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Abstract

This paper introduces a new subclass and investigates the sufficiency condi-
tions for a function to belong to this subclass. Certain types of inequalities are
also studied exhibiting the well-known geometric properties of multivalently an-
alytic functions in the unit disk. Several interesting consequences of the main
results are also mentioned.
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1. Introduction and Definition
Let T (p) denote the class of functionsf(z) of the form:

(1.1) f(z) = zp +
∞∑

k=p+1

akz
k (p ∈ N = {1, 2, 3, . . . }),

which areanalyticandmultivalentin the open diskU = {z : z ∈ C and |z| <
1}. A functionf(z) belonging toT (p) is said to bemultivalently starlike order
α in U if it satisfies the inequality:

(1.2) <
{

zf ′(z)

f(z)

}
> α (z ∈ U ; 0 6 α < p; p ∈ N ),

and, a functionf(z) ∈ T (p) is said to bemultivalently convex of orderα in U
if it satisfies the inequality:

(1.3) <
{

1 +
zf ′′(z)

f ′(z)

}
> α (z ∈ U ; 0 6 α < p; p ∈ N ).

For the aforementioned definitions, one may refer to [1] (see also [11]). Fur-
ther, a functionf(z) ∈ T (p) is said to be in the subclassT SKδ

λ(p; α) if it
satisfies the inequality:

<

{(
zf ′(z) + λz2f ′(z)

(1− λ)f(z) + λzf ′(z)

)δ
}

> α,(1.4)

(z ∈ U ; δ 6= 0; 0 6 λ 6 1; 0 6 α < p; p ∈ N ).
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Here, and throughout this paper, the value of expressions like(
zf ′(z) + λz2f ′′(z)

(1− λ)f(z) + λzf ′(z)

)δ

,

is considered to be its principal value. We mention below some of the sub-
classes of the functionsT (p) from the families of functionsT SKδ

λ(p; α) (de-
fined above). Indeed, we have

T Sδ(p; α) ≡ T SKδ
0(p; α) (δ 6= 0, 0 6 α < p, p ∈ N ),(1.5)

T Kδ(p; α) ≡ T SKδ
1(p; α) (δ 6= 0, 0 6 α < p, p ∈ N ),(1.6)

Tλ(p; α) ≡ T SK1
λ(p; α) (0 6 λ 6 1, 0 6 α < p, p ∈ N ) (see [5]).(1.7)

The important subclasses in Geometric Function Theory such as multivalently
starlike functionsSp(α) of orderα (0 6 α < p; p ∈ N ) in U , multivalently
convex functionsKp(α) of orderα (0 6 α < p; p ∈ N ) in U , multivalently
starlike functionsSp in U , multivalently convex functionsKp in U , starlike func-
tionsS(α) of orderα (0 6 α < 1) in U , convex functionsK(α) of orderα
(0 6 α < 1) in U , starlike functionsS in U and convex functionsK in U , are
seen to be easily identifiable with the aforementioned classes ([1], [5] and [11]).

By introducing a subclassT SKδ
λ(p; α)of functionsf(z) ∈ T (p) satisfying

the inequality (1.4), our motive in this paper is to obtain sufficient conditions
for a function to belong to the above subclass. The other results investigated
include certain inequalities for multivalent functions depicting the properties of
starlikeness, close-to-convexity and convexity in the open unit disk. Several
corollaries are deduced as worthwhile consequences of our main results.

http://jipam.vu.edu.au/
mailto:
mailto:hisimya@baskent.edu.tr
mailto:
mailto:rainark_7@hotmail.com
http://jipam.vu.edu.au/


Some Inequalities Exhibiting
Certain Properties Of Some
Subclasses Of Multivalently

Analytic Functions

Hüseyin Irmak and R.K. Raina

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 16

J. Ineq. Pure and Appl. Math. 6(1) Art. 9, 2005

http://jipam.vu.edu.au

2. Main Results
Before stating and proving our main results, we require the following assertion
(popularly known as Jack’s Lemma).

Lemma 2.1 ([7]). Let the functionw(z) be non-constant and regular in the unit
discU such thatw(0) = 0. If |w(z)| attains its maximum value on the circle
|z| = r < 1 at the pointz0, then

(2.1) z0w
′(z0) = c w(z0) (c > 1).

We begin now to prove the following:

Theorem 2.2. Let δ ∈ R\ {0} , 0 6 α < p, p ∈ N and f(z) ∈ T (p). If a
functionF (z) defined by

(2.2) F (z) = (1− λ)f(z) + λzf ′(z) (0 6 λ 6 1),

satisfies the inequality:

(2.3) <


1 + z

(
F ′′(z)
F ′(z)

− F ′(z)
F (z)

)
1− pδ

(
zF ′(z)
F (z)

)−δ




< 1
δ

whenδ > 0

> 1
δ

whenδ < 0

 (z ∈ U),

thenf(z) ∈ T SKδ
λ(p; β), where β = pδ − (p− α)δ.

Proof. Let f(z) ∈ T (p)andF (z) be defined by (2.2) . From (1.1) and (2.2), we
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have

zF ′(z)

F (z)
=

zf ′(z) + λ z2f ′′(z)

(1− λ)f(z) + λ zf ′(z)
(2.4)

=
p +

∑∞
k=p+1

k[1+λ(k−1)]
1+λ(p−1)

akz
k−p

1 +
∑∞

k=p+1
1+λ(k−1)
1+λ(p−1)

akzk−p
.

(z ∈ U ; 0 6 λ 6 1; p ∈ N )

Now, define a functionw(z) by

(2.5)

(
zF ′(z)

F (z)

)δ

−pδ = (p−α)δw(z), (z ∈ U ; δ 6= 0; 0 6 α < p; p ∈ N ),

then the functionw(z) is analytic inU andw(0) = 0. Differentiation of (2.5)
gives

(2.6) 1 +
zF ′′(z)

F ′(z)
− zF ′(z)

F (z)
=

(
(p− α)δ

pδ + (p− α)δw(z)

)
z w′(z)

δ
.

Hence, (2.5) and (2.6) yields

(2.7)
1 + z

(
F ′′(z)
F ′(z)

− F ′(z)
F (z)

)
1− pδ

(
zF ′(z)
F (z)

)−δ
=

zw′(z)

δw(z)
.

We claim that|w(z)| < 1 in U . For otherwise (by Jack’s Lemma), there exists
a pointz0 ∈ U such that

z0w
′(z0) = c w(z0), where |w(z0)| = 1 (c > 1).
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Therefore, (2.7) yields

<


1 + z

(
F ′′(z)
F ′(z)

− F ′(z)
F (z)

)
1− pδ

(
zF ′(z)
F (z)

)−δ

∣∣∣∣∣∣∣
z=z0

 =
1

δ
<

{
z0w

′(z0)

w(z0)

}
(2.8)

=
c

δ


> 1

δ
whenδ > 0

6 1
δ

whenδ < 0,

which contradicts our assumption (2.3) . Therefore,|w(z)| < 1 holds true for
all z ∈ U , and we conclude from (2.5) that

(2.9)

∣∣∣∣∣
(

zF ′(z)

F (z)

)δ

− pδ

∣∣∣∣∣ = (p− α)δ |w(z)| < (p− α)δ,

which evidently implies that

(2.10) <

{(
zF ′(z)

F (z)

)δ
}

> pδ − (p− α)δ,

and hencef(z) ∈ T SKδ
λ(p; α).

Theorem 2.3.Let δ ∈ R\ {0} ; 0 6 α < p; n, m, p ∈ N ; q = n−m; f(z) ∈
T (n) andg(z) ∈ T (m). If f(z) satisfies the inequality:

(2.11) <
(

zf ′(z)

f(z)

) 
< q + α + 1

2δ
when δ > 0 andg(z) ∈ Sm(α)

> q + α + 1
2δ

when δ < 0 andg(z) /∈ Sm(α),
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then

(2.12) <

{(
z−q f(z)

g(z)

)δ
}

> 0,

where the value of
(
z−q f(z)

g(z)

)δ

is taken to be its principle value.

Proof. Let f(z) ∈ T (n) andg(z) ∈ T (m) with n−m ∈ N . Since

f(z)

g(z)
= zq + c1z

q+1 + c2z
q+2 + · · · ∈ T (q) (q = n−m ∈ N ),

we definew(z) by

(2.13)

(
z−q f(z)

g(z)

)δ

= 1 + w(z) (z ∈ U ; δ 6= 0).

It is clear that the functionw(z) is an analytic function inU and w(0) = 0.
Differentiating (2.13), we have

(2.14)
zf ′(z)

f(z)
= q +

zw′(z)

δ (1 + w(z))
+

zg′(z)

g(z)
.

If we suppose that there exists a pointz0 ∈ U such thatz0w
′(z0) = c w(z0)

where|w(z0)| = 1 (c > 1), i.e. w(z0) = eiθ (θ ∈ [0, 2π)− {π}), then

<
{

z0f
′(z0)

f(z0)

}
= q +

1

δ
<

{
z0w

′(z0)

1 + w(z0)
+

δ z0g
′(z)

g(z0)

}
= q +

1

δ
<

{
ceiθ

1 + eiθ

}
+ <

{
z0g

′(z)

g(z0)

}
.(2.15)
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From (2.15) it follows that

(2.16) <
{

z0f
′(z0)

f(z0)

}
> q + α +

1

2δ
(δ > 0),

provided that

<
{

z0g
′(z0)

g(z0)

}
> α,

and

(2.17) <
{

z0f
′(z0)

f(z0)

}
6 q + α +

1

2δ
(δ < 0),

provided that

<
{

z0g
′(z0)

g(z0)

}
6 α.

But the inequalities in (2.16) and (2.17) contradict the inequalities in (2.11).
Hence|w(z)| < 1, for all z ∈ U , and therefore (2.13) yields

(2.18)

∣∣∣∣∣
(

z−q f(z)

g(z)

)δ

− 1

∣∣∣∣∣ = |w(z)| < 1,

which evidently implies (2.12), and this completes the proof of Theorem2.3.

Theorem 2.4. Let δ ∈ R\ {0} ; 0 6 α < p; n, m, p ∈ N ; q = n − m; f(z) ∈
T (n), andg(z) ∈ T (m). If f(z) satisfies the inequality:

(2.19) <
(

1 +
zf ′′(z)

f ′(z)

)< q + α + 1
2δ

whenδ > 0 andg(z) ∈ Km(α)

> q + α + 1
2δ

whenδ < 0 andg(z) /∈ Km(α),
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then

(2.20) <

{(
z−q mf ′(z)

ng′(z)

)δ
}

> 0,

where the value of
(
z−q mf ′(z)

ng′(z)

)δ

is taken its principle value.

Proof. Let f(z) ∈ T (n) andg(z) ∈ T (m) with n−m ∈ N . Since

m f ′(z)

n g′(z)
= zq + k1z

q+1 + k2z
q+2 + · · · ∈ T (q) (q = n−m ∈ N ),

and if we definew(z) by

(2.21)

(
z−q m f ′(z)

n g′(z)

)δ

= 1 + w(z) (z ∈ U),

then by appealing to the same technique as in the proof of Theorem2.3, we
arrive at the assertion (2.20) of Theorem2.4 under the conditions stated with
(2.19).
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3. Some Consequences of Main Results
Among the various interesting and important consequences of Theorems2.2 –
2.4, we mention now some of the corollaries relating to the classesTλ(p; α),
Tλ(α),Sp(α), Kp(α), Sp, Kp, S(α), K(α), which are easily deducible form the
main results. Inequalities concerning analytic and multivalent functions were
also studied in [2] – [6], and in [8] – [10].

Firstly, if we takeδ = 1, then Theorem2.2 by virtue of (1.7) gives the
following:

Corollary 3.1. Let a functionF (z) defined by (2.2) satisfy the condition:

<

1 + z
(

F ′′(z)
F ′(z)

− F ′(z)
F (z)

)
1− p

(
F (z)

zF ′(z)

)
 < 1,(3.1)

(z ∈ U ; 0 6 α < p; p ∈ N ; f(z) ∈ T (p))

thenf(z) ∈ Tλ(p; α).

Next, if we takeδ − 1 = λ = 0 in Theorem2.2, so thatF (z) = f(z), then
we get

Corollary 3.2. If F (z) = f(z) satisfies the condition in (3.1), thenf(z) ∈
Sp(α), i.e. f(z) is p−valent starlike of orderα(0 6 α < p; p ∈ N ) in U .

If we takeδ = λ = 1 in Theorem2.2, so thatF (z) = zf ′(z), then we obtain
the following:
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Corollary 3.3. If f(z) satisfies the condition

(3.2) <

1 + z
(

(zf ′(z))′′

(zf ′(z))′
− (zf ′(z))′

zf ′(z)

)
1− p

(
zf ′(z)

(zf ′(z))′

)
 < 1 (z ∈ U ; 0 6 α < p; p ∈ N ),

thenf(z) ∈ Kp(α), that isf(z) is p−valent convex of the orderα (0 6 α <
p; p ∈ N ) in U .

Forp = 1 in Corollaries3.1– 3.3give the following:

Corollary 3.4. Let a functionF (z) defined by (2.2) satisfy the condition

<

1 + z
(

F ′′(z)
F ′(z)

− F ′(z)
F (z)

)
1− F (z)

zF ′(z)

 < 1,(3.3)

(z ∈ U ; 0 6 α < 1; f(z) ∈ T )

thenf(z) ∈ Tλ(α).

Corollary 3.5. If F (z) = f(z) satisfies the condition (3.3), thenf(z) ∈ S(α),
i.e. f(z) is starlike of orderα (0 6 α < 1) in U .

Corollary 3.6. If f(z) satisfies the condition

(3.4) <

1 + z
(

(zf ′(z))′′

(zf ′(z))′
− (zf ′(z))′

zf ′(z)

)
1− zf ′(z)

(zf ′(z))′

 < 1 (z ∈ U ; 0 6 α < 1),

thenf(z) ∈ K(α), i.e.,f(z) is convex of orderα (0 6 α < 1) in U .
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Let us takeδ = 1 in Theorems2.3and2.4, then we get the following:

Corollary 3.7. Let z ∈ U ; 0 6 α < p; n, m, p ∈ N ; f(z) ∈ T (n) and a
functiong(z) ∈ T (m) belong to the classSm(α) with q = n−m ∈ N . If f(z)
satisfies the inequality:

(3.5) <
{

zf ′(z)

f(z)

}
< q + α +

1

2
,

then

(3.6) <
{

z−q f(z)

g(z)

}
> 0.

Corollary 3.8. Let z ∈ U ; 0 6 α < p; n, m, p ∈ N ; f(z) ∈ T (n) and a
functiong(z) in T (m) belong to the classKm(α) with q = n−m ∈ N . If f(z)
satisfies the inequality:

(3.7) <
{

1 +
zf ′′(z)

f ′(z)

}
< q + α +

1

2
,

then

(3.8) <
{

z−q m f ′(z)

n g′(z)

}
> 0.

Lastly, settingδ = −1 in Theorems2.3and2.4, we obtain the following:
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Corollary 3.9. Let z ∈ U ; 0 6 α < p; n,m, p ∈ N ; f(z) ∈ T (n) and
suppose a functiong(z) ∈ T (m) does not belong to the classSm(α) with q =
n−m ∈ N . If f(z) satisfies the inequality:

(3.9) <
{

zf ′(z)

f(z)

}
> q + α− 1

2
,

then

(3.10) <
{

zq g(z)

f(z)

}
> 0.

Corollary 3.10. Let z ∈ U ; 0 6 α < p; n, m, p ∈ N ; f(z) ∈ T (n) and
suppose a functiong(z) in T (m) does not belong to the classKm(α) with q =
n−m ∈ N . If f(z) satisfies the inequality:

(3.11) <
{

1 +
zf ′′(z)

f ′(z)

}
> q + α− 1

2
,

then

(3.12) <
{

zq n g′(z)

m f ′(z)

}
> 0.

http://jipam.vu.edu.au/
mailto:
mailto:hisimya@baskent.edu.tr
mailto:
mailto:rainark_7@hotmail.com
http://jipam.vu.edu.au/


Some Inequalities Exhibiting
Certain Properties Of Some
Subclasses Of Multivalently

Analytic Functions

Hüseyin Irmak and R.K. Raina

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 16

J. Ineq. Pure and Appl. Math. 6(1) Art. 9, 2005

http://jipam.vu.edu.au

References
[1] P.L. DUREN, Univalent Functions, Grundlehren der Mathematischen

Wissenschaften 259, Springer- Verlag, New York Berlin, Heidelberg, and
Tokyo, 1983.

[2] H. IRMAK AND S. OWA, Certain inequalities involving analytic and uni-
valent functions, Far East J. Math. Sci.,10 (2003), 353–358.

[3] H. IRMAK AND S. OWA, Certain inequalities for multivalent and mero-
morphically multivalent starlike functions,Bull. Inst. Math. Acad. Sinica,
31 (2003), 11–21.

[4] H. IRMAK , R.K. RAINA AND S. OWA, A certain for multivalent starlike
and mermorphically multivalent starlike functions, Inter. J. Appl. Math.,
12 (2003), 93–98.

[5] H. IRMAK AND R.K. RAINA, The starlikeness and convexity of multiva-
lent function involving certain inequalities,Rev. Mat. Complut.,16 (2003),
391–398.

[6] H. IRMAK, R.K. RAINA AND S. OWA, Certain results involving inequal-
ities on analytic and univalent functions,Far East J. Math. Sci., 10 (2003),
359–366.

[7] I.S. JACK, Functions starlike and convex of the orderα, J. London Math.
Soc., 3 (1971), 469–474.

[8] S. OWA, M. NUNOKAWA AND H. SAITOH, Some inequalities involving
multivalent functions,Ann. Polon. Math., 60 (1994), 159–162.

http://jipam.vu.edu.au/
mailto:
mailto:hisimya@baskent.edu.tr
mailto:
mailto:rainark_7@hotmail.com
http://jipam.vu.edu.au/


Some Inequalities Exhibiting
Certain Properties Of Some
Subclasses Of Multivalently

Analytic Functions

Hüseyin Irmak and R.K. Raina

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 16

J. Ineq. Pure and Appl. Math. 6(1) Art. 9, 2005

http://jipam.vu.edu.au

[9] S. OWA, M. NUNOKAWA AND S. FUKUI, A criterion forp−valent star-
like functions,Intern. J. Math. & Math. Sci., 17 (1994), 205–207.

[10] S. OWA, H.M. SRIVASTAVA, F.-Y. RENAND W.-Q. YANG, The starlike-
ness of a certain class of integral operators,Complex Variables,27 (1995),
185–191.

[11] H.M. SRIVASTAVA AND S. OWA, (EDITORS),Current Topics in Ana-
lytic Function Theory,World Scientific Publishing Company, Singapore,
New Jersey, London, and Hong Kong, 1992.

http://jipam.vu.edu.au/
mailto:
mailto:hisimya@baskent.edu.tr
mailto:
mailto:rainark_7@hotmail.com
http://jipam.vu.edu.au/

	Introduction and Definition
	Main Results
	Some Consequences of Main Results

