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ABSTRACT. Some norm inequalities for sequences of linear operators defined on Hilbert spaces
that are related to the classical Schwarz inequality are given. Applications for vector inequalities
are also provided.
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1. INTRODUCTION

Let(H; (-, -)) be areal or complex Hilbert space aBd H ) the Banach algebra of all bounded
linear operators that mafd into H.

In many estimates one needs to use upper bounds for the norm of the linear combination of
bounded linear operator$, . . ., A, with the scalarsyy, ..., «,, where separate information
for scalars and operators are provided. In this situation, the classical approach is to use a Holder
type inequality as stated below
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2 SEVER S. DRAGOMIR

Notice that, the case when = ¢ = 2, which provides the Cauchy-Bunyakovsky-Schwarz

inequality
Y @Al < <Z |04z‘\2> (Z \|Az’|’2>
=1 =1 =1

is of special interest and of larger utility.
In the previous paper [1], in order to improye (1.1), we have established the following norm
inequality for the operatord,, ..., A, € B (H) and scalarsy, ..., «, € K:
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where [1.2) should be seen as all theossible configurations.

Some particular inequalities of interest that can be obtained (1.2) and provide alternative
bounds for the classical Cauchy-Bunyakovsky-Schwarz (CBS) inequality are the following [1]:
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wherep > 1, L + 1 = 1. In particular, forp = ¢ = 2, we have from)
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The aim of the present paper is to establish other upper bounds of interest for the quantity
1>, a;Ai]|, where, as abovey, ... ., «,, are real or complex numbers, whilg, . .., A, are
bounded linear operators on the Hilbert spafe (-, -)) . These are compared with the (CBS)
inequality (I.1) and shown that some times they are better. Applications for vector inequalities
are also given.

(1.7)
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2. SOME GENERAL RESULTS

The following result containing 9 different inequalities may be stated:

Theorem 2.1.Letay,...,a, € KandA,,..., A, € B(H). Then
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Proof. We observe, in the operator partial order®(fH ), we have that

i=1 j=1
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Taking the norm in3) and noticing thit/U*|| = ||U||* for anyU € B (H) , we have:
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Utilising Holder’s discrete inequality we have that
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foranyi € {1,...,n}.
This provides the following inequalities:
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Utilising Holder’s inequality forr, s > 1, % + § =1, we have:
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and the first part of the theorem is proved.
By Hélder's inequality we can also have that (for- 1, 1 + 1 = 1)
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and the second part gf (2.1) is proved.
Finally, we may state that
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giving the last part of (2]1). O
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Remark 2.2. It is obvious that out of[(2]1) one can obtain various particular inequalities.

instance, the choice= 2, p = 2 (thereforeu = ¢ = 2) in the B—branch of[(2.R) gives:
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If we consider now the usual Cauchy-Bunyakovsky-Schwarz (CBS) inequality
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then we can conclude that (P.4) is a refinement of the (CBS) ineqyality (2.5).
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Corollary 2.3. Letay,...,a, € KandAy,..., A, € B(H) so thatA;A} = 0 withi # j.
Then
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wherep > 1 and
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3. OTHER RESULTS

A different approach is embodied in the following theorem:
Theorem 3.1.1f a4, ..., a0, € KandA,,..., A, € B(H),then
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Proof. From the proof of Theorein 3.1 we have that
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Using the simple observation that

1 2 2 ..
|O‘i||aj|§§<|ai| +loy"), d,5€{l,....n},
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which proves the first inequality if (3.1).
The second part follows by Holder’s inequality and the details are omitted.

Remark 3.2. If in (@ we choosey; = --- = «,, = 1, then we get
(ZHAH + ) |lAs; ) <ZHAH
1<i#j<n
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which is a refinement for the generalised triangle inequality.
The following corollary may be stated:

Corollary 3.3. If Ay,..., A, € B(H) are such thatd; A5 = 0 fori # j,i,5 € {1,...,n},
then

(3.2)
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Finally, the following result may be stated as well:
Theorem 3.4.If ay,...,cr, e KandA4,,..., A, € B(H), then
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Secondly, by the Holder inequality for double sums, we obtain
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Finally, we have

} Zn: il |y
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and the theorem is proved. O

Corollary 3.5. If ay,...,a, € Kand A;,..., A, € B(H) are such thatd, A; = 0 for
i,j€{l,...,n}withi # j, then
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4. VECTOR INEQUALITIES

As pointed out in our previous papeér [1], the operator inequalities obtained above may pro-
vide various vector inequalities of interest.

If by M («, A) we denote any of the bounds provided py [2.1),](2[4), (3.1) of (3.3) for the
quantity|| ", a; A;||”, then we may state the following general fact:

Under the assumptions of Theorem| 2.1, we have:

2

(4.1) < [lz))* M (o, A).

Xn: O./Z'AZ{L'

=1

foranyx € H and

2
< Jll* lyll* M (a, A) .

Z Q; <A1‘T, y>
=1
foranyx,y € H, respectively

The proof follows by the Schwarz inequality in the Hilbert spé&&e (-, -)), see for instance
[1], and the details are omitted.

Now, we consider the non zero vectafs. . ., y, € H. Define the operators|[1]

<x7yz>
*Yi,

(4.2)

A, H— H, Ax=

ie{l,...,n}.

Since
[Aill = llwill, i e{1,...,n}
then A; are bounded linear operatorsfh Also, since
2
(2, y3)]

(Ajz,x) =
il

>0, x€ H, ie{l,...,n}
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and

<x7yz> <yi,Z>
Ax,z) = —————,

2 = )
(T, i) (i, 2)
r,Ajz) = —————,

N 7

giving

(Ajz, z) = (2, A;z)
we may conclude that; (i = 1

ie{l,...,n},
=1,...,n) are positive self-adjoint operators éh
Since, for anyr € H, one has

1(A:A)) (2)]| = (93 [y5, i)

x,z € H,

, ,7€e{l,...,n},
1yl
then we deduce that
[AiA; | = (i, y5) 15 4,5 € {1,
If (:),_1, is an orthonormal family o/, then||A;|| = 1 andA;A; = 0 for 4, j € {1
i 3.

e}
Now, utilising, for instance, the inequalities in Theoren 3.1 we may state that

6 %yz‘) 2 - 2 -
(4.3) D=l < Y el Y (i )]
i=1 [yill i=1 j=1
( n n
2 .
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Wherep>1 PR
v max Jou | Z Y, y5) | -
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foranyz,yi,...,y, € H anda,,, ..., a, e K.
The proof follows on choosingl; = L%y
1Al = [lwill »

Twill Y
= [y, y5)1

; In Theore l and taking into account that

i,7€{1l,...,n}.

[ AiA;
We omit the details.
The choicew; = ||uyif| (1 =1
the Fourier series

n

=1

) will produce some interesting bounds for the norm of

Notice that the vectorg; (i = 1 ) are not necessarily orthonormal
brevity, they will not be stated here

Similar inequalities may be stated if one uses the other two main theorems. For the sake of
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