sequence{µn}

satisfying the inequalities in (3.1). We can clearly assume that allak > 0,
otherwise (2.6) is trivial if {n a2

n} ∈ QDS. Let for n ≥ 3

µn := max
1≤k≤n

1

ak

√
k
, and µ1 = µ2 = µ3.

The definition ofµn and the assumption{n a2
n} ∈ QDS certainly imply that

(4.4)
1

an

√
n
≤ µn ≤

K

an

√
n

is valid. The definition ofσ1 given in (1.1) and (4.4) convey the estimations

∞∑
n=3

a2
n µn ≤ K

∞∑
n=3

an√
n
≤ K σ1 < ∞

and
∞∑

n=1

1

n µn

≤ K

∞∑
n=3

1

n µn

= K

∞∑
n=3

an√
n

= K σ1 < ∞.

These estimations and (3.2) verify (2.6).
Herewith the whole theorem is proved.
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Proof of Corollary2.2. The inequalities (2.1), (2.3) and (2.6) proved in the the-
orem obviously deliver the assertion of the corollary. The proof is ready.

Proof of Proposition2.3. Setting

νm := 22m

, εm := 2−m/2ν
α−1

2
m+1

and
a2

n := ε2
m n−α if νm < n ≤ νm+1, m = 0, 1, . . .

Then
∞∑

n=3

an√
n

=
∞∑

m=0

εm

νm+1∑
n=νm+1

n−
1+α

2

≤
∞∑

m=0

εm ν
1−α

2
m+1 =

∞∑
m=0

2−m/2 < ∞,

however, withRn :=

{
∞∑

k=n

a2
k

} 1
2

,

σ3 =
∞∑

n=3

1

n(log n)
1
2

Rn

=
∞∑

m=0

νm+1∑
n=νm+1

1

n(log n)
1
2

Rn

≥ 1

4

∞∑
m=0

Rνm+12
m/2,
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furthermore

R2
νm
≥

∞∑
k=m

νk+1∑
n=νk+1

a2
n =

∞∑
k=m

ε2
k

νk+1∑
n=νk+1

k−α

≥ 1

K

∞∑
k=m

ε2
k ν1−α

k+1 =
1

K

∞∑
k=m

2−k ≥ 1

K
2−m.

From the last two estimations we clearly get thatσ3 = ∞, as stated.
The proof is complete.

Proof of Proposition2.4. First we prove that the assumption (2.7) implies both
properties claimed in (2.8). Namely by{n a2

n} ∈ QDS we get that ifµ > m
then

A2
m =

2m+1∑
n=2m+1

a2
nn

n
≥ 1

2m+1
2m 1

K
a2

2m+12m+1

≥ 1

2K2
a2

2µ2µ ≥ 1

2K3

2µ+1∑
n=2µ+1

a2
n

=
1

2K3
A2

µ,

i.e. {n a2
n} ∈ QDS ⇒ {An} ∈ QDS holds.

The implications{n a2
n} ∈ QDS ⇒ {an} ∈ QDS ⇒ {an} ∈ LQDS are

trivial.
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To prove the implication (2.8)⇒ (2.7) we first prove by{an} ∈ LQDS that
if µ > m then

2m+1∑
k=2m+1

a2
k ≤ K 2m a2

2m

and
2µ∑

k=2µ−1+1

a2
k ≥ 2µ−1 1

K
a2

2µ ,

thus by{An} ∈ QDS we obtain that

2µ a2
2µ ≤ K1 2m a2

2m

holds, whence{n a2
n} ∈ QDS plainly follows.

The proof is ended.
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