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1. INTRODUCTION AND DEFINITIONS

Let .4 denote the class of functiorfgz) of the form
(1.1) f()=2+4) a;7
j=2

which are analytic in the open di€= {z : |z| < 1}. LetS be the subclass o4 consisting of
analytic and univalent functiong(z) in U. We denote by5*(a) andK(«) the class of starlike
functions of orderx and the class of convex functions of ordemrespectively, that is,

s ={reare (LE)

>>oz,()§oz<1,z€U}
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and

K(a) = {fEA:Re(l—i-ZJ{;((Zj)) >a,0§a<1,zEU}.
For f(z) € A, Salageanl[1] introduced the following operator which is called ta&&ean
operator:

D°f(2) = f(2)
D'f(z) = Df(2) = 2f'(2)
D"f(z) = D(D"" ' f(2)) (neN=1,23,..).

We note that,
D"f(z —Z+Z] a;2’ (n e Ny =NU{0}).

Let V... (a, 5) denote the subclass Qlfcon5|st|ng of functiong'(z) which satisfy the inequal-

ity
D™ f(z D" f(z
re{ 51} = e
forsome0d < a < 1,8 > 0,m € N, n € Ny and aIIz € U. Also let M;, (o, 83) (s =
0,1,2,...) be the subclass od consisting of functiong'(z) which satisfy the condition:

f(z) € M3, (0, B) & D*f(2) € Nim(t, ).

Itis easy to see that i = 0, then M), (a, 3) = N,n(a, §). Furthermore, special cases of
our classes are the following:
(i) Mio(a,0) = S*(a) andNz,(a, 0) = K(«) which were studied by Silvermahn|[2].
(i) NMio(a,B) = SD(a, B) and M| (a, ) = KD(e, 3) which were studied by Shams at
all [3].
(iil) Nopn(@,0) = Kppla) and M3, ,(a,0) = M, (o) which were studied by Eker and
Owa [4].
Therefore, our present paper is a generalization of these papers. In view of the coefficient
inequalities forf(z) to be in the classe&/,,, (o, 3) and M;, , (a, 3), we introduce two sub-

classesV,, .(, ) andﬂimn(a,ﬁ). Some distortion inequalities fgf(z) and some integral
means inequalities for fractional calculusfdt) in the above classes are discussed in this paper.

2. COEFFICIENT INEQUALITIES FOR CLASSES N, .(a, ) AND M (a, B)
Theorem 2.1.1f f(z) € A satisfies

(2.1) > W(m,n, j, o, B)la] £ 2(1 - )
j=2
where
(2.2) Y(m,n,j,a,B) =" — 5" —aj"| + (™" + 5" —aj") + 285" — j"|

for somen(0 < v < 1), 5 > 0, m € Nandn € Ny ,thenf(z) € N,,.(a, 5).

Proof. Suppose thaf (2.1) is true fo0 < o < 1), > 0, m € N, n € Ny. For f(z) € A, let
us define the functio®’(z) by

D)
F& =5

D™ f(z)
D f(z)

B‘ 1'—04.
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It suffices to show that

We note that

'm) - 1'
F(z) 11

D300 = D 112) = D) oD~ D11

D7 f(z) = 5 [D7(z) = DA ()| = aD"f(z) + D (2)

| o T = aese el i ey

T LU — ai e = BT — e
Q-+ 05, 17" = 57 = g agl 2 + Blef S5, |7 = 7yl 21

=)= 335, G + 3" = ag) gl = Al 2, 57 — i llasllab
Q-+ 305, ™ = 57 = aglagl + 8555, 1™ = 7lay

B=0) = S5 57 + " — i) las] = B i — " llas]

The last expression is bounded abovel bif

A

A

at+ > 1" == ag gl + B8 1™ = 5"yl
=2 j=2

SQ2-a)=> "+t —ai” Iayl—ﬂZIJ — j"lay]

7J=2
which is equivalent to our conditiop (2.1). This completes the proof of our theorem. [
By using Theorerh 2]1, we have:
Theorem 2.2.1f f(z) € A satisfies
> i (m,n, g e, B) o] £ 2(1 - a),
j=2

where¥ (m, n, j, «, 3) is defined by[(2]2) for some(0 < @ < 1), 3 > 0, m € Nandn € Ny,
thenf(=) € M, ,(a)

Proof. From
f(z) e M5, (o, B) & D°f(z) € Na(a, B),
replacinga; by j®a; in Theorenj 21, we have the theorem. O

Example 2.1. The functionf(z) given by

oo 2(2+0)(1 — )¢ i N :
; (G+0)( +1+0)¥(m,n,j,a.5) H; "
with

N 2(2+0)(1 — a)e;

T GH0OG + 1+ 8)U(m,n, j, o, B)
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belongs to the clas¥/,, .(«,3) for6 > —2,0 < a < 1,3 > 0,¢; € C and|¢;| = 1. Because,
we know that

[e.o]

Z\I/mnj, a, 3) ] §

224+0)(1 - )
j+5 JG+1+9)

224 6)(1 —
= (1 a).
Example 2.2. The functionf( ) given by

22+ 0)(1 — a)e } <
= — Bl
Z+Z S(GH+0)j+1+0)¥ (m,n,j,cuﬁ)z Z+]Z:; 7

with
2(240)(1 — a)e
Bj = — : :
7 +0)(J +1+0)¥(m,n,j a, )
belongs to the classf;, , (o, 8) foré > 2,0 = a < 1,3 > 0,¢; € Cand|¢;| = 1. Because,
the functionf(z ) gives us that

[e.e]

224+0)(1 — )
E W (m SE =92(1 — a).
12] gy, B)|Bj| = G0 +150) ( a)

3. RELATION FOR N, (e, 3) AND /\7;7,1(04,6)
In view of Theorenj 2J1 and Theorém PR.2, we now introduce the subclasses

/\me,n(a,@) C Npn(a,8) and /K/lvfn,n(a,ﬁ) cM;, . (a, B)
which consist of functions

(3.1) f(z)=z+ Z a2’
whose Taylor-Maclaurin coefficients satlsfy the inequalifies| (2.1)[andl (2.2), respectively. By the

coefficient inequalities for the classa$, ,.(«, 3) andM;, . (a, 3), we see:
Theorem 3.1.

Nm,n(aa ﬁ2) - Nm,n(aa ﬂl)
for somes; andf,, 0 < 5 < Ss.

Proof. For0 < 3, < 3, we obtain
Z \Il<m7 n, j7 Q, ﬁl)aj é Z \Ij(mv n7j7 «, 62)aj
j=2 7=2

Therefore, iff(z) € N,..(c, 3), thenf(z) € N,..(, 51). Hence we get the required result.
U

By using Theorer 3]1, we also have

Corollary 3.2. N N
an,n(a7 62) C Min,n(aa 61)
for somes; and3;, 0 = 31 = fo.
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4. DISTORTION INEQUALITIES
Lemma 4.1.If f(z) € N,,..(, ), then we have

i < 2(1 = a) = >0, ¥(m,n, j,a, B)a;
i =
P W, n,p+ La,B)

Proof. In view of Theoreny 2]1, we can write

[e.o]

4.2) Z U(m,n,j,a,fa; < 2(1 —a) — U(m,n,j, o, B)a;.

Jj=p+1 Jj=2

hS]

Clearly ¥(m,n, j, o, 3) is an increasing function fof. Then from [(2.2) and (4]1), we have

U(m,n,p+1,q, ) Za]_Zl—a Z\Ifmnj,aﬁ)

Jj=p+1

Thus, we obtain

i ] 21 =a) =30, ¥(m,n, j,a, B)a;

= v 1 =4

p—) (mvnap+ 70575)

Lemma 4.2.If f(z) € N,,..(a, 3), then

2(1—a) = >0, ¥(m,n, j,a,B)a;

Z‘m]: U(m—1,n—1,p+1,a,03) =5
_p+1 ) 7p 9 9

Corollary 4.3. If f(z) € ]\A/[/,fm(a), then
f: . < 21 —a) = >0 ,7°W(m,n, j,a, B)a, ¢,
2 T G DU np+ Lay )

and

=~ 2(1 —a) = 3227, 7°V(m,n, j, o, B)a;
Z ja; < = D;.
~ (p+1)¥(m—-1n—-1p+1a/0)

Theorem 4.4.Let f(z) € N,,..(a, B). Thenfor|z| = r < 1
p .
=Y a; | — A < 1) <r+Z 2t + At

and

p p
1= o = B S P S 1+ jag |2 + B

Jj=2 Jj=2

whereA; and B; are given by Lemn{a 4.1 and Lemma 4.2.

J. Inequal. Pure and Appl. Mathl0(1) (2009), Art. 22, 12 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 SEVTAP SUMER EKER AND SHIGEYOSHI OWA

Proof. Let f (z) given by [1.1). Fotz| = r < 1,using Lemma 4]1, we have

|f (2)] = |2 +Za] 2 + Z a; |z
Jj=p+1
S |2 +Zaa |2l + |27 Z aj
Jj=p+1
<r+ Zaj |z|] + Ajrp+1
=2
and
p . w .
IF @) =2l =D a1z = > a;lzf
=2 j=p+1
p ) (o]
>zl =Y ajlel = 2D
J=2 Jj=p+1
p .
>r— Zaj |z)) — ArPtt,
=2

Furthermore, fofz| = r < 1 using Lemma 4]2, we obtain

|<1+ Ja |27 + jag |z
J

j=p+1

1+ZM P S

Jj=p+1

[IA

A

P

1 + Zja]’ ’leil -+ Bj?"p
j=2

and

P [e'e)
") = 1= gaglaP T = Y ag e
j=2

Jj=p+1

P fe'e)
> 1= gajl= 7 =2 Y ey
j=2

Jj=p+1

p
> 1Y ja;|zf' ™" = Byr*.

j=2
This completes the assertion of Theofenj 4.4.

Theorem 4.5.Let f(z) € /\7‘;7”(@, (). Then

P P
r— Zaj |z = CyrPT S f(R)| S+ Zaj 2! + CyrPt!

=2 j=2
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and

p p
1= jaj |z~ = Dp? S| f(2)| 1+ jag |z + Dyr”
j=2

j=2
whereC; and D; are given by Corollary 4]3.

Proof. Using a similar method to that in the proof of Theorgm 4.4 and making use Corollary
A3, we get our result, 0

Takingp = 1 in Theorenj 44 and Theorgm 4.5, we have:
Corollary 4.6. Let f(z) € N,,n(, 5). Thenfor|z| = r < 1

2(1 —«) 2(1 — )
" \11(771,71,2,0z,6)r2 =lfEl=r+ \If(m,n,2,a,ﬁ)r2
and
2(1 — «) , 2(1 — «)
L= U(m—1,n— 1,2,a,ﬁ)r == 1+ U(m—1,n— 1,2,a,ﬁ)r'

Corollary 4.7. Let f(z) € M;n(a,ﬁ). Thenfor|z| =r < 1

2(1 — «) 5

N 2(1 — «) 5
r— r
25U (m,n, 2, a, ()

= QS\I/(m,n,2,oz7ﬁ)r

ﬁ
17AN
=
O

A\

and
2(1 —a)
T,
25U (m—1,n—1,2,a, )

2(1 —«) ,
TS motn-12ag = /@ISt

5. EXTREME POINTS

The determination of the extreme points of a familyof univalent functions enables us
to solve many extremal problems fér. Now, let us determine extreme points of the classes

va”(a’ 6> and'//—\;l/sm,n(a7ﬁ)-
Theorem 5.1. Let f;(2) = z and
_ 20—a) ;. _
fiz) ==+ U(m,n,j, o, f3) @ U=23-)

whereV (m, n, j, a, 3) is defined b2). Thehe N,,.(, 8) ifand only if it can be expressed
in the form

f(z) = Z)\jfj(Z%

where); > 0and 2, \; = 1.
Proof. Suppose that

Z“ Z“’ 2(1 — .
f(Z) = )\jfj(z) =2z + )\]\Ij(m( n ,a) Zj.
j:l j:2 ) 7.]7(175)
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Then
S 2(1 - a) .
Zqj(m’n’j’a’ﬂ)q](m,n,j,a,ﬁ))\] — 22(1 - Oé))\]
Jj=2 j=2
j=2
=2(1 —a)(1—X\)
<2(1—-a)

Thus,f(2) € Nn(a, 3) from the definition of the class oY, (a, 3).
Conversely, suppose thate N, ,.(«, §). Since

2(1 — «)

< | =2,3, ...
“E G TP
we may set
\Ij(m7n7j7&7ﬁ)
= ,
J 21—a)
and
M=1-) N
j=2
Then,

f(z) = ZAjfj(Z)-

This completes the proof of the theorem.

Corollary 5.2. Letg,(z) = z and
2(1 — )
jS\Ij(m7n7j7a75)

gj(z) =z + 2 (1 =2,3,...).

Theng € /\7;%”(@, B) if and only if it can be expressed in the form
9(2) = > Xgi(2),
j=1

where); > 0and) >, \; = 1.

Corollary 5.3. The extreme points @, (e, 3) are the functions; (z) = = and
_ 20—a) 5 . _
fi(z) =2+ \I/(m,n,j,oz,ﬁ)z (=23

Corollary 5.4. The extreme points dﬁfn,n(a, () are given byy; (z) = z and

2(1 — )

. . 0 (j=2,3,..).
T e Y )

gj(2) =z +
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6. INTEGRAL MEANS INEQUALITIES

We shall use the following definitions for fractional derivatives by Owa [6] (also Srivastava
and Owal[7]).

Definition 6.1. The fractional derivative of ordey is defined, for a functiorf(z), by

6.1 D) = e | gl (0SA<D),

where the functiory (z) is analytic in a simply-connected region of the compteglane con-
taining the origin, and the multiplicity ofz — £)~* is removed by requiringpog(z — &) to be
real when(z — &) > 0.

Definition 6.2. Under the hypotheses of Definitipn .1, the fractional derivative of qpgler))
is defined, for a functiorf(z), by

DY f(2) = SDAf(2)

where0 < A < 1 andp € Ny = NU {0}.
It readily follows from [6.1) in Definitio 6]1 that

I'(k+1) =
S T(k—A+1)
Further, we need the concept of subordination between analytic functions and a subordination
theorem by Littlewood [5] in our investigation.

Let us consider two functiong(z) andg(z), which are analytic ifU. The functionf(z) is
said to besubordinateto g(z) in U if there exists a functiom(z) analytic inU with

w(0)=0 and |w(z)| <1 (z e,

(6.2) D)k = 0 A<

such that
f(z) =g(w(z))  (2€0).
We denote this subordination by
f(z) < g(2).

Theorem 6.1(Littlewood [B]). If f (z) andg (z) are analytic inU with f (z) < g(z), then for
p>0andz =re? (0 <r < 1)

A%vwwweglhwwwwa

Theorem 6.2. Let /(=) € A given by|(3.1) be in the clas), (e, 3) and suppose that

(j — Ppr1aj < 2(1 — )Lk + 1)I'(3 — X —p)
p+1dj = U(m,n, k,a,)T(k+1—X—p)(2—p)

| ||/\ EMg

forsomed) =< p < 2,0 < A < 1 where(j — )pH denotes the Pochhammer symbol defined by
=U-pn0U-p+

(J = Pp+ ) 1)---j. Also given is the functioffi,(z) by
(6.3) fi(@)=z+3 (ni(;_ko‘; B 2 (k>2).
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If there exists an analytic function(z) given by

U(m,n, k,a, ) ['(k+1—X—p)
2(1 — a)l'(k+1)

{w(=)}" =

then forz = re? (0 <r < 1)andu > 0,

2T 27T
/ |DPf(2)]" o < / | DP fi(2)|" do.
0 0

Proof. By virtue of the fractional derivative formulg (6.2) and Definitjon|6.2, we find frpm| (1.1)

that
1-A—p STR-A—pl(G+1)
DPPAF() = —~ )y : a2’
2 () F(2—)\—p){ JZ:; FG+1—-X—p) "’

- % {1 - ZF(Z —A—p)J —P)pﬂq)(j)ajzjl}

Jj=2

where
I'(j—p)
FrG+1—X—p)

Since®(j) is a decreasing function gf we have

I'(2 —p)
I'3—=A-p)

Similarly, from (6.2), [(6.B) and Definitign 6.2, we obtain

LA-Amp 20— a)P2—A—pl(k+1) ,_,
ﬁ?foB{1+WW%mhm6W®+1—A—m%:}'

®(j) =

0 < B(j) < B(2) = (0<A<1 ;0<p<2

[IA

7)-

DY fi(z) =

Forz =re?, 0 <r < 1, we must show that

/271'
0

m

do

o0

1+> TQ2=A=p)(i—p)p®(j)a;z"""

27
< /
0

Thus by applying Littlewood’s subordination theorem, it would suffice to show that

20— a)T’2=A=p'(k+1) , ;4
U(m,n, k,a, )T'(k+1— X\ —p)z

m
1+ o (p>0).

6.4) 1+> TQR=A=p)(j—pp1®(j)az'""

a 20 —a)l2=A=pT(k+1) ,

1
B +\I}<m7n7k7a7ﬁ)r(k+1_A_p)
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By setting

L4+ Y T2 =A=p)(j = p)pr1®(j)ajz'

j= 21— a)l(2—A—p(k+1) -
Wik, TG+ 1= A—p) (W)

=1+

we find that

(w(2)} = U(m,n, ko, B)L(k+1—X—p) i":

2(1_a)r(]€+ p+]_q) aJZj 1

Jj=
which readily yieldsw(0) = 0.
Therefore, we have

k-1 | ¥(m,n,ka,B)T(k+1—X—p) >
[w@ = 201 — a)l(k + 1) 2.0

U(m,n, ko, 0k +1— X — p) &
201 — )Tk + 1) 2.

A

U(m,n, k,a, ) T(k+1—-X—p =
< _
Szl <1
by means of the hypothesis of Theorem 6.2. O

For the special cage= 0, Theoreni 6.2 readily yields the following result.
Corollary 6.3. Let f(z) € A given by|(3. ) be in the cIaSg’m,n(oz, () and suppose that

20— o)k + 13 = N)
ZJ]_ U(m,n,k,a, 5)I'(k+1— M)

for 0 < A < 1. Also let the functiory, (=) be given by[(6]3). If there exists an analytic function
w(z) given by

o0

U(m,n, ko, 5)I'(k+1— X\ Z Fj—i—l
2(1 — a)T(k + 1)

j—1
a2z’

{w(z)}kil = T(j+1-— @

J=2

then forz = re and0 < r < 1,
2m 27
/ |D2f(2) \”d0</ DM ()| d6 (0 A<1, p>o0).
0 0

Corollary 6.4. Let f(z) € A given by ) be in the clasi;/lfim(oz, () and suppose that

[e.9]

| 2(1 — )T(k+ I3 — A —p)
> G —ppra; = kW (m,n, ko, B)L(k+1— A —p)L(2— p)

=2
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forsome) < p < 2,0 < X < 1. Also let the function

2(1 — «) A
ksW(m,n, k,a,ﬁ)z ’
If there exists an analytic functian(z) given by

-1 _ kY (m,n, ko, B)(k+1—X—p)
{w(z)} 2(1 — a)l(k+ 1)

(6.5) ge(z) =2+ (k> 2).

= L'(j—p) j—1
x;j_ PTG LA p T

then forz = re? (0 <r < 1)andu > 0,

27 27
/ | D2 f(2)]" do < / | D2 gy (2)|" do.
0
For the special cage= 0, Corollary[6.4 readily yields,
Corollary 6.5. Let f(z) € A given by|( ) be in the clasxa;m(a, () and suppose that

2(1 — a)T'(k+1)I(3 - \)
Z]CLJ: ks mjﬂ)k)@)ﬁ)r(k—f—]_—)\)

for0 < X\ < 1. Also let the functiomy (=) be given by[(6]5). If there exists an analytic function
w(z) given by

[e.e]

w—1 KU (m,n, ko, B)T(E+1— A I'(j+
fw(z)} = 21 — )Tk + 1) ZF +1—

=2

L1
a]z ,

then forz = re? (0 <r < 1)andy > 0,
21 2
/ |D2f(2)|" o </ |D2gi(z)|" do.
0 0
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