Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 3, Issue 4, Article 50, 2002

RATE OF CONVERGENCE OF THE DISCRETE POLYA ALGORITHM FROM CONVEX SETS. A PARTICULAR CASE

M. MARANO, J. NAVAS, AND J.M. QUESADA
Departamento de Matemáticas
Universidad de Jaén
Paraje las LaGunillas
Campus Universitario
23071 JAÉn, Spain
mmarano@ujaen.es
jnavas@ujaen.es
jquesada@ujaen.es

Received 4 December, 2001; accepted 28 May, 2002
Communicated by A. Babenko

Abstract

In this work we deal with best approximation in $\ell_{p}^{n}, 1<p \leq \infty, n \geq 2$. For $1<p<\infty$, let h_{p} denote the best ℓ_{p}^{n}-approximation to $f \in \mathbb{R}^{n}$ from a closed, convex subset K of $\mathbb{R}^{n}, f \notin K$, and let h^{*} be a best uniform approximation to f from K. In case that $h^{*}-f$ $=\left(\rho_{1}, \rho_{2}, \cdots, \rho_{n}\right),\left|\rho_{j}\right|=\rho$ for $j=1,2, \cdots, n$, we show that the behavior of $\left\|h_{p}-h^{*}\right\|$ as $p \rightarrow \infty$ depends on a property of separation of the set K from the ℓ_{∞}^{n}-ball $\left\{x \in \mathbb{R}^{n}:\|x-f\| \leq\right.$ $\rho\}$ at $h^{*}-f$.

Key words and phrases: Best uniform approximation, Rate of convergence, Polya Algorithm, Strong uniqueness.
2000 Mathematics Subject Classification. 26D15.

1. Introduction

Let $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ be a fixed vector in \mathbb{R}^{n}, with $w_{j}>0, j \in I_{n}:=\{1,2, \ldots, n\}, n \geq 2$. For $x=(x(1), x(2), \ldots, x(n)) \in \mathbb{R}^{n}$ we define

$$
\begin{aligned}
\|x\|_{p, w} & :=\left(\sum_{j=1}^{n} w_{j}|x(j)|^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty, \quad \text { and } \\
\|x\| & :=\max _{1 \leq j \leq n}|x(j)|
\end{aligned}
$$

Also we define $N:=\sum_{j=1}^{n} w_{j}$.

Throughout the paper, K will always be a nonempty, closed, convex subset of \mathbb{R}^{n}. For $f \in \mathbb{R}^{n} \backslash K$, we will say that $h_{p, w} \in K, 1 \leq p<\infty$, is a best $\ell_{p, w}^{n}$-approximation to f from K if

$$
\left\|f-h_{p, w}\right\|_{p, w} \leq\|f-h\|_{p, w} \quad \forall h \in K
$$

The existence of at least one best $\ell_{p, w}^{n}$-approximation to f from K is a known fact for $1 \leq$ $p<\infty$. Likewise, there always exists a best uniform approximation to f from K, i.e., an $h^{*} \in K$ that satisfies

$$
\left\|f-h^{*}\right\| \leq\|f-h\| \quad \forall h \in K
$$

We will henceforth assume $f=0$ and $0 \notin K$. This causes no loss of generality, since all relevant properties are translation invariant. If $1<p<\infty$, there is a unique best $\ell_{p, w}^{n}$-approximation. In this case, the next theorem [14] characterizes the best $\ell_{p, w}^{n}$-approximation to 0 from K.
Theorem 1.1 (Characterization of the best $\ell_{p, w}^{n}$-approximation). Let K be a closed, convex subset of $\mathbb{R}^{n}, 0 \notin K$. Then $h_{p, w}, 1 \leq p<\infty$, is a best $\ell_{p, w}^{n}$-approximation to 0 from K if and only if for all $h \in K$,

$$
\begin{gather*}
\sum_{j=1}^{n} w_{j}\left(h_{p, w}(j)-h(j)\right)\left|h_{p, w}(j)\right|^{p-1} \operatorname{sgn}\left(h_{p, w}(j)\right) \leq 0, \quad \text { if } p>1 . \tag{1.1}\\
\sum_{j \in R\left(h_{1, w}\right)} w_{j}\left(h_{1, w}(j)-h(j)\right) \operatorname{sgn}\left(h_{1, w}(j)\right) \leq \sum_{j \in Z\left(h_{1, w}\right)} w_{j}|h(j)|, \quad \text { if } p=1, \tag{1.2}
\end{gather*}
$$

where, if $g \in \mathbb{R}^{n}, Z(g):=\left\{j \in I_{n}: g(j)=0\right\}$ and $R(g):=I_{n} \backslash Z(g)$.
It is also known [1, 6, 7] that if K is an affine subspace, then

$$
\begin{equation*}
\lim _{p \rightarrow \infty} h_{p, w}=h^{*} \tag{1.3}
\end{equation*}
$$

where in this case h^{*} is a particular best uniform approximation to 0 from K, called strict uniform approximation [12, 7] and whose definition is also valid in any closed, convex K. In [3, 8] it is proved that there exists a constant $M>0$ such that $p\left\|h_{p, w}-h^{*}\right\| \leq M$ for all $p>1$. Moreover, from [13] it is deduced that there are constants $M_{1}, M_{2}>0$ and $0 \leq a \leq 1$, depending on K, such that

$$
M_{1} a^{p} \leq p\left\|h_{p, w}-h^{*}\right\| \leq M_{2} a^{p} \quad \text { for all } p>1
$$

In [2, 7] it is shown that if K is not an affine subspace, then $h_{p, w}$ does not necessarily converge to the strict uniform approximation, though (1.3) is always valid whenever h^{*} is the unique best uniform approximation to 0 from K. In [6, 7] we can find sufficient conditions on K under which (1.3) is satisfied. In any case, the convergence of $h_{p, w}$ as $p \rightarrow \infty$ to a best uniform approximation is known as the Polya algorithm [11]. The purpose of this paper is to study the behavior of $\left\|h_{p, w}-h^{*}\right\|$ as $p \rightarrow \infty$ when h^{*} is a best uniform approximation to 0 from K and h^{*} satisfies $\left|h^{*}(j)\right|=\rho>0 \forall j \in I_{n}$.

2. Relation Between Strong Uniqueness and Rate of Convergence

A useful concept in order to get a first general result on the rate of convergence of the Polya algorithm is strong uniqueness. It was established in 1963 by Newman and Shapiro [10] in the context of the uniform approximation to continuous functions by means of elements of a Haar space, although we could define it in any normed space.
Definition 2.1. Let $h^{*} \in K$ be a best uniform approximation to $0 \in \mathbb{R}^{n}$ from K. We say that h^{*} is strongly unique if there exists $\gamma>0$ such that

$$
\begin{equation*}
\left\|h-h^{*}\right\| \leq \gamma\left(\|h\|-\left\|h^{*}\right\|\right) \quad \forall h \in K \tag{2.1}
\end{equation*}
$$

It is obvious that if h^{*} is strongly unique, then h^{*} is the unique best uniform approximation to $0 \in \mathbb{R}^{n}$ from K.

Theorem 2.1. If the best uniform approximation h^{*} to 0 from K is strongly unique, then $p\left\|h_{p, w}-h^{*}\right\|$ is bounded for all $p \geq 1$.

Proof. We first note that for every $h \in K$,

$$
\begin{equation*}
m^{\frac{1}{p}}\|h\| \leq\|h\|_{p, w} \leq N^{\frac{1}{p}}\|h\| \tag{2.2}
\end{equation*}
$$

where $m:=\min _{j \in I_{n}}\left\{w_{j}\right\}$.
Let $\gamma>0$ satisfy (2.1). Then for any $p \geq 1$,

$$
\begin{equation*}
\left\|h_{p, w}-h^{*}\right\| \leq \gamma\left(\left\|h_{p, w}\right\|-\left\|h^{*}\right\|\right) . \tag{2.3}
\end{equation*}
$$

Applying (2.2) and the definition of best $\ell_{p, w}^{n}$-approximation, we have

$$
\begin{aligned}
\left\|h_{p, w}\right\|-\left\|h^{*}\right\| & \leq \frac{1}{m^{\frac{1}{p}}}\left\|h_{p, w}\right\|_{p, w}-\left\|h^{*}\right\| \\
& \leq \frac{1}{m^{\frac{1}{p}}}\left\|h^{*}\right\|_{p, w}-\left\|h^{*}\right\| \\
& \leq\left[\left(\frac{N}{m}\right)^{\frac{1}{p}}-1\right]\left\|h^{*}\right\| \\
& \leq \frac{(N-m)\left\|h^{*}\right\|}{m p}
\end{aligned}
$$

From (2.3) we finally conclude that

$$
p\left\|h_{p, w}-h^{*}\right\| \leq \frac{\gamma(N-m)\left\|h^{*}\right\|}{m} \quad \text { for all } p \geq 1
$$

The above inequality improves the proposal in [4] and [5].
2.1. The Particular Case $\left|h^{*}(j)\right|=\rho>0, j=1,2, \ldots, n$. We henceforth suppose that $h^{*} \in K$ is a best uniform approximation to 0 from K, where $\left|h^{*}(j)\right|=\rho>0$ for all $j \in I_{n}$. Under these conditions we will analyze the behaviour of $\left\|h_{p, w}-h^{*}\right\|$ as $p \rightarrow \infty$. In Theorem 2.3. our main result, we will prove that the converse of Theorem 2.1 - which is generally not true is valid in this particular case. Since $\left\{x \in \mathbb{R}^{n}:\|x\| \leq \rho\right\} \cap K=\{h \in K:\|h\|=\rho\}$, it is easy to see that there is a hyperplane $\left\{(x(1), x(2), \ldots, x(n)): \sum_{j=1}^{n} a_{j} \operatorname{sgn}\left(h^{*}(j)\right) x(j)=\rho\right\}$, with $0 \leq a_{j} \leq 1$, all $j \in I_{n}$, and $\sum_{j=1}^{n} a_{j}=1$, that separates K from the ball $\left\{x \in \mathbb{R}^{n}:\|x\| \leq \rho\right\}$ at h^{*}, i.e., $\sum_{j=1}^{n} a_{j} \operatorname{sgn}\left(h^{*}(j)\right) h(j) \geq \rho$ for all $h \in K$.
Definition 2.2. We will say that

$$
\pi:=\left\{(x(1), x(2), \ldots, x(n)): \sum_{j=1}^{n} a_{j} \operatorname{sgn}\left(h^{*}(j)\right) x(j)=\rho\right\}
$$

is a hyperplane that strongly separates K from the ball $\left\{x \in \mathbb{R}^{n}:\|x\| \leq \rho\right\}$ at h^{*}, or equivalently, that π is a strongly separating hyperplane at h^{*}, if

$$
\begin{equation*}
0<a_{j}<1, \text { all } j \in I_{n}, \quad \sum_{j=1}^{n} a_{j}=1 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j} \operatorname{sgn}\left(h^{*}(j)\right) h(j) \geq \rho \quad \forall h \in K \tag{2.5}
\end{equation*}
$$

In the proofs of Lemma 2.2 and Theorems 2.3 and 2.4 we will assume $h^{*}(j)=1$ for all $j \in I_{n}$. This causes no loss of generality, since we can replace K by the closed, convex set

$$
\left\{\tilde{h} \in \mathbb{R}^{n}: \tilde{h}(j)=\frac{1}{\rho} h(j) \operatorname{sgn}\left(h^{*}(j)\right), j \in I_{n}, h \in K\right\} .
$$

Lemma 2.2. If $p_{k}\left\|h_{p_{k}, w}-h^{*}\right\|$ is bounded for $p_{k} \rightarrow \infty$, then there exists a strongly separating hyperplane at h^{*}.

Proof. Since $\lim _{p_{k} \rightarrow \infty} h_{p_{k}, w}(j)=h^{*}(j)=1$, all $j \in I_{n}$, we can suppose $h_{p_{k}, w}(j)>0$, all $j \in I_{n}$ and, without loss of generality, all p_{k}. Then, for every p_{k} the formula of characterization (1.1) can be expressed in the form

$$
\sum_{j=1}^{n} w_{j}\left(h_{p_{k}, w}(j)-h(j)\right) h_{p_{k}, w}^{p_{k}-1}(j) \leq 0 \quad \forall h \in K
$$

Dividing by $\left\|h_{p_{k}, w}\right\|_{p_{k}, w}^{p_{k}}$, for every p_{k} we obtain

$$
\begin{equation*}
\sum_{j=1}^{n} w_{j}\left(\frac{h_{p_{k}, w}(j)}{\left\|h_{p_{k}, w}\right\|_{p_{k}, w}}\right)^{p_{k}} \frac{h(j)}{h_{p_{k}, w}(j)} \geq 1 \quad \forall h \in K \tag{2.6}
\end{equation*}
$$

Keeping in mind that

$$
w_{j} h_{p_{k}, w}^{p_{k}}(j) \leq\left\|h_{p_{k}, w}\right\|_{p_{k}, w}^{p_{k}} \leq\left\|h^{*}\right\|_{p_{k}, w}^{p_{k}}=N, \quad j \in I_{n}
$$

and after passage to a subsequence, we can suppose that $h_{p_{k}, w}^{p_{k}}(j)$, all $j \in I_{n}$, and $\left\|h_{p_{k}, w}\right\|_{p_{k}, w}^{p_{k}}$ are convergent. Now, by hypothesis, $p_{k}\left|h_{p_{k}, w}(j)-1\right|$ is bounded for all $j \in I_{n}$ and all p_{k}. Hence we get

$$
\lim _{p_{k} \rightarrow \infty} h_{p_{k}, w}^{p_{k}}(j)=\lim _{p_{k} \rightarrow \infty} \operatorname{Exp}\left(p_{k}\left(h_{p_{k}, w}(j)-1\right)\right)>0, \quad \text { all } j \in I_{n}
$$

Writing

$$
a_{j}=\lim _{p_{k} \rightarrow \infty} w_{j}\left(\frac{h_{p_{k}, w}(j)}{\left\|h_{p_{k}, w}\right\|_{p_{k}, w}}\right)^{p_{k}}, \quad j \in I_{n}
$$

we therefore deduce that $0<a_{j}<1$, all $j \in I_{n}$, and $\sum_{j=1}^{n} a_{j}=1$. Taking limits as $p_{k} \rightarrow \infty$ in (2.6), we finally conclude that

$$
\sum_{j=1}^{n} a_{j} h(j) \geq 1 \quad \forall h \in K
$$

Then $\left\{(x(1), x(2), \ldots, x(n)):=\sum_{j=1}^{n} a_{j} x(j)=1\right\}$ is a strongly separating hyperplane at h^{*}.

Theorem 2.3. The following statements are equivalent:
(a) The best uniform approximation to 0 from K, h^{*}, is strongly unique.
(b) $p\left\|h_{p, w}-h^{*}\right\|$ is bounded for all $p \geq 1$.
(c) $p_{k}\left\|h_{p_{k}, w}-h^{*}\right\|$ is bounded for a sequence $p_{k} \rightarrow \infty$.
(d) There exists a strongly separating hyperplane at h^{*}.

Proof. (a) \Rightarrow (b) is Theorem 2.1. (b) \Rightarrow (c) is obvious. (c) \Rightarrow (d) is Lemma 2.2. To complete the theorem, we now prove $(d) \Rightarrow$ (a). Suppose that there is a strongly separating hyperplane π at $h^{*}=(1,1, \ldots, 1)$. Let $h \in K$. Observe that $\|h\| \geq 1$. Let I_{n}^{+}denote the subset of indices j in I_{n} such that $h(j) \geq 1$, and let $I_{n}^{-}:=I_{n} \backslash I_{n}^{+}$. For all $j \in I_{n}^{+}$we have $|h(j)-1|=h(j)-1 \leq\|h\|-1$. On the other hand, if $j \in I_{n}^{-}$, then $|h(j)-1|=1-h(j)$. Moreover, the inequality

$$
\sum_{i \in I_{n}} a_{i}(h(i)-1) \geq 0
$$

implies

$$
\begin{aligned}
a_{j}(1-h(j)) & \leq \sum_{i \in I_{n}, i \neq j} a_{i}(h(i)-1) \\
& \leq \sum_{i \in I_{n}^{+}} a_{i}(h(i)-1) \\
& \leq(\|h\|-1) \sum_{i \in I_{n}^{+}} a_{i} \\
& \leq(\|h\|-1)\left(1-a_{j}\right) .
\end{aligned}
$$

Thus, for all $j \in I_{n}$ we have

$$
|h(j)-1| \leq\left(\frac{1}{\min _{i \in I_{n}} a_{i}}-1\right)(\|h\|-1):=\gamma(\|h\|-1)
$$

and so $\left\|h-h^{*}\right\| \leq \gamma\left(\|h\|-\left\|h^{*}\right\|\right)$.
Our goal now is to show that, under the conditions of Theorem 2.3, either $h_{p, w}=h^{*}$ for all p or there exist constants $M_{1}, M_{2}>0$ such that

$$
M_{1} \leq p\left\|h_{p, w}-h^{*}\right\| \leq M_{2} \text { for all } p \geq 1
$$

On the other hand, if there exists no strongly separating hyperplane at h^{*}, then the following example in \mathbb{R}^{2}, where $\lim _{p \rightarrow \infty} h_{p, w}=h^{*}$, shows that the rate of convergence is as slow as we want.
Example 2.1. Let $\alpha:[1,+\infty) \rightarrow(0,1]$ be a continuous strictly decreasing function such that $\alpha(1)=1$ and $\lim _{t \rightarrow \infty} \alpha(t)=0$ and let $\beta:(0,1] \rightarrow[1,+\infty)$ denote its inverse function, that will also be a strictly decreasing function. We define

$$
f(x):=1+\int_{x}^{1}(1-t)^{\beta(1-t)} d t, \quad 0 \leq x \leq 1
$$

and let K be the convex hull of the set $\left\{(x, y) \in \mathbb{R}^{2}: y=f(x), x \in[0,1]\right\}$.
Observe that $h^{*}=(1,1)$ is the unique best uniform approximation to $(0,0)$ from K. Moreover, the function f is smooth, convex and $f^{\prime}(1)=0$. This implies that the strongly separating hyperplane at h^{*} does not exist.

Let $h_{p}=\left(1-\varepsilon_{p}, 1+\delta_{p}\right)$ be the best p-approximation to $(0,0)$ from K, with $\varepsilon_{p}, \delta_{p} \downarrow 0$ as $p \rightarrow \infty$. Since the slopes of the curve $y=f(x)$ and the ℓ_{p}-ball coincide at h_{p}, we have

$$
\frac{\left(1-\varepsilon_{p}\right)^{p-1}}{\left(1+\delta_{p}\right)^{p-1}}=\varepsilon_{p}^{\beta\left(\varepsilon_{p}\right)}
$$

and therefore

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \varepsilon_{p}^{\beta\left(\varepsilon_{p}\right) /(p-1)}=\lim _{p \rightarrow \infty} \frac{1-\varepsilon_{p}}{1+\delta_{p}}=1 \tag{2.7}
\end{equation*}
$$

If $\varepsilon_{p} \leq \alpha(p)$, then $\beta\left(\varepsilon_{p}\right) \geq \beta(\alpha(p))=p$, which contradicts (2.7). Then, for p large, we have $\varepsilon_{p}>\alpha(p)$. This shows that the rate of convergence of h_{p} to h^{*} as $p \rightarrow \infty$ can be as slow as we want.
Theorem 2.4. The following conditions are equivalent
(a) $h_{p, w}=h^{*}$ for all $p \geq 1$,
(b) $h_{p_{0}, w}=h^{*}$ for some $p_{0} \geq 1$,
(c) the hyperplane

$$
\begin{equation*}
\pi:=\left\{(x(1), x(2), \ldots, x(n)): \sum_{j=1}^{n} \operatorname{sgn}\left(h^{*}(j)\right) \frac{w_{j}}{N} x(j)=\rho\right\} \tag{2.8}
\end{equation*}
$$

is a strongly separating hyperplane at h^{*}.
Proof. (a) \Rightarrow (b) is obvious. (b) \Rightarrow (c) follows immediately from Theorem 1.1. Indeed, if $h_{p_{0}, w}=h^{*}$ for some $p_{0} \geq 1$, then from (1.1) if $p_{0}>1$ or (1.2) if $p_{0}=1$, we have

$$
\begin{equation*}
\sum_{j=1}^{n} w_{j}\left(h^{*}(j)-h(j)\right) \operatorname{sgn}\left(h^{*}(j)\right) \leq 0 \quad \forall h \in K \tag{2.9}
\end{equation*}
$$

which is equivalent to the fact that π is a strongly separating hyperplane at h^{*}. Also from (1.1) and (1.2), the inequality (2.9) implies that $h_{p, w}=h^{*}$ for all $p \geq 1$ and so (c) \Rightarrow (a).

Theorem 2.5. Suppose that $h_{p, w} \neq h^{*}$ for some $p \geq 1$ and there exists a strongly separating hyperplane at h^{*}. Then there are constants $M_{1}, M_{2}>0$ such that

$$
M_{1} \leq p\left\|h_{p, w}-h^{*}\right\| \leq M_{2} \quad \text { for all } p \geq 1
$$

Proof. Assume that there exists a strongly separating hyperplane at h^{*}, where $h^{*}(j)=1$ for all $j \in I_{n}$. From Theorem 2.3, there is a constant $M_{2}>0$ such that

$$
p\left\|h_{p, w}-h^{*}\right\| \leq M_{2} .
$$

Therefore, to prove the theorem it is sufficient to show that $\inf _{p \geq 1}\left\{p\left\|h_{p, w}-h^{*}\right\|\right\}>0$. Suppose the contrary. In order to get a contradiction, we only need to consider the two following exhaustive cases:
(1) There exists a sequence $p_{k} \rightarrow \infty$ such that $\lim _{p_{k} \rightarrow \infty} p_{k}\left\|h_{p_{k}}-h^{*}\right\|=0$. In this case $\lim _{p_{k} \rightarrow \infty} p_{k}\left|h_{p_{k}, w}(j)-1\right|=0$ for all $j \in I_{n}$. This implies that $h_{p_{k}, w}^{p_{k}}(j) \rightarrow 1$ as $p_{k} \rightarrow \infty$ and

$$
a_{j}^{*}=\lim _{p_{k} \rightarrow \infty} w_{j}\left(\frac{h_{p_{k}, w}(j)}{\left\|h_{p_{k}, w}\right\|_{p_{k}, w}}\right)^{p_{k}}=\frac{w_{j}}{N}, \quad j=1,2, \ldots, n,
$$

which means (see the proof of Lemma 2.2) that the hyperplane (2.8), with $h^{*}(j)=$ $\rho=1$ for all $j \in I_{n}$, is a strongly separating hyperplane at h^{*}. From Theorem 2.4(c), $h_{p, w}=h^{*}$ for all $p \geq 1$, which contradicts the hypothesis of the theorem.
(2) There exists a sequence $p_{k} \rightarrow p_{0}, 1 \leq p_{0}<\infty$, such that $\lim _{p_{k} \rightarrow p_{0}} p_{k}\left\|h_{p_{k}, w}-h^{*}\right\|=0$. Since $h_{p_{k}, w} \rightarrow h_{p_{0}, w}$, we deduce that $\left\|h_{p_{0}, w}-h^{*}\right\|=\lim _{p_{k} \rightarrow p_{0}}\left\|h_{p_{k}, w}-h^{*}\right\|=0$ and so $h_{p_{0}, w}=h^{*}$. Now, using the statement (b) of Theorem 2.4. we conclude that $h_{p, w}=h^{*}$, for all $p \geq 1$. A contradiction.

2.2. A Numerical Example in Isotonic Approximation.

Let $f=(\underbrace{a+1, \ldots, a+1}_{r}, \underbrace{a-1, \ldots, a-1}_{n-r}) \in \mathbb{R}^{n}$, and let K be the convex set of the nondecreasing vectors in \mathbb{R}^{n}, i.e.

$$
K=\left\{h \in \mathbb{R}^{n}: h(i) \leq h(j) \forall i, j \in I_{n}, i<j\right\} .
$$

In this case, the (unique) best uniform approximation to f from K is the element $h^{*}=(a, a, \ldots, a)$. Thus $h_{p, w} \rightarrow h^{*}$ as $p \rightarrow \infty$. Furthermore, it is easy to see that

$$
h_{p, w}=\left(x_{p, w}, x_{p, w}, \ldots, x_{p, w}\right) \in \mathbb{R}^{n}, \quad 1<p<\infty,
$$

for some $x_{p, w}$ satisfying $a-1 \leq x_{p, w} \leq a+1$.
In order to translate h^{*} to a vertex of the ℓ_{∞}^{n}-ball, we consider the closed, convex set

$$
\widetilde{K}=\left\{\widetilde{h} \in \mathbb{R}^{n}: \widetilde{h}(j)=h(j)-f(j), j \in I_{n}, h \in K\right\} .
$$

In this way we obtain

- $\widetilde{f}=(0,0, \ldots, 0)$;
- $\widetilde{h}^{*}=h^{*}-f=(\underbrace{-1, \ldots,-1}_{r}, \underbrace{1, \ldots, 1}_{n-r})$.

To simplify the notation, we will write $\sigma_{j}=\operatorname{sgn}\left(\widetilde{h}^{*}(j)\right), j \in I_{n}$. Now, we are interested in obtaining a strongly separating hyperplane at \breve{h}^{*}, i.e., a hyperplane

$$
\pi:=\left\{(x(1), x(2), \ldots, x(n)): \sum_{j=1}^{n} a_{j} \sigma_{j} x(j)=1\right\}
$$

such that
(p1) $0<a_{j}<1$, all $j \in I_{n}$, and $\sum_{1}^{n} a_{j}=1$;
(p2) $\sum_{j=1}^{n} \sigma_{j} a_{j} \widetilde{h}(j) \geq 1 \forall \widetilde{h} \in \widetilde{K}$.
Proposition 2.6. Let $S:=\sum_{j=1}^{r} w_{j}$. Then the above hyperplane π, with

$$
a_{j}=\frac{w_{j}}{2 S} \text { if } 1 \leq j \leq r, \quad a_{j}=\frac{w_{j}}{2(N-S)} \text { if } r+1 \leq j \leq n
$$

satisfies $(\mathrm{p} 1)$ and $(\mathrm{p} 2)$, and therefore it is a strongly separating hyperplane at \widetilde{h}^{*}.
Proof. By definition, $0<a_{j}<1$ for all $j \in I_{n}$. Furthermore,

$$
\sum_{j=1}^{n} \sigma_{j} a_{j} \widetilde{h}^{*}(j)=\sum_{j=1}^{n} a_{j}=\sum_{j=1}^{r} \frac{w_{j}}{2 S}+\sum_{j=r+1}^{n} \frac{w_{j}}{2(N-S)}=\frac{1}{2}+\frac{1}{2}=1
$$

Then ($p 1$) holds.
Since

$$
\sum_{j=1}^{n} \sigma_{j} a_{j} f(j)=-(a+1) \sum_{j=1}^{r} \frac{w_{j}}{2 S}+(a-1) \sum_{j=r+1}^{n} \frac{w_{j}}{2(N-S)}=-1
$$

(p2) is equivalent to

$$
\begin{equation*}
\sum_{j=1}^{n} \sigma_{j} a_{j} h(j) \geq 0 \quad \forall h \in K \tag{2.10}
\end{equation*}
$$

But if h is a nondecreasing vector, then (2.10) is immediate because

$$
\sum_{j=1}^{r} w_{j} h(j) \leq h(r) \sum_{j=1}^{r} w_{j}=S h(r) \text { and } \sum_{j=r+1}^{n} h(j) \geq h(r) \sum_{j=r+1}^{n} w_{j}=(N-S) h(r),
$$

and therefore

$$
\begin{aligned}
\sum_{j=1}^{n} \sigma_{j} a_{j} h(j) & =-\frac{1}{2 S} \sum_{j=1}^{r} w_{j} h(j)+\frac{1}{2(N-S)} \sum_{j=r+1}^{n} w_{j} h(j) \\
& \geq-\frac{1}{2 S} S h(r)+\frac{1}{2(N-S)}(N-S) h(r)=0
\end{aligned}
$$

This concludes the proof.
From Proposition 2.6 we deduce that if $S=N / 2$, then

$$
\begin{equation*}
\left\{(x(1), x(2), \ldots, x(n)): \sum_{j=1}^{n} \sigma_{j} \frac{w_{j}}{N} x(j)=1\right\} \tag{2.11}
\end{equation*}
$$

is a strongly separating hyperplane at \widetilde{h}^{*}, and from Theorem 2.4 this is equivalent to $\widetilde{h}_{p, w}=\widetilde{h}^{*}$ for all $1 \leq p<\infty$. In the case that $S \neq N / 2$, we claim that $h_{p, w} \rightarrow \widetilde{h}^{*}$ as $p \rightarrow \infty$ exactly at a rate $O\left(\frac{1}{p}\right)$. From Proposition 2.6 and Theorems 2.4 and 2.5 we only need to show that (2.11) is not a strongly separating hyperplane at \widetilde{h}^{*}. This last assertion is true since 2.10, with $a_{j}=w_{j} / N$, all $j \in I_{n}$, implies

$$
\begin{equation*}
\sum_{j=r+1}^{n} w_{j} h(j) \geq \sum_{j=1}^{r} w_{j} h(j) \quad \forall h \in K \tag{2.12}
\end{equation*}
$$

On the other hand, if $S<N / 2$ then $h=(-1,-1, \ldots,-1) \in K$ does not satisfy 2.12 , and an analogous conclusion is valid for $h=(1,1, \ldots, 1) \in K$ if $S>N / 2$. This proves the claim.

In what follows we obtain these same results calculating directly the best $\ell_{p, w}^{n}$-approximations to f from K, namely, $h_{p, w}=\left(x_{p, w}, x_{p, w}, \ldots, x_{p, w}\right)$. It is easy to check that

$$
x_{p, w}=\frac{a-1+a\left(\frac{S}{N-S}\right)^{\frac{1}{p}}+\left(\frac{S}{N-S}\right)^{\frac{1}{p}}}{1+\left(\frac{S}{N-S}\right)^{\frac{1}{p}}}, \quad 1<p<\infty
$$

Then we immediately conclude that if $S=N / 2$, then $h_{p, w}=h^{*}$ for $p>1$, and if $S \neq N / 2$, then $h_{p, w} \rightarrow h^{*}$ as $p \rightarrow \infty$. Moreover, we can calculate the rate of convergence. Indeed,

$$
\lim _{p \rightarrow \infty} \frac{h_{p, w}(j)-h^{*}(j)}{1 / p}=\lim _{p \rightarrow \infty} \frac{\frac{\left(\frac{S}{N-S}\right)^{1 / p}-1}{1+\left(\frac{S}{N N}\right)^{1 / p}}}{1 / p}=\frac{1}{2} \lim _{p \rightarrow \infty} \frac{\left(\frac{S}{N-S}\right)^{\frac{1}{p}}-1}{1 / p}=\frac{1}{2} \ln \left(\frac{S}{N-S}\right) .
$$

The rate of convergence is exactly $O\left(\frac{1}{p}\right)$.

References

[1] J. DESCLOUX, Approximations in L^{p} and Chebychev approximations, J. Soc. Ind. Appl. Math., 11 (1963), 1017-1026.
[2] A. EGGER and R. HUOTARI, The Pólya algorithm on convex sets, J. Approx. Theory, 56(2) (1989), 212-216.
[3] A. EGGER AND R. HUOTARI, Rate of convergence of the discrete Pólya algorithm, J. Approx. Theory, 60 (1990), 24-30.
[4] R. FLETCHER, J. GRANT AND M. HEBDEN, Linear minimax approximation as the limit of best L_{p}-approximation, SIAM J. Numer. Anal., 11 (1974), 123-136.
[5] M.D. HEBDEN, A bound on the difference between the Chebyshev norm and the Hölder norms of a function, SIAM J. Numer. Anal., 2(8) (1971), 270-279.
[6] R. HUOTARI, D. LEGG AND D. TOWNSEND, The Pólya algorithm on cylindrical sets, J. Approx. Theory, 53 (1988), 335-349.
[7] M. MARANO, Strict approximation on closed convex sets, Approx. Theory and its Appl., 6 (1990), 99-109.
[8] M. MARANO AND J. NAVAS, The linear discrete Pólya algorithm, Appl. Math. Letter, 8(6) (1995), 25-28.
[9] M. MARANO AND R. HUOTARI, The Pólya algorithm on tubular sets, Journal of Computational and Applied Mathematics, 54 (1994), 151-157.
[10] D. J. NEWMAN AND H.S. SHAPIRO, Some theorems on Cebysev approximation, Duke Math. J., 30 (1963), 673-682.
[11] G. PÓLYA, Sur un algorithme toujours convergent pour obtenir les polynomes de meilleure approximation de Tchebycheff pour une function continue quelconque, C. R. Acad. Sci. París, 157 (1913), 840-843.
[12] J.R. RICE, Tchebycheff approximation in a compact metric space, Bull. Amer. Math. Soc., 68 (1962), 405-410.
[13] J.M. QUESADA AND J. NAVAS, Rate of convergence of the linear discrete Polya algorithm, J. Aprox. Theory, 110-1 (2001), 109-119.
[14] I. SINGER, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer Verlag, Berlin, 1970.

