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Abstract

In this work we deal with best approximation in `n
p , 1 < p ≤ ∞, n ≥ 2. For

1 < p < ∞, let hp denote the best `n
p -approximation to f ∈ Rn from a closed,

convex subset K of Rn, f 6∈ K, and let h∗ be a best uniform approximation to
f from K. In case that h∗ − f = (ρ1, ρ2, · · · , ρn), |ρj | = ρ for j = 1, 2, · · · , n,
we show that the behavior of ‖hp − h∗‖ as p → ∞ depends on a property of
separation of the set K from the `n

∞-ball {x ∈ Rn : ‖x− f‖ ≤ ρ} at h∗ − f .

2000 Mathematics Subject Classification: 26D15
Key words: Best uniform approximation, Rate of convergence, Polya Algorithm,

Strong uniqueness.
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1. Introduction
Let (w1, w2, . . . , wn) be a fixed vector inRn, with wj > 0, j ∈ In := {1, 2, . . . , n},
n ≥ 2. Forx = (x(1), x(2), . . . , x(n)) ∈ Rn we define

‖x‖p,w :=

(
n∑

j=1

wj|x(j)|p
) 1

p

, 1 ≤ p < ∞, and

‖x‖ := max
1≤j≤n

|x(j)|.

Also we defineN :=
∑n

j=1 wj.
Throughout the paper,K will always be a nonempty, closed, convex subset

of Rn. For f ∈ Rn\K, we will say thathp,w ∈ K, 1 ≤ p < ∞, is a best
`n
p,w-approximation tof from K if

‖f − hp,w‖p,w ≤ ‖f − h‖p,w ∀h ∈ K.

The existence of at least one best`n
p,w−approximation tof from K is a

known fact for1 ≤ p < ∞. Likewise, there always exists a best uniform
approximation tof from K, i.e., anh∗ ∈ K that satisfies

‖f − h∗‖ ≤ ‖f − h‖ ∀h ∈ K.

We will henceforth assumef = 0 and 0 6∈ K. This causes no loss of
generality, since all relevant properties are translation invariant. If1 < p < ∞,
there is a unique best`n

p,w−approximation. In this case, the next theorem [14]
characterizes the best`n

p,w−approximation to0 from K.
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Theorem 1.1 (Characterization of the best̀ n
p,w-approximation). Let K be

a closed, convex subset ofRn, 0 6∈ K. Thenhp,w, 1 ≤ p < ∞, is a best
`n
p,w−approximation to0 fromK if and only if for allh ∈ K,

(1.1)
n∑

j=1

wj(hp,w(j)− h(j))|hp,w(j)|p−1sgn(hp,w(j)) ≤ 0, if p > 1.

(1.2)
∑

j∈R(h1,w)

wj (h1,w(j)− h(j)) sgn(h1,w(j)) ≤
∑

j∈Z(h1,w)

wj |h(j)|, if p = 1,

where, ifg ∈ Rn, Z(g) := {j ∈ In : g(j) = 0} andR(g) := In \ Z(g).

It is also known [1, 6, 7] that if K is an affine subspace, then

(1.3) lim
p→∞

hp,w = h∗,

where in this caseh∗ is a particular best uniform approximation to0 from K,
calledstrict uniform approximation [12, 7] and whose definition is also valid in
any closed, convexK. In [3, 8] it is proved that there exists a constantM > 0
such thatp ‖hp,w − h∗‖ ≤ M for all p > 1. Moreover, from [13] it is deduced
that there are constantsM1, M2 > 0 and0 ≤ a ≤ 1, depending onK, such that

M1 ap ≤ p ‖hp,w − h∗‖ ≤ M2 ap for all p > 1.

In [2, 7] it is shown that ifK is not an affine subspace, thenhp,w does not
necessarily converge to the strict uniform approximation, though (1.3) is always
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valid wheneverh∗ is the unique best uniform approximation to0 from K. In
[6, 7] we can find sufficient conditions onK under which (1.3) is satisfied. In
any case, the convergence ofhp,w asp →∞ to a best uniform approximation is
known as thePolya algorithm [11]. The purpose of this paper is to study the
behavior of‖hp,w − h∗‖ asp →∞ whenh∗ is a best uniform approximation to
0 from K andh∗ satisfies|h∗(j)| = ρ > 0 ∀ j ∈ In.
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2. Relation Between Strong Uniqueness and Rate
of Convergence

A useful concept in order to get a first general result on the rate of convergence
of the Polya algorithm is strong uniqueness. It was established in 1963 by New-
man and Shapiro [10] in the context of the uniform approximation to continuous
functions by means of elements of a Haar space, although we could define it in
any normed space.

Definition 2.1. Let h∗ ∈ K be a best uniform approximation to0 ∈ Rn from
K. We say thath∗ is strongly uniqueif there existsγ > 0 such that

(2.1) ‖h− h∗‖ ≤ γ(‖h‖ − ‖h∗‖) ∀h ∈ K.

It is obvious that ifh∗ is strongly unique, thenh∗ is the unique best uniform
approximation to0 ∈ Rn from K.

Theorem 2.1. If the best uniform approximationh∗ to 0 from K is strongly
unique, thenp ‖hp,w − h∗‖ is bounded for allp ≥ 1.

Proof. We first note that for everyh ∈ K,

(2.2) m
1
p ‖h‖ ≤ ‖h‖p,w ≤ N

1
p ‖h‖,

wherem := minj∈In{wj}.
Let γ > 0 satisfy (2.1). Then for anyp ≥ 1,

(2.3) ‖hp,w − h∗‖ ≤ γ(‖hp,w‖ − ‖h∗‖).

http://jipam.vu.edu.au/
mailto:
mailto:mmarano@ujaen.es
mailto:
mailto:jnavas@ujaen.es
mailto:
mailto:jquesada@ujaen.es
http://jipam.vu.edu.au/


Rate of Convergence of the
Discrete Polya Algorithm from
Convex Sets. A Particular Case

M. Marano, J. Navas and
J.M. Quesada

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 21

J. Ineq. Pure and Appl. Math. 3(4) Art. 50, 2002

http://jipam.vu.edu.au

Applying (2.2) and the definition of best̀np,w-approximation, we have

‖hp,w‖ − ‖h∗‖ ≤ 1

m
1
p

‖hp,w‖p,w − ‖h∗‖

≤ 1

m
1
p

‖h∗‖p,w − ‖h∗‖

≤

[(
N

m

) 1
p

− 1

]
‖h∗‖

≤ (N −m)‖h∗‖
m p

.

From (2.3) we finally conclude that

p ‖hp,w − h∗‖ ≤ γ(N −m)‖h∗‖
m

for all p ≥ 1.

The above inequality improves the proposal in [4] and [5].

2.1. The Particular Case|h∗(j)| = ρ > 0, j = 1, 2, . . . , n

We henceforth suppose thath∗ ∈ K is a best uniform approximation to0
from K, where|h∗(j)| = ρ > 0 for all j ∈ In. Under these conditions we
will analyze the behaviour of‖hp,w − h∗‖ asp → ∞. In Theorem2.3, our
main result, we will prove that the converse of Theorem2.1 – which is gen-
erally not true – is valid in this particular case. Since{x ∈ Rn : ‖x‖ ≤
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ρ} ∩ K = {h ∈ K : ‖h‖ = ρ}, it is easy to see that there is a hyperplane{
(x(1), x(2), . . . , x(n)) :

∑n
j=1 aj sgn(h∗(j)) x(j) = ρ

}
, with 0 ≤ aj ≤ 1, all

j ∈ In, and
∑n

j=1 aj = 1, that separatesK from the ball{x ∈ Rn : ‖x‖ ≤ ρ}
ath∗, i.e.,

∑n
j=1 aj sgn(h∗(j)) h(j) ≥ ρ for all h ∈ K.

Definition 2.2. We will say that

π :=

{
(x(1), x(2), . . . , x(n)) :

n∑
j=1

aj sgn(h∗(j)) x(j) = ρ

}

is a hyperplane thatstrongly separatesK from the ball{x ∈ Rn : ‖x‖ ≤ ρ} at
h∗, or equivalently, thatπ is astrongly separating hyperplane ath∗, if

(2.4) 0 < aj < 1, all j ∈ In,
n∑

j=1

aj = 1

and

(2.5)
n∑

j=1

aj sgn(h∗(j)) h(j) ≥ ρ ∀h ∈ K.

In the proofs of Lemma2.2 and Theorems2.3 and 2.4 we will assume
h∗(j) = 1 for all j ∈ In. This causes no loss of generality, since we can
replaceK by the closed, convex set{

h̃ ∈ Rn : h̃(j) =
1

ρ
h(j) sgn(h∗(j)), j ∈ In, h ∈ K

}
.
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Lemma 2.2. If pk ‖hpk,w − h∗‖ is bounded forpk → ∞, then there exists a
strongly separating hyperplane ath∗.

Proof. Since limpk→∞ hpk,w(j) = h∗(j) = 1, all j ∈ In, we can suppose
hpk,w(j) > 0, all j ∈ In and, without loss of generality, allpk. Then, for
everypk the formula of characterization (1.1) can be expressed in the form

n∑
j=1

wj(hpk,w(j)− h(j))hpk−1
pk,w (j) ≤ 0 ∀h ∈ K.

Dividing by ‖hpk,w‖pk
pk,w, for everypk we obtain

(2.6)
n∑

j=1

wj

(
hpk,w(j)

‖hpk,w‖pk,w

)pk h(j)

hpk,w(j)
≥ 1 ∀h ∈ K.

Keeping in mind that

wjh
pk
pk,w(j) ≤ ‖hpk,w‖pk

pk,w ≤ ‖h∗‖pk
pk,w = N, j ∈ In,

and after passage to a subsequence, we can suppose thathpk
pk,w(j), all j ∈ In, and

‖hpk,w‖pk
pk,w are convergent. Now, by hypothesis,pk |hpk,w(j) − 1| is bounded

for all j ∈ In and allpk. Hence we get

lim
pk→∞

hpk
pk,w(j) = lim

pk→∞
Exp(pk(hpk,w(j)− 1)) > 0, all j ∈ In.

Writing

aj = lim
pk→∞

wj

(
hpk,w(j)

‖hpk,w‖pk,w

)pk

, j ∈ In,
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we therefore deduce that0 < aj < 1, all j ∈ In, and
∑n

j=1 aj = 1. Taking
limits aspk →∞ in (2.6), we finally conclude that

n∑
j=1

aj h(j) ≥ 1 ∀h ∈ K.

Then
{

(x(1), x(2), . . . , x(n)) :=
∑n

j=1 ajx(j) = 1
}

is a strongly separating hy-

perplane ath∗.

Theorem 2.3.The following statements are equivalent:

(a) The best uniform approximation to0 fromK, h∗, is strongly unique.

(b) p ‖hp,w − h∗‖ is bounded for allp ≥ 1.

(c) pk ‖hpk,w − h∗‖ is bounded for a sequencepk →∞.

(d) There exists a strongly separating hyperplane ath∗.

Proof. (a)⇒ (b) is Theorem2.1. (b)⇒ (c) is obvious. (c)⇒ (d) is Lemma2.2.
To complete the theorem, we now prove (d)⇒ (a). Suppose that there is a
strongly separating hyperplaneπ at h∗ = (1, 1, . . . , 1). Let h ∈ K. Observe
that‖h‖ ≥ 1. LetI+

n denote the subset of indicesj in In such thath(j) ≥ 1, and
let I−n := In \ I+

n . For allj ∈ I+
n we have|h(j)− 1| = h(j)− 1 ≤ ‖h‖− 1. On

the other hand, ifj ∈ I−n , then|h(j)− 1| = 1− h(j). Moreover, the inequality∑
i∈In

ai(h(i)− 1) ≥ 0
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implies

aj(1− h(j)) ≤
∑

i∈In,i6=j

ai(h(i)− 1)

≤
∑
i∈I+

n

ai(h(i)− 1)

≤ (‖h‖ − 1)
∑
i∈I+

n

ai

≤ (‖h‖ − 1)(1− aj).

Thus, for allj ∈ In we have

|h(j)− 1| ≤
(

1

mini∈In ai

− 1

)
(‖h‖ − 1) := γ(‖h‖ − 1),

and so‖h− h∗‖ ≤ γ(‖h‖ − ‖h∗‖).

Our goal now is to show that, under the conditions of Theorem2.3, either
hp,w = h∗ for all p or there exist constantsM1, M2 > 0 such that

M1 ≤ p ‖hp,w − h∗‖ ≤ M2 for all p ≥ 1.

On the other hand, if there exists no strongly separating hyperplane ath∗, then
the following example inR2, wherelimp→∞ hp,w = h∗, shows that the rate of
convergence is as slow as we want.

Example 2.1. Let α : [1, +∞) → (0, 1] be a continuous strictly decreasing
function such thatα(1) = 1 and lim

t→∞
α(t) = 0 and letβ : (0, 1] → [1, +∞)
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denote its inverse function, that will also be a strictly decreasing function. We
define

f(x) := 1 +

∫ 1

x

(1− t)β(1−t)dt, 0 ≤ x ≤ 1,

and letK be the convex hull of the set{(x, y) ∈ R2 : y = f(x), x ∈ [0, 1]}.

Observe thath∗ = (1, 1) is the unique best uniform approximation to(0, 0)
from K. Moreover, the functionf is smooth, convex andf ′(1) = 0. This
implies that the strongly separating hyperplane ath∗ does not exist.

Let hp = (1− εp, 1 + δp) be the bestp-approximation to(0, 0) from K, with
εp, δp ↓ 0 asp → ∞. Since the slopes of the curvey = f(x) and the`p-ball
coincide athp, we have

(1− εp)
p−1

(1 + δp)p−1
= εβ(εp)

p

and therefore

(2.7) lim
p→∞

εβ(εp)/(p−1)
p = lim

p→∞

1− εp

1 + δp

= 1.

If εp ≤ α(p), thenβ(εp) ≥ β(α(p)) = p, which contradicts (2.7). Then, forp
large, we haveεp > α(p). This shows that the rate of convergence ofhp to h∗

asp →∞ can be as slow as we want.

Theorem 2.4.The following conditions are equivalent

(a) hp,w = h∗ for all p ≥ 1,

(b) hp0,w = h∗ for somep0 ≥ 1,
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(c) the hyperplane

(2.8) π :=

{
(x(1), x(2), . . . , x(n)) :

n∑
j=1

sgn(h∗(j))
wj

N
x(j) = ρ

}

is a strongly separating hyperplane ath∗.

Proof. (a)⇒ (b) is obvious. (b)⇒ (c) follows immediately from Theorem1.1.
Indeed, ifhp0,w = h∗ for somep0 ≥ 1, then from (1.1) if p0 > 1 or (1.2) if
p0 = 1, we have

(2.9)
n∑

j=1

wj(h
∗(j)− h(j)) sgn(h∗(j)) ≤ 0 ∀h ∈ K,

which is equivalent to the fact thatπ is a strongly separating hyperplane ath∗.
Also from (1.1) and (1.2), the inequality (2.9) implies thathp,w = h∗ for all
p ≥ 1 and so (c)⇒ (a).

Theorem 2.5. Suppose thathp,w 6= h∗ for somep ≥ 1 and there exists a
strongly separating hyperplane ath∗. Then there are constantsM1, M2 > 0
such that

M1 ≤ p ‖hp,w − h∗‖ ≤ M2 for all p ≥ 1.

Proof. Assume that there exists a strongly separating hyperplane ath∗, where
h∗(j) = 1 for all j ∈ In. From Theorem2.3, there is a constantM2 > 0 such
that

p ‖hp,w − h∗‖ ≤ M2.
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Therefore, to prove the theorem it is sufficient to show thatinfp≥1{p ‖hp,w −
h∗‖} > 0. Suppose the contrary. In order to get a contradiction, we only need
to consider the two following exhaustive cases:

1. There exists a sequencepk →∞ such thatlimpk→∞ pk‖hpk
− h∗‖ = 0. In

this caselimpk→∞ pk |hpk,w(j) − 1| = 0 for all j ∈ In. This implies that
hpk

pk,w(j) → 1 aspk →∞ and

a∗j = lim
pk→∞

wj

(
hpk,w(j)

‖hpk,w‖pk,w

)pk

=
wj

N
, j = 1, 2, . . . , n,

which means (see the proof of Lemma2.2) that the hyperplane (2.8), with
h∗(j) = ρ = 1 for all j ∈ In, is a strongly separating hyperplane ath∗.
From Theorem2.4 (c), hp,w = h∗ for all p ≥ 1, which contradicts the
hypothesis of the theorem.

2. There exists a sequencepk → p0, 1 ≤ p0 < ∞, such that
limpk→p0 pk ‖hpk,w − h∗‖ = 0. Sincehpk,w → hp0,w, we deduce that
‖hp0,w − h∗‖ = limpk→p0 ‖hpk,w − h∗‖ = 0 and sohp0,w = h∗. Now,
using the statement (b) of Theorem2.4, we conclude thathp,w = h∗, for
all p ≥ 1. A contradiction.

2.2. A Numerical Example in Isotonic Approximation

Let f = (a + 1, . . . , a + 1︸ ︷︷ ︸
r

, a− 1, . . . , a− 1︸ ︷︷ ︸
n−r

) ∈ Rn, and letK be the convex set

http://jipam.vu.edu.au/
mailto:
mailto:mmarano@ujaen.es
mailto:
mailto:jnavas@ujaen.es
mailto:
mailto:jquesada@ujaen.es
http://jipam.vu.edu.au/


Rate of Convergence of the
Discrete Polya Algorithm from
Convex Sets. A Particular Case

M. Marano, J. Navas and
J.M. Quesada

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 21

J. Ineq. Pure and Appl. Math. 3(4) Art. 50, 2002

http://jipam.vu.edu.au

of the nondecreasing vectors inRn, i.e.

K = {h ∈ Rn : h(i) ≤ h(j) ∀ i, j ∈ In, i < j} .

In this case, the (unique) best uniform approximation tof fromK is the element
h∗ = (a, a, . . . , a). Thushp,w → h∗ asp → ∞. Furthermore, it is easy to see
that

hp,w = (xp,w, xp,w, . . . , xp,w) ∈ Rn, 1 < p < ∞,

for somexp,w satisfyinga− 1 ≤ xp,w ≤ a + 1.
In order to translateh∗ to a vertex of thè n

∞-ball, we consider the closed,
convex set

K̃ = {h̃ ∈ Rn : h̃(j) = h(j)− f(j) , j ∈ In, h ∈ K}.

In this way we obtain

• f̃ = (0, 0, . . . , 0);

• h̃∗ = h∗ − f = (−1, . . . ,−1︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
n−r

).

To simplify the notation, we will writeσj = sgn(h̃∗(j)), j ∈ In. Now, we are
interested in obtaining a strongly separating hyperplane ath̃∗, i.e., a hyperplane

π :=

{
(x(1), x(2), . . . , x(n)) :

n∑
j=1

aj σj x(j) = 1

}

such that
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(p1) 0 < aj < 1, all j ∈ In, and
∑n

1 aj = 1;

(p2)
∑n

j=1 σj aj h̃(j) ≥ 1 ∀ h̃ ∈ K̃.

Proposition 2.6. LetS :=
r∑

j=1

wj. Then the above hyperplaneπ, with

aj =
wj

2 S
if 1 ≤ j ≤ r, aj =

wj

2(N − S)
if r + 1 ≤ j ≤ n,

satisfies(p1) and (p2), and therefore it is a strongly separating hyperplane at
h̃∗.

Proof. By definition,0 < aj < 1 for all j ∈ In. Furthermore,

n∑
j=1

σj aj h̃∗(j) =
n∑

j=1

aj =
r∑

j=1

wj

2 S
+

n∑
j=r+1

wj

2(N − S)
=

1

2
+

1

2
= 1.

Then (p1) holds.
Since

n∑
j=1

σj aj f(j) = −(a + 1)
r∑

j=1

wj

2 S
+ (a− 1)

n∑
j=r+1

wj

2(N − S)
= −1,

(p2) is equivalent to

(2.10)
n∑

j=1

σj aj h(j) ≥ 0 ∀h ∈ K.
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But if h is a nondecreasing vector, then (2.10) is immediate because

r∑
j=1

wjh(j) ≤ h(r)
r∑

j=1

wj = S h(r)

and
n∑

j=r+1

h(j) ≥ h(r)
n∑

j=r+1

wj = (N − S)h(r),

and therefore
n∑

j=1

σj aj h(j) = − 1

2 S

r∑
j=1

wjh(j) +
1

2(N − S)

n∑
j=r+1

wjh(j)

≥ − 1

2S
S h(r) +

1

2(N − S)
(N − S)h(r) = 0.

This concludes the proof.

From Proposition2.6we deduce that ifS = N/2, then

(2.11)

{
(x(1), x(2), . . . , x(n)) :

n∑
j=1

σj
wj

N
x(j) = 1

}

is a strongly separating hyperplane ath̃∗, and from Theorem2.4 this is equiva-
lent to h̃p,w = h̃∗ for all 1 ≤ p < ∞. In the case thatS 6= N/2, we claim that

h̃p,w → h̃∗ asp → ∞ exactly at a rateO
(

1
p

)
. From Proposition2.6 and The-

orems2.4and2.5we only need to show that (2.11) is not a strongly separating
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hyperplane at̃h∗. This last assertion is true since (2.10), with aj = wj/N , all
j ∈ In, implies

(2.12)
n∑

j=r+1

wjh(j) ≥
r∑

j=1

wjh(j) ∀h ∈ K.

On the other hand, ifS < N/2 thenh = (−1,−1, . . . ,−1) ∈ K does not
satisfy (2.12), and an analogous conclusion is valid forh = (1, 1, . . . , 1) ∈ K
if S > N/2. This proves the claim.

In what follows we obtain these same results calculating directly the best
`n
p,w−approximations tof from K, namely,hp,w = (xp,w, xp,w, . . . , xp,w). It is

easy to check that

xp,w =
a− 1 + a

(
S

N−S

) 1
p +

(
S

N−S

) 1
p

1 +
(

S
N−S

) 1
p

, 1 < p < ∞.

Then we immediately conclude that ifS = N/2, thenhp,w = h∗ for p > 1, and
if S 6= N/2, thenhp,w → h∗ asp →∞. Moreover, we can calculate the rate of
convergence. Indeed,

lim
p→∞

hp,w(j)− h∗(j)

1/p
= lim

p→∞

( S
N−S )

1/p
−1

1+( S
N−S )

1/p

1/p

=
1

2
lim
p→∞

(
S

N−S

) 1
p − 1

1/p
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=
1

2
ln

(
S

N − S

)
.

The rate of convergence is exactlyO
(

1
p

)
.
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