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1. Introduction

L. Ou-Iang [9] studied the boundedness of solutions for some nonautonomuous sec-
ond order linear differential equations by means of a nonlinear integral inequality.
This integral inequality had been frequently used by authors to obtain global exis-
tence, uniqueness and stability properties of various nonlinear differential equations.
A number of generalizations and discrete analogues of this inequality and their new
applications have appeared in the literature. See, for example, B.G. Pachpatte ([10]
– [12]) and the present author [13][14] and the references given therein.

In 1996, A. Constantin [2] established the following interesting alternative result
for a generalized Ou-Iang type integral inequality given by B. G. Pachpatte [12]:

Theorem A. LetT > 0, k ≥ 0, andu, f, g ∈ C ([0, T ] ,R+) , R+ = [0,∞). Further,
let w ∈ C(R+, R+) be nondecreasing,w(r) > 0 for r > 0 and

∫∞
r0

ds
w(s)

= ∞ hold
for some numberr0 > 0. Then the integral inequality

u2(t) ≤ k2 + 2

∫ t

0

{
f(s)u(s)

[
u(s) +

∫ s

0

g(ξ)w (u(ξ)) dξ

]}
ds, t ∈ [0, T ]

implies

u(t) ≤ k +

∫ t

0

f(s)G−1

{
G (k) +

∫ s

0

[f(ξ) + g(ξ)] dξ

}
ds, t ∈ [0, T ],

whereG−1 denotes the inverse function ofG and

G(r) :=

∫ r

r0

ds

w(s) + s
, r ≥ r0, 1 > r0 > 0.

Applying the above result and a topological transversality theorem, A. Granas [4]
proved a nonlocal existence theorem for a certain class of initial value problems of
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nonlinear integrodifferential equations. We refer to D. O’Regan and M. Meehan [6]
for more existence results obtained by means of topological transversality theorems.

The purpose of the present paper is to obtain a new generalization of Constantin’s
inequality and its discrete analogue. The integral inequality obtained can be used to
study some more general initial value problems by following the same argument as
that applied in Constantin [2]. A discrete analogue of W.Okrasinsky’s mathematical
model for the infiltration phenomena of a fluid (see [7] and [8]) is discussed to convey
the usefulness of the discrete inequality given in the paper.
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2. Nonlinear Integral Inequality

Theorem 2.1. Let u, c ∈ C(R+, R+) with c nondecreasing, andϕ ∈ C1(R+, R+)
with ϕ′ nonnegative and nondecreasing. Letf(t, ξ), g(t, ξ), h(t, ξ) ∈ C(R+ ×
R+, R+) be nondecreasing int for everyξ fixed. Further, letw ∈ C(R+, R+) be
nondecreasing,w(r) > 0 for r > 0 and

∫∞
r0

ds
w(s)

= ∞ hold for some numberr0 > 0.

Then the integral inequality

(2.1) ϕ [u(t)] ≤ c(t) +

∫ t

0

{
f(t, s)ϕ′ [u(s)]

×
[
u(s) +

∫ s

0

g(s, ξ)w (u(ξ)) dξ

]
+ h(t, s)ϕ′ [u(s)]

}
ds, t ∈ [0, T ],

implies

(2.2) u(t) ≤ K(t) +

∫ t

0

f(t, s)

×G−1

{
G(K(t)) +

∫ s

0

[f(t, ξ) + g(t, ξ)] dξ

}
ds, t ∈ [0, T ],

herein

(2.3) K(t) = ϕ−1 [c(t)] +

∫ t

0

h(t, s)ds,

G−1, ϕ−1denote the inverse function ofG, ϕ,respectively, and

(2.4) G(r) :=

∫ r

r0

ds

w(s) + s
, r ≥ r0, 1 > r0 > 0.
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Note that, by Constatin [1] the above functionG is positive, strictly increasing
and satisfies the conditionG(r) →∞ as r →∞.

Proof. Letting t = 0 in (2.1), we observe that inequality (2.2) holds trivially for
t = 0. Fixing an arbitrary numbert0 ∈ (0, T ),we define on[0, t0] a positive function
z(t) by

(2.5) z(t) = c(t0) + ε +

∫ t

0

{
f(t0, s)ϕ

′ [u(s)]

×
[
u(s) +

∫ s

0

g(t0, ξ)w (u(ξ)) dξ

]
+ h(t0, s)ϕ

′ [u(s)]

}
ds,

whereε > 0 is an arbitrary small constant. By inequality (2.1) we have

(2.6) u(t) ≤ ϕ−1 [z(t)] , t ∈ [0, t0].

From (2.5) we derive by differentiation

z′(t) = f(t0, t)ϕ
′ [u(t)]

[
u(t) +

∫ t

0

g(t0, ξ)w [u(ξ)] dξ

]
+ h(t0, t)ϕ

′ [u(t)]

≤ ϕ′
[
ϕ−1 [z(t)]

]{
f(t0, t)

[
ϕ−1[z(t)] +

∫ t

0

g(t0, ξ)w
(
ϕ−1[z(ξ)]

)
dξ

]
+ h(t0, t)

}
,

for t ∈ [0, t0], sinceϕ′ is nonnegative and nondecreasing. Hence we obtain

d

dt
ϕ−1 [z(t)] =

z′(t)

ϕ′ [ϕ−1[z(t)]]

≤ f(t0, t)

[
ϕ−1[z(t)] +

∫ t

0

g(t0, ξ)w
(
ϕ−1[z(ξ)]

)
dξ

]
+ h(t0, t), t ∈ [0, t0],
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Integrating both sides of the last relation from 0 tot, we get

ϕ−1[z(t)] ≤ ϕ−1[z(0)] +

∫ t0

0

h(t0, s)ds

+

∫ t

0

f(t0, s)

[
ϕ−1[z(s)] +

∫ s

0

g(t0, ξ)w
(
ϕ−1[z(ξ)]

)
dξ

]
ds, t ∈ [0, t0].

Define a functionv(t), 0 ≤ t ≤ t0, by the right member of the last relation, we have

(2.7) ϕ−1[z(t)] ≤ v(t), t ∈ [0, t0],

where

(2.8) v(0) = ϕ−1[z(0)] +

∫ t0

0

h(t0, s)ds.

By differentiation we derive

v′(t) = f(t0, t)

[
ϕ−1[z(t)] +

∫ t

0

g(t0, ξ)w
(
ϕ−1[z(ξ)]

)
dξ

]
(2.9)

≤ f(t0, t)

[
v(t) +

∫ t

0

g(t0, ξ)w (v(ξ)) dξ

]
= f(t0, t)Ω(t), t ∈ [0, t0].

where

Ω(t) =

[
v(t) +

∫ t

0

g(t0, ξ)w (v(ξ)) dξ

]
.

Hence we havev(t) ≤ Ω(t),

(2.10) Ω(0) = v(0) = ϕ−1[z(0)] +

∫ t0

0

h(t0, s)ds,
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and

Ω′(t) = v′(t) + g(t0, t)w (v(t))

≤ f(t0, t)Ω(t) + g(t0, t)w (Ω(t)) , t ∈ [0, t0].

BecauseΩ(t), and hencew (Ω(t)), is positive on[0, t0], the last inequality can be
rewritten as

(2.11)
Ω′(t)

Ω(t) + w (Ω(t))
≤ f(t0, t) + g(t0, t), t ∈ [0, t0].

Integrating both sides of the last relation from 0 tot and in view of the definition
of G, we obtain

G [Ω(t)]−G [Ω(0)] ≤
∫ t

0

[f(t0, s) + g(t0, s)] ds, t ∈ [0, t0].

By (2.10) and the fact thatG(r) →∞as r →∞,the last relation yields

Ω(t) ≤ G−1

{
G

[
ϕ−1[z(0)] +

∫ t0

0

h(t0, s)ds

]
+

∫ t

0

[f(t0, s) + g(t0, s)] ds

}
, t ∈ [0, t0].

Substituting the last relation into (2.9), then integrating from 0 tot, we derive for
t ∈ [0, t0] that

u(t) ≤ ϕ−1 [c(t0) + ε] +

∫ t0

0

h(t0, s)ds

+

∫ t

0

f(t0, s)G
−1

{
G

[
ϕ−1[c(t0) + ε] +

∫ t0

0

h(t0, s)ds

]
+

∫ s

0

[f(t0, ξ) + g(t0, ξ)]dξ

}
ds,
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where we used the relationu(t) ≤ ϕ−1[z(t)] ≤ v(t) ≤ Ω(t).
Takingt = t0 and lettingε → 0, from the last relation we have

u(t0) ≤ K(t0) +

∫ t0

0

f(t0, s)G
−1

{
G [K(t0)] +

∫ s

0

[f(t0, ξ) + g(t0, ξ)] dξ

}
ds,

whereK(t) is defined by (2.3). This means that the desired inequality (2.2) is valid
whent = t0. Since the choice oft0 from (0, T ] is arbitrary, the proof of Theorem2.1
is complete.

If w(r) = r holds in Theorem2.1, the inequality (2.11) can be replaced by the
following sharper relation

Ω′(t)

Ω(t)
≤ f(t0, t) + g(t0, t), t ∈ [0, t0],

and functionsG,G−1 can be replaced byH(r) = ln (r/r0), H−1(η) = r0e
η, respec-

tively. Hence we derive the following:

Corollary 2.2. Under the conditions of Theorem2.1, the integral inequality

(2.12) ϕ[u(t)] ≤ c(t) +

∫ t

0

{
f(t, s)ϕ′[u(s)]

×
[
u(s) +

∫ s

0

g(s, ξ)u(ξ)dξ

]
+ h(t, s)ϕ′[u(s)]

}
ds, t ∈ [0, T ],

implies

(2.13) u(t) ≤
(

ϕ−1[c(t)] +

∫ t

0

h(t, s)ds

)
×

(
1 +

∫ t

0

f(t, s)

{
exp

∫ s

0

[f(t, ξ) + g(t, ξ)] dξ

}
ds

)
, t ∈ [0, T ].
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If ϕ(η) = ηp, p > 1, c(t) = kp ≥ 0 andf(t, s), g(t, s), h(t, s) do not depend on
the variablet, by Theorem2.1we have the following:

Corollary 2.3. Letp > 1, k ≥ 0 be constants andu, f, g ∈ C ([0, T ],R+) . Then the
integral inequality

up(t) ≤ kp + p

∫ t

0

{
f(s)up−1(s)

[
u(s) +

∫ s

0

g(ξ)w (u(ξ)) dξ

]}
ds, t ∈ [0, T ]

implies

u(t) ≤ k +

∫ t

0

f(s)G−1

{
G (k) +

∫ s

0

[f(ξ) + g(ξ)] dξ

}
ds, t ∈ [0, T ].

Remark1. Clearly, Constantin’s TheoremA is the special casep = 2 of the last
result.
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3. Discrete Analogue

In this section we will establish a discrete analogue of Theorem2.1. Denote byN the
set of nonnegative integers and letN0 = {n ∈N: n ≤ M} for some natural number
M . For simplicity, we denote byK(P, Q) the class of functions defined on setP
with range in setQ. For a functionu ∈ K(N, R), R = (−∞,∞), we define the
forward difference operator∆ by ∆u(n) = u(n + 1)− u(n).

As usual, we suppose that the empty sum and empty product are zero and one,
respectively . For instance,

−1∑
s=0

p(s) = 0 and
−1∏
s=0

p(s) = 1

hold for any functionp(n), n ∈ N.

Theorem 3.1. Let the functionsw,ϕ be as defined in Theorem2.1 and u, c ∈
K(N, R+) with c(n) nondecreasing. Further, letf(n, s), g(n, s), h(n, s) ∈ K(N ×
N, R+) be nondecreasing with respect ton for everys fixed. Then the discrete in-
equality

(3.1) ϕ[u(n)] ≤ c(n) +
n−1∑
s=0

{
f(n, s)ϕ′[u(s)]

×

[
u(s) +

s−1∑
ξ=0

g(s, ξ)w (u(ξ))

]
+ h(n, s)ϕ′[u(s)]

}
, n ∈ N0,

implies

(3.2) u(n)≤L(n)+
n−1∑
s=0

f(n, s)G−1

{
G[L(n)]+

s−1∑
ξ=0

[f(n, ξ)+g(n, ξ)]

}
, n∈N0,
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whereG, G−1 are as defined in Theorem2.1and

(3.3) L(n) := ϕ−1[c(n)] +
n−1∑
s=0

h(n, s).

Proof. Fixing an arbitrary positive integerm ∈ (0, M), we define on the setJ :=
{ 0, 1, . . . ,m} a positive functionz(n) ∈ K(J, (0,∞)) by

z(n) = c(m) + ε +
n−1∑
s=0

{
f(m, s)ϕ′[u(s)]

×

[
u(s) +

s−1∑
ξ=0

g(m, ξ)w (u(ξ))

]
+ h(m, s)ϕ′[u(s)]

}
,

whereε is an arbitrary positive constant, thenz(0) = c(m) + ε > 0 and by (3.1) we
have

(3.4) u(n) ≤ ϕ−1[z(n)], n ∈ J.

Using the last relation, we derive

∆z(n) = f(m,n)ϕ′[u(n)]

[
u(n) +

n−1∑
s=0

g(m, s)w (u(s))

]
+ h(m, n)ϕ′[u(n)]

≤ ϕ′
[
ϕ−1[z(n)]

]
×

{
f(m, n)

[
ϕ−1[z(n)] +

n−1∑
s=0

g(m, s)w
(
ϕ−1[z(s)]

)]
+ h(m, n)

}
, n ∈ J.
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By the mean value theorem and the last relation, we obtain

∆ϕ−1[z(n)] ≤ ∆z(n)

ϕ′ [ϕ−1[z(n)]]

≤ f(m, n)

[
ϕ−1[z(n)] +

n−1∑
s=0

g(m, s)w
(
ϕ−1[z(s)]

)]
+ h(m, n), n ∈ J,

sinceϕ′−1andz(n) are nondecreasing. Substitutingn = ξ in the last relation and
then summing overξ = 0, 1, 2, . . . , n− 1, we obtain

ϕ−1[z(n)] ≤ ϕ−1[z(0)] +
m−1∑
ξ=0

h(m, ξ)

+
n−1∑
ξ=0

f(m, ξ)

[
ϕ−1[z(ξ)] +

ξ−1∑
s=0

g(m, s)w
(
ϕ−1[z(s)]

)]
,

wheren ∈ J , sinceh(n, s) is nonnegative andm ≥ n holds. Now, defining byv(n)
the right member of the last relation, we have

v(0) = ϕ−1[z(0)] +
m−1∑
ξ=0

h(m, ξ) = ϕ−1[c(m) + ε] +
m−1∑
ξ=0

h(m, ξ)

and

(3.5) ϕ−1[z(n)] ≤ v(n), n ∈ J.
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By (3.5) we easily derive

∆v(n) = f(m, n)

[
ϕ−1[z(n)] +

n−1∑
s=0

g(m, s)w
(
ϕ−1[z(s)]

)]

≤ f(m, n)

[
v(n) +

n−1∑
s=0

g(m, s)w (v(s))

]
, n ∈ J,

or

(3.6) ∆v(n) ≤ f(m, n)y(n), n ∈ J,

where

y(n) := v(n) +
n−1∑
s=0

g(m, s)w (v(s)), n ∈ J.

Clearly,y(0) = v(0) holds and by (3.6) we have

∆y(n) ≤ ∆v(n) + g(m, n)w (v(n)) ≤ [f(m, n) + g(m, n)] [y(n) + w (y(n))] ,

i.e.,
∆y(n)

y(n) + w (y(n))
≤ f(m, n) + g(m, n), n ∈ J.

Becausey(n), w(r) are positive and nondecreasing, we have∫ y(n)

y(0)

ds

s + w(s)
≤

n−1∑
s=0

∆y(s)

y(s) + w(y(s))
≤

n−1∑
s=0

[f(m, s) + g(m, s)],

or

G[y(n)]−G[y(0)] ≤
n−1∑
s=0

[f(m, s) + g(m, s)], n ∈ J.
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SinceG(r) →∞as r →∞, the last relation yields

y(n) ≤ G−1

{
G

[
ϕ−1[c(m) + ε] +

m−1∑
ξ=0

h(m, ξ)

]
+

n−1∑
s=0

[f(m, s) + g(m, s)]

}
, n ∈ J.

Substituting this relation into (3.6), settingn = s and then summing overs =
0, 1, . . . , n− 1, we have

v(n) ≤ v(0) +
n−1∑
s=0

f(m, s)

×G−1

{
G

[
ϕ−1[c(m) + ε] +

m−1∑
ξ=0

h(m, ξ)

]
+

s−1∑
ξ=0

[f(m, ξ) + g(m, ξ)]

}
, n ∈ J.

Becauseu(n) ≤ ϕ−1[z(n)] ≤ v(n), n ∈ J, by lettingn = m andε → 0 in the last
relation, we obtain

u(m) ≤ L(m) +
m−1∑
s=0

f(m, s)G−1

{
G[L(m)] +

s−1∑
ξ=0

[f(m, ξ) + g(m, ξ)]

}
.

This means that the desired inequality (3.2) is valid whenn = m. Sincem ∈ (0, M)
is chosen arbitrarily and by (3.1), inequality (3.2) holds also forn = 0. Thus the
proof of Theorem3.1 is complete.

The following result is a special case of Theorem3.1whenϕ(η) = ηp, w(r) = r:
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Corollary 3.2. Under the conditions of Theorem3.1,the discrete inequality

(3.7) up(n) ≤ cp(n)

+ p
n−1∑
s=0

{
f(n, s)u(s)

[
u(s) +

s−1∑
ξ=0

g(s, ξ)u(ξ)

]
+ h(n, s)u(s)

}
, n ∈ N0,

wherep > 1 is a real number, implies that

(3.8) u(n) ≤

[
c(n) +

n−1∑
s=0

h(n, s)

]

×

{
1 +

n−1∑
s=0

f(n, s) exp
s−1∑
ξ=0

[f(n, ξ) + g(n, ξ)]

}
, n ∈ N0.

Note that, the particular case of Theorem3.1 whenϕ(η) = η2, c(n) ≡ k2 > 0
and the functionsf(n, s), g(n, s), h(n, s) are independent of the variablen, yields a
discrete analogue of the Constantin integral inequality.
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4. Discrete Model of Infiltration

The mathematical model of the infiltration phenomena of a fluid due to Okrasinsky
[7] was studied in [2] (see, also [8]):

(4.1) u2(t) = L +

∫ t

0

P (t− s)u(s)ds, t ∈R+,

whereL > 0 is a constant,P ∈ C(R+, R+) andu denotes the height of the percolat-
ing fluid above the horizontal impervious base, multiplied by a positive number. This
model describes the infiltration phenomena of a fluid from a cylindrical reservoir into
an isotropic homogeneous porous medium. Under the condition “P is differentiable
and nondecreasing”, Constantin obtained the existence and uniqueness of a solution
u ∈ C1(R+, (0,∞)) of equation (4.1). Some known results for equation (4.1) are
also given in Constantin [3] and Lipovan [5].

We note here that, although the conclusions given therein are correct, the deriva-
tion of them has a small defect. Actually, since functionP depends on both variables
t, s, the integral inequality given in the lemma of [2] is not applicable. However,
using our Theorem2.1 and by following the same argument as used in [2] these
conclusions can be reproved very easily.

Now we consider the discrete analogue of equation (4.1) without a differentiabil-
ity requirement on the functionP :

(4.2) u2(n) = L +
n−1∑
s=0

P (n, s)u(s), n ∈N,

whereL > 0 is a constant,u, P ∈ K(N, R+) with P nondecreasing. The unique
positive solution to equation (4.2) can be obtained by successive substitution. For
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instance, by lettingn = 0, 1, 2 successively in (4.2), we obtain

u(0) =
√

L , u(1) =
√

L + P (1)u(0) , u(2) =
√

L + P (1)u(1) + P (2)u(0).

An application of Corollary2.3with f(n, s) = g(n, s) ≡ 0, h(n, s) = P (n − s)
to (4.1) yields an upper bound onu(n) of the form

u(n) ≤
√

L +
n−1∑
s=0

P (n− s), n ∈N.
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