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ABSTRACT. In this paper some necessary and sufficient conditions for new forms of atomic
decompositions of weak martingale Hardy spaces wQp and wDp are obtained.
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1. I NTRODUCTION AND PRELIMINARIES

It is well known that the method of atomic decompositions plays an important role in mar-
tingale theory, such as in the study of martingale inequalities and of the duality theorems for
martingale Hardy spaces. Many theorems can be proved more easily through its use. The
technique of stopping times used in the case of one-parameter is usually unsuitable for the
case of multi-parameters, but the method of atomic decompositions can deal with them in the
same manner. F.Weisz [6] gave some atomic decomposition theorems on martingale spaces and
proved many important martingale inequalities and the duality theorems for martingale Hardy
spaces with the help of atomic decompositions. Hou and Ren [3] obtained some weak types of
martingale inequalities through the use of atomic decompositions.

In this paper we will establish some new atomic decompositions for weak martingale Hardy
spaceswQp andwDp, and give some necessary and sufficient conditions.

Let (Ω, Σ, P) be a complete probability space, and(Σn)n≥0 a non-decreasing sequence of
sub-σ-algebras ofΣ such thatΣ = σ

(⋃
n≥0 Σn

)
. The expectation operator and the conditional

expectation operators relative toΣn are denoted byE andEn, respectively. For a martingale
f = (fn)n≥0 relative to(Ω, Σ, P, (Σn)n≥0), definedfi = fi − fi−1 (i ≥ 0, with convention
df0 = 0) and

f ∗n = sup
0≤i≤n

|fi|, f∗ = f ∗∞ = sup
n≥0

|fn|,
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Sn(f) =

(
n∑

i=0

|dfi|2
) 1

2

, S(f) =

(
∞∑
i=0

|dfi|2
) 1

2

.

Let 0 < p < ∞. The space consisting of all measurable functionsf for which

‖f‖wLp =: sup
y>0

yP(|f | > y)
1
p < ∞

is called a weakLp-space and denoted by wLp. We set wL∞ = L∞. It is well-known that
‖·‖wLp

is a quasi-norm on wLp and Lp ⊂ wLp since‖f‖wLp ≤ ‖f‖Lp . Denote byΛ the
collection of all sequences(λn)n≥0 of non-decreasing, non-negative and adapted functions and
setλ∞ = limn→∞ λn. If 0 < p < ∞, we define the weak Hardy spaces as follows:

wQp = {f = (fn)n≥0 : ∃(λn)n≥0 ∈ Λ, s.t. Sn(f) ≤ λn−1, λ∞ ∈ wLp},
‖f‖wQp = inf

(λn)∈Λ
‖λ∞‖wLp ;

wDp = {f = (fn)n≥0 : ∃(λn)n≥0 ∈ Λ, s.t. |fn| ≤ λn−1, λ∞ ∈ wLp},
‖f‖wDp = inf

(λn)∈Λ
‖λ∞‖wLp .

Remark 1. Similar to martingale Hardy spacesQp andDp (see F.Weisz [6]), we can prove that
“ inf ” in the definitions of‖·‖wQp

and‖·‖wDp
is attainable. That is, there exist(λ

(1)
n )n≥0 and

(λ
(2)
n )n≥0 such that‖f‖wQp

= ‖λ(1)
∞ ‖wLp and‖f‖wDp = ‖λ(2)

∞ ‖wLp , which are called the optimal
control ofS(f) andf , respectively.

Definition 1.1 ([6]). Let 0 < p < ∞. A measurable functiona is called a(2, p,∞) atom (or
(3, p,∞) atom) if there exists a stopping timeν (ν is called the stopping time associated with
a) such that

(i) an = Ena = 0 if ν ≥ n,
(ii) ‖S(a)‖∞ ≤ P(ν 6= ∞)−

1
p (or (ii)′ ‖a∗‖∞ ≤ P(ν 6= ∞)−

1
p ).

Throughout this paper, we denote the set of integers and the set of non-negative integers by
Z andN, respectively. We useCp to denote constants which depend only onp and may denote
different constants at different occurrences.

2. M AIN RESULTS AND PROOFS

Atomic decompositions for weak martingale Hardy spaces wQp and wDp have been estab-
lished in [3]. In this section, we give them new forms of atomic decompositions, which are
closely connected with weak type martingale inequalities.

Theorem 2.1.Let0 < p < ∞. Then the following statements are equivalent:

(i) There exists a constantCp > 0 such that for each martingalef = (fn)≥0:

‖f ∗‖wLp ≤ Cp‖f‖wQp ;

(ii) If f = (fn)n≥0 ∈ wQp, then there exist a sequence(ak)k∈Z of (3, p,∞) atoms and a
sequence(µk)k∈Z of nonnegative real numbers such that for alln ∈ N:

(2.1) fn =
∑
k∈Z

µkEna
k

and

(2.2) sup
k∈Z

2kP(νk < ∞)
1
p ≤ Cp ‖ f ‖wQp ,
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where0 ≤ µk ≤ A · 2kP(νk 6= ∞)
1
p for some constantA andνk is the stopping time

associated withak.

Proof. (i)⇒(ii). Let f = (fn)≥0 ∈ wQp. Then there exists an optimal control(λn)n≥0 such that
Sn(f) ≤ λn−1. Consequently,

(2.3) |fn| ≤ f ∗n−1 + λn−1.

Define stopping times for allk ∈ Z:

νk = inf{n ≥ 0 : f ∗n + λn > 2k}, (inf ∅ = ∞).

The sequence of stopping times is obviously non-decreasing. Letf νk = (fn∧νk
)n≥0 be the

stopped martingale. Then

∑
k∈Z

(f νk+1
n − f νk

n ) =
∑
k∈Z

(
n∑

m=0

χ(m ≤ νk+1)dfm −
n∑

m=0

χ(m ≤ νk)dfm

)

=
n∑

m=0

(∑
k∈Z

χ(νk < m ≤ νk+1)dfm

)
= fn,(2.4)

whereχ(A) denotes the characteristic function of the setA. Now let

(2.5) µk = 2k · 3P(νk 6= ∞)
1
p , ak

n = µ−1
k (f νk+1

n − f νk
n ), (k ∈ Z, n ∈ N)

(ak
n = 0 if µk = 0). It is clear that for a fixedk ∈ Z, (ak

n)n≥0 is a martingale, and by (2.3) we
have

(2.6)
∣∣ak

n

∣∣ ≤ µ−1
k (|f νk+1

n |+ |f νk
n |) ≤ P(νk 6= ∞)−

1
p .

Consequently,(ak
n)n≥0 is L2-bounded and so there existsak ∈ L2 such thatEna

k = ak
n, n ≥ 0.

It is clear thatak
n = 0 if n ≤ νk and by (2.6) we get‖ak∗‖∞ ≤ P(νk 6= ∞)−

1
p . Therefore each

ak is a (3, p,∞) atom, (2.4) and (2.5) shows thatf has a decomposition of the form (2.1) and
0 ≤ µk ≤ A · 2kP(νk 6= ∞)

1
p with A = 3, respectively. By (i), we have

2kpP (νk < ∞) = 2kpP(f ∗ + λ∞ > 2k)

≤ 2kp(P(f ∗ > 2k−1) + P(λ∞ > 2k−1))

≤ Cp‖f‖p
wQp

,

which proves (2.2).

(ii)⇒(i). Let f = (fn)≥0 ∈ wQp. Thenf can be decomposed as in (ii)fn =
∑

k∈Z µka
k
n of

(3, p,∞) atoms such that (2.2) holds. For any fixedy > 0 choosej ∈ Z such that2j ≤ y < 2j+1

and let

f =
∑
k∈Z

µka
k =

j−1∑
k=−∞

µka
k +

∞∑
k=j

µka
k =: g + h.

It follows from the sublinearity of maximal operators that we havef ∗ ≤ g∗ + h∗, so

P(f ∗ > 2y) ≤ P(g∗ > y) + P(h∗ > y).
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For 0 < p < ∞, chooseq so thatmax(1, p) < q < ∞. By (ii) and the fact thatak∗ = 0 on the
set(νk = ∞), we have

‖g∗‖q ≤
j−1∑

k=−∞

µk‖ak∗‖q =

j−1∑
k=−∞

µk‖ak∗χ(νk 6= ∞)‖q

≤
j−1∑

k=−∞

A · 2k(1− p
q
)2

kp
q P(νk 6= ∞)

1
q

≤ Cp

j−1∑
k=−∞

A · 2k(1− p
q
)‖f‖

p
q

wQp

≤ Cpy
1− p

q ‖f‖
p
q

wQp
.

It follows that

(2.7) P(g∗ > y) ≤ y−qE[g∗q] ≤ Cpy
−p‖f‖p

wQp
.

On the other hand, we have

P (h∗ > y) ≤ P(h∗ > 0) ≤
∞∑

k=j

P(ak∗ > 0)

≤
∞∑

k=j

P(νk 6= ∞)

≤
∞∑

k=j

2−kp · 2kpP(νk 6= ∞)(2.8)

≤ Cpy
−p‖f‖p

wQp
.

Combining (2.7) with (2.8), we getP(f ∗ > y) ≤ Cpy
−p‖f‖p

wQp
. Hence

‖f ∗‖wLp ≤ Cp‖f‖wQp .

The proof is completed. �

Theorem 2.2.Let0 < p < ∞. Then the following statements are equivalent:

(i) There exists a constantCp > 0 such that for each martingalef = (fn)≥0:

‖S(f)‖wLp ≤ Cp‖f‖wDp ;

(ii) If f = (fn)n≥0 ∈ wDp, then there exist a sequence(ak)k∈Z of (2, p,∞) atoms and a
sequence(µk)k∈Z of nonnegative real numbers such that for alln ∈ N:

(2.9) fn =
∑
k∈Z

µkEna
k

and

(2.10) sup
k∈Z

2kP(νk < ∞)
1
p ≤ Cp ‖f‖wDp

,

where0 ≤ µk ≤ A · 2kP(νk 6= ∞)
1
p for some constantA andνk is the stopping time

associated withak.
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Proof. (i)⇒(ii). Let f = (fn)≥0 ∈ wDp. Then there exists an optimal control(λn)n≥0 such that
|fn| ≤ λn−1. Consequently,

(2.11) Sn(f) =

(
n−1∑
i=0

|dfi|2 + |dfn|2
) 1

2

≤ Sn−1(f) + 2λn−1.

Define stopping times for allk ∈ Z:

νk = inf{n ≥ 0 : Sn(f) + 2λn > 2k}, (inf ∅ = ∞),

andak
n andµk are as in the proof of Theorem 2.1. Then by (2.11) we have

S(ak) ≤ µ−1
k (S(f νk+1) + S(f νk)) ≤ P(νk 6= ∞)−

1
p .

Thus
∥∥S(ak)

∥∥
∞ ≤ P(νk 6= ∞)−

1
p and there exists anak such thatEna

k = ak
n, n ≥ 0. It is clear

thatak is a(2, p,∞) atom. Similar to the proof of Theorem 2.1, we can prove (2.9) and (2.10).
The proof of the implication (ii)⇒(i) is similar to that of Theorem 2.1.
The proof is completed. �

Remark 2. The two inequalities in (i) of Theorems 2.1 and 2.2 were obtained in [3]. Here
we establish the relation between atomic decompositions of weak martingale Hardy spaces and
martingale inequalities.
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