# KANTOROVICH TYPE INEQUALITIES FOR $1>p>0$ <br> MARIKO GIGA <br> Department of Mathematics <br> Nippon Medical School <br> 2-297-2 Kosugi NaKahara-Ku <br> Kawasaki 211-0063 Japan. <br> mariko@nms.ac.jp 

Received 24 May, 2003; accepted 28 June, 2003
Communicated by T. Furuta

AbStract. We shall discuss operator inequalities for $1>p>0$ associated with HölderMcCarthy and Kantorovich inequalities.

Key words and phrases: Kantorovich type inequality, Order preserving inequality, Concave function.
2000 Mathematics Subject Classification. 47A63.

## 1. Introduction

In this paper, an operator is taken to be a bounded linear operator on a Hilbert space $H$. An operator $T$ is said to be positive (denoted by $T \geq 0$ ) if $(T x, x) \geq 0$, also $T$ is said to be strictly positive (denoted by $T>0$ ) if $T$ is positive and invertible. The celebrated Kantorovich inequality asserts that if $T$ is a strictly positive operator such that $M I \geq T \geq m I>0$, then $\left(T^{-1} x, x\right)(T x, x) \leq \frac{(m+M)^{2}}{4 m M}$ holds for every unit vector $x$ in $H$. There have been many papers published on Kantorovich type inequalities, some of them are the papers of B. Mond and J. Pečarić [9], [10], and [11]. Other examples of Kantorovich type inequalities can be found in the work of Furuta [4] and the extended work [8]. More general results may be seen in the work of Li and Mathias in [7]. We shall discuss operator inequalities for $1>p>0$ associated with the Hölder-McCarthy and Kantorovich inequalities as a complementary result of [6].

## 2. OPERATOR INEQUALITIES FOR $1>p>0$ ASSOCIATED WITH Hölder-McCarthy and Kantorovich Inequalities

Theorem 2.1. Let $T$ be a strictly positive operator on a Hilbert space $H$ such that $M I \geq T \geq$ $m I>0$, where $M>m>0$. Also, let $f(t)$ be a real valued continuous concave function on $[m, M]$ and let $1>q>0$.

Then the following inequality holds for every unit vector $x$ :

$$
\begin{equation*}
f((T x, x)) \geq(f(T) x, x) \geq K(m, M, f, q)(T x, x)^{q}, \tag{2.1}
\end{equation*}
$$

[^0]where $K(m, M, f, q)$ is defined by
\[

$$
\begin{aligned}
& K(m, M, f, q) \\
& = \begin{cases}B_{1}=\frac{(m f(M)-M f(m))}{(q-1)(M-m)}\left(\frac{(q-1)(f(M)-f(m))}{q(m f(M)-M f(m))}\right)^{q} & \text { if Case } 1 \text { holds; } \\
B_{2}=\frac{f(m)}{m^{q}} & \text { if Case } 2 \text { holds; } \\
B_{3}=\frac{f(M)}{M^{q}} & \text { if Case } 3 \text { holds, }\end{cases}
\end{aligned}
$$
\]

where Case 1, Case 2 and Case 3 are as follows:
Case 1: $f(M)>f(m), \frac{f(M)}{M}<\frac{f(m)}{m}$ and $\frac{f(m)}{m} q \geq \frac{f(M)-f(m)}{M-m} \geq \frac{f(M)}{M} q$,
Case 2: $f(M)>f(m), \frac{f(M)}{M}<\frac{f(m)}{m}$ and $\frac{f(m)}{m} q<\frac{f(M)-f(m)}{M-m}$,
Case 3: $f(M)>f(m), \frac{f(M)}{M}<\frac{f(m)}{m}$ and $\frac{f(M)}{M} q>\frac{f(M)-f(m)}{M-m}$.
Theorem 2.1 easily implies the following result.
Corollary 2.2. Let $T$ be a strictly positive operator on a Hilbert space $H$ such that $M I \geq T \geq$ $m I>0$, where $M>m>0$. Also let $1>p>0$ and $1>q>0$, then we have

$$
\begin{equation*}
(T x, x)^{p} \geq\left(T^{p} x, x\right) \geq K(m, M, p, q)(T x, x)^{q}, \tag{2.2}
\end{equation*}
$$

where $K(m, M, p, q)$ is defined by

$$
K(m, M, p, q)= \begin{cases}K^{(1)}(m, M, p, q) & \text { if } m^{p-1} q \geq \frac{M^{p}-m^{p}}{M-m} \geq M^{p-1} q \\ m^{p-q} & \text { if } m^{p-1} q<\frac{M^{p}-m^{p}}{M-m} \\ M^{p-q} & \text { if } M^{p-1} q>\frac{M^{p}-m^{p}}{M-m}\end{cases}
$$

where $K^{(1)}(m, M, p, q)$ is defined by

$$
\begin{equation*}
K^{(1)}(m, M, p, q)=\frac{\left(m M^{p}-M m^{p}\right)}{(q-1)(M-m)}\left(\frac{(q-1)\left(M^{p}-m^{p}\right)}{q\left(m M^{p}-M m^{p}\right)}\right)^{q} . \tag{2.3}
\end{equation*}
$$

## 3. Proofs of the Results in $\$ 2$

We state the following fundamental lemma before giving proofs of the results in $\$ 2$.
Lemma 3.1. Let $h(t)$ be defined by (3.1) on $(0, \infty)$ for any real number $q$ such that $q \in(0,1)$ and any real numbers $K$ and $k$, and $\overline{M>m>0}$

$$
\begin{equation*}
h(t)=\frac{1}{t^{q}}\left(k+\frac{K-k}{M-m}(t-m)\right) . \tag{3.1}
\end{equation*}
$$

Then $h(t)$ has the following lower bound $B D(m, M, k, K, q)$ on $[m, M]$ :

$$
\begin{aligned}
& B D(m, M, k, K, q) \\
& \quad= \begin{cases}B_{1}=\frac{(m K-M k)}{(q-1)(M-m)}\left(\frac{(q-1)(K-k)}{q(m K-M k)}\right)^{q} & \text { if Case } 1 \text { holds; } \\
B_{2}=\frac{k}{m^{q}} & \text { if Case } 2 \text { holds; } \\
B_{3}=\frac{K}{M^{q}} & \text { if Case } 3 \text { holds }\end{cases}
\end{aligned}
$$

where Case 1, Case 2 and Case 3 are as follows:

$$
\begin{aligned}
& \text { Case } 1 K>k, \frac{K}{M}<\frac{k}{m} \text { and } \frac{k}{m} q \geq \frac{K-k}{M-m} \geq \frac{K}{M} q ; \\
& \text { Case } 2 K>k, \frac{K}{M}<\frac{k}{m} \text { and } \frac{k}{m} q<\frac{K-k}{M-m} \\
& \text { Case } 3 K>k, \frac{K}{M}<\frac{k}{m} \text { and } \frac{K}{M} q>\frac{K-k}{M-m} .
\end{aligned}
$$

Proof. We have that $h^{\prime}\left(t_{1}\right)=0$ when

$$
t_{1}=\frac{q}{(q-1)} \cdot \frac{(m K-M k)}{(K-k)} \quad \text { and } \quad h^{\prime \prime}\left(t_{1}\right)=\frac{-q(m K-M k)}{(M-m) t_{1}^{q+2}},
$$

and the conditions in Case 1 ensure that $m \leq t_{1} \leq M, h^{\prime \prime}\left(t_{1}\right)>0$ and $h(t)$ has the lower bound $B_{1}=h\left(t_{1}\right)$ on $[m, M]$. By the geometric properties of $h(t)$, the conditions in Case 2 ensure that $0<t_{1}<m$ and $h(t)$ has the lower bound $B_{2}=h(m)$ on $[m, M]$. Also the conditions in Case 3 ensure that $t_{1}>M$ and $h(t)$ has the lower bound $B_{3}=h(M)$ on $[m, M]$.
Proof of Theorem[2.1] As $f(t)$ is a real valued continuous concave function on $[m, M]$, we have

$$
\begin{equation*}
f(t) \geq f(m)+\frac{f(M)-f(m)}{M-m}(t-m) \quad \text { for any } t \in[m, M] \tag{3.2}
\end{equation*}
$$

By applying the standard operational calculus of positive operator $T$ to (3.1), since $M \geq$ ( $T x, x) \geq m$, we obtain for every unit vector $x$

$$
\begin{equation*}
(f(T) x, x) \geq f(m)+\frac{f(M)-f(m)}{M-m}((T x, x)-m) \tag{3.3}
\end{equation*}
$$

Multiplying by $(T x, x)^{-q}$ on both sides of (3.2), we have

$$
\begin{equation*}
(T x, x)^{-q}(f(T) x, x) \geq h((T x, x)) \tag{3.4}
\end{equation*}
$$

where

$$
h(t)=t^{-q}\left(f(m)+\frac{f(M)-f(m)}{M-m}(t-m)\right) .
$$

Then we obtain

$$
\begin{equation*}
(f(T) x, x) \geq\left[\min _{m \leq t \leq M} h(t)\right](T x, x)^{q} . \tag{3.5}
\end{equation*}
$$

Putting $K=f(M)$ and $k=f(m)$ in Lemma 3.1, so that the latter inequality of (2.1) follows by (3.5) and Lemma 3.1 and the former inequality in (2.1) follows by the Jensen inequality (for examples, see [1], [2], [3] and [7]) since $f(t)$ is a concave function. Whence the proof is complete by Lemma 3.1 .

Proof of Corollary 2.2. Put $f(t)=t^{p}$ for $p \in(0,1)$ in Theorem 2.1. As $f(t)$ is a real valued continuous concave function on $[m, M], M^{p}>m^{p}$ and $M^{p-1}<m^{p-1}$ hold for any $p \in(0,1)$, that is, $f(M)>f(m)$ and $\frac{f(M)}{M}<\frac{f(m)}{m}$ for any $p \in(0,1)$.

Whence the proof of Corollary 2.2 is complete by Theorem 2.1

## 4. Application of Corollary 2.2 to Kantorovich Type Operator InEQUALITIES

Theorem 4.1. Let $A$ and $B$ be two strictly positive operators on a Hilbert space $H$ such that $M_{1} I \geq A \geq m_{1} I>0$ and $M_{2} I \geq B \geq m_{2} I>0$, where $M_{1}>m_{1}>0$ and $M_{2}>m_{2}>0$ and $A \geq B$.
(a) If $p>1$ and $q>1$, then the following inequality holds:

$$
K\left(m_{2}, M_{2}, p, q\right) A^{q} \geq B^{p}
$$

where $K\left(m_{1}, M_{1}, p, q\right)$ is defined by

$$
K\left(m_{2}, M_{2}, p, q\right)= \begin{cases}K^{(1)}\left(m_{2}, M_{2}, p, q\right) & \text { if } m_{2}^{p-1} q \leq \frac{M_{2}^{p}-m_{2}^{p}}{M_{2}-m_{2}} \leq M_{2}^{p-1} q ; \\ m_{2}^{p-q} & \text { if } m_{2}^{p-1} q>\frac{M_{2}^{p}-m_{2}^{p}}{M_{2}-m_{2}} ; \\ M_{2}^{p-q} & \text { if } M_{2}^{p-1} q<\frac{M_{2}^{p}-m_{2}^{p}}{M_{2}-m_{2}} .\end{cases}
$$

(b) If $p<0$ and $q<0$, then the following inequality holds:

$$
K\left(m_{1}, M_{1}, p, q\right) B^{q} \geq A^{p}
$$

where $K\left(m_{1}, M_{1}, p, q\right)$ is defined by

$$
K\left(m_{1}, M_{1}, p, q\right)= \begin{cases}K^{(1)}\left(m_{1}, M_{1}, p, q\right) & \text { if } m_{1}^{p-1} q \leq \frac{M_{1}^{p}-m_{1}^{p}}{M_{1}-m_{1}} \leq M_{1}^{p-1} q ; \\ m_{1}^{p-q} & \text { if } m_{1}^{p-1} q>\frac{M_{1}^{p}-m_{1}^{p}}{M_{1}-m_{1}} ; \\ M_{1}^{p-q} & \text { if } M_{1}^{p-1} q<\frac{M_{1}^{p}-m_{1}^{p}}{M_{1}-m_{1}} .\end{cases}
$$

(c) If $1>p>0$ and $1>q>0$, then the following inequality holds:

$$
\begin{equation*}
A^{p} \geq K\left(m_{1}, M_{1}, p, q\right) B^{q} \tag{4.1}
\end{equation*}
$$

$$
K\left(m_{1}, M_{1}, p, q\right)= \begin{cases}K^{(1)}\left(m_{1}, M_{1}, p, q\right) & \text { if } m_{1}^{p-1} q \geq \frac{M_{1}^{p}-m_{1}^{p}}{M_{1}-m_{1}} \geq M_{1}^{p-1} q \\ m_{1}^{p-q} & \text { if } m_{1}^{p-1} q<\frac{M_{1}^{p}-m_{1}^{p}}{M_{1}-m_{1}} ; \\ M_{1}^{p-q} & \text { if } M_{1}^{p-1} q>\frac{M_{1}^{p}-m_{1}^{p}}{M_{1}-m_{1}},\end{cases}
$$

where $K^{(1)}(m, M, p, q)$ in (a), (b) and (c) is defined in (2.3).
Proof. We have only to prove (c) since (a) and (b) are both shown in [6].

Proof of (c). For every unit vector $x, 1>p>0$ and $1>q>0$, we have

$$
\begin{aligned}
\left(A^{p} x, x\right) & \geq K\left(m_{1}, M_{1}, p, q\right)(A x, x)^{q} & & \text { by Corollary } 2.2 \\
& \geq K\left(m_{1}, M_{1}, p, q\right)(B x, x)^{q} & & \text { since } A \geq B>0 \text { and } 1>q>0 \\
& \geq K\left(m_{1}, M_{1}, p, q\right)\left(B^{q} x, x\right) & & \text { by the Hölder-McCarthy inequality, since } 1>q>0
\end{aligned}
$$

so that (4.1) is shown and the proof is complete.
Corollary 4.2. Let $A$ and $B$ be two strictly positive operators on a Hilbert space $H$ such that $M_{1} I \geq A \geq m_{1} I>0$ and $M_{2} I \geq B \geq m_{2} I>0$, where $M_{1}>m_{1}>0, M_{2}>m_{2}>0$ and $A \geq B$.
(i) If $p>1$, then the following inequality holds

$$
K^{(1)}\left(m_{2}, M_{2}, p\right) A^{p} \geq B^{p} .
$$

(ii) If $p<0$, then then the following inequality holds

$$
K^{(1)}\left(m_{1}, M_{1}, p\right) B^{p} \geq A^{p}
$$

where

$$
K^{(1)}(m, M, p)=\frac{\left(m M^{p}-M m^{p}\right)}{(p-1)(M-m)}\left(\frac{(p-1)\left(M^{p}-m^{p}\right)}{p\left(m M^{p}-M m^{p}\right)}\right)^{p} .
$$

Proof of Corollary 4.2. Since $t^{p}$ is a convex function for $p>1$ or $p<0$, and $t^{p}$ is a concave function for $1>p>0$, we have only to put $p=q$ in Theorem4.1.
Remark 4.3. We remark that (i) of Corollary 4.2 is shown in [4, Theorem 2.1] and Theorem 1 in $\S 3.6 .2$ of [5]. In the case $p=q \in(0,1)$, the result (4.1) may be given as follows: $A \geq B>0$ ensures that $A^{p} \geq B^{p} \geq K\left(m_{1}, M_{1}, p, p\right) B^{p}$ for all $p \in(0,1)$. In fact, the first inequality follows by the Löwner-Heinz inequality and the second one holds since $K\left(m_{1}, M_{1}, p, p\right) \leq 1$ which is derived from (2.2).

Remark 4.4. We remark that for $p>1$ and $q>1, K^{(1)}(m, M, p, q)$ can be rewritten as

$$
\begin{aligned}
K^{(1)}(m, M, p, q) & =\frac{\left(m M^{p}-M m^{p}\right)}{(q-1)(M-m)}\left(\frac{(q-1)\left(M^{p}-m^{p}\right)}{q\left(m M^{p}-M m^{p}\right)}\right)^{q} \\
& =\frac{(q-1)^{q-1}}{q^{q}} \frac{\left(M^{p}-m^{p}\right)^{q}}{(M-m)\left(m M^{p}-m^{p}\right)^{q-1}}
\end{aligned}
$$

and in fact this latter simple form is in [6].

## References

[1] T. ANDO, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Alg. and Appl., 26 (1979), 203-241.
[2] M.D. CHOI, A Schwarz inequality for positive linear maps on $C^{*}$-algebras, Illinois J. Math, 18 (1974), 565-574.
[3] C. DAVIS, A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc., 8 (1957), 42-44.
[4] T. FURUTA, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. and Appl., 2 (1998),137-148.
[5] T. FURUTA, Invitation to Linear Operators, Taylor \& Francis, London, 2001.
[6] T. FURUTA AND M. GIGA, A complementary result of Kantorovich type order preserving inequalities by J.Mićić-J.Pečarić-Seo, to appear in Linear Alg. and Appl.
[7] C.-K. LI AND R. MATHIAS, Matrix inequalities involving positive linear map, Linear and Multilinear Alg., 41 (1996), 221-231.
[8] J. MIĆIĆ, J. PEČARIĆ AND Y. SEO, Function order of positive operators based on the MondPečarić method, Linear Alg. and Appl., 360 (2003), 15-34.
[9] B. MOND AND J. PEČARIĆ, Convex inequalities in Hilbert space, Houston J. Math., 19 (1993), 405-420.
[10] B. MOND AND J. PEČARIĆ, A matrix version of Ky Fan Generalization of the Kantorovich inequality, Linear and Multilinear Algebra, 36 (1994), 217-221.
[11] B. MOND AND J. PEČARIĆ, Bound for Jensen's inequality for several operators, Houston J. Math., 20 (1994), 645-651.


[^0]:    ISSN (electronic): 1443-5756
    (C) 2003 Victoria University. All rights reserved.

    089-03

