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ABSTRACT. Letpn be then-th prime number andxn = p2
n−pn−1pn+1. In this paper, we study

sequences containing the terms of the sequence(xn)n≥1. The main result asserts that the series∑∞
n=1 xn/p2

n is convergent, without being absolutely convergent.
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1. I NTRODUCTION

We shall use the following notation:

pn then-th prime number

xn = p2
n − pn−1pn+1 for n ≥ 2,

dn = pn+1 − pn for n ≥ 1,

qn =
pn+1

pn

for n ≥ 1,

f(x) � g(x) if there existc1, c2, M > 0 such that

c1f(x) < g(x) < c2f(x) for every x > M .

It will be our aim here to study the sequence(xn)n≥2 defined above.
It was proved in [1] that the sequence(dn)n≥1 is not nonotone. A similar result holds for the

sequence(qn)n≥1 as well. This means that the sequence(xn)n≥2 has infinitely many positive
terms, and infinitely many negative terms, hence it is not monotone.

In [1], the so-called method of the triple sieve (due to Vigo Brun) was used to prove that

(1.1)
∑
pn≤x

∣∣∣∣log
qn

qn−1

∣∣∣∣ � log x.
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This result plays an essential role in the following paragraph of the present paper.
Another useful result is proved in [4]:

(1.2) the series
∞∑

n=1

(
dn

pn

)n

is convergent.

2. THE SERIES
∑∞

n=2
xn

p2
n

Theorem 2.1.The series
∑∞

n=2
xn

p2
n

is convergent, but it is not absolutely convergent.

In order to prove this fact, we need the following lemmas.
Lemma 2.2. For x ≥ −1

2
, we have

x2 + |x| ≥ | log(1 + x)| ≥ |x| − x2

2
.

Proof. The inequalities are well known forx > 0. Whenx ∈
[
−1

2
, 0

]
, they take on the form

x2 − x ≥ − log(1 + x) ≥ −x− x2

2
.

Let f, g :
[
−1

2
, 0

]
→ R be defined byf(x) = log(1+x)−x− x2

2
andg(x) = log(1+x)−x+x2,

respectively. We havef ′(x) = −x(x+2)
1+x

≥ 0, andg′(x) = x(2x+1)
1+x

≤ 0. Sincef is increasing
andf(0) = 0, we getf(x) ≤ 0. On the other hand, we haveg′(x) < 0 andg(0) = 0, so that
g(x) ≥ 0. �

Lemma 2.3. The series
∑∞

n=2
dn−dn−1

pn
is convergent.

Proof. DenoteSn =
∑n

k=2
dk−dk−1

pk
, so that

Sn =
dn

pn

+
n∑

k=2

d2
k−1

pkpk−1

− 1

2
.

Sincelimn→∞
pn+1

pn
= 1, it suffices to prove that the series

∑∞
k=2

d2
k−1

pkpk−1
is convergent. Since

d2
k−1

pkpk−1
∼

(
dk−1

pk−1

)2

and the terms of the series are positive, it follows that the series
∑∞

k=2

d2
k−1

pkpk−1

and
∑∞

k=2

(
dk−1

pk−1

)2

are simultaneously convergent or not. Now just use (1.2) and the proof

ends. �

Lemma 2.4. The series
∑∞

n=2
x2

n

p4
n

is convergent.

Proof. Sincexn = dndn−1 + pn(dn−1 − dn), it follows that

(2.1)
xn

p2
n

=
dndn−1

p2
n

+
dn−1 − dn

pn

hence

(2.2)
x2

n

p4
n

≤ 2

(
d2

nd
2
n−1

p4
n

+
(dn−1 − dn)2

p2
n

)
.

Since the series
∑∞

n=1
d2

n

p2
n

is convergent and
d2

n−1

p2
n−1

∼ d2
n−1

p2
n

, it follows that the series
∑∞

n=2

d2
n−1

p2
n

is

convergent as well. This implies that the series
∑∞

n=2

max(d2
n,d2

n−1)

p2
n

is also convergent. Since

d2
nd

2
n−1

p4
n

<
max(d2

n, d
2
n−1)

p2
n

and
(dn−1 − dn)2

p2
n

<
max(d2

n, d
2
n−1)

p2
n

,
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we deduce by (2.2) that the series
∑∞

n=2
x2

n

p4
n

is convergent. �

Lemma 2.5. For x > 0 we have ∑
pn≤x

∣∣∣∣qn − qn−1

qn−1

∣∣∣∣ � log x.

Proof. In view of Lemma 2.2, we have(
qn − qn−1

qn−1

)2

+

∣∣∣∣qn − qn−1

qn−1

∣∣∣∣ ≥ ∣∣∣∣log
qn

qn−1

∣∣∣∣ ≥ ∣∣∣∣qn − qn−1

qn−1

∣∣∣∣− 1

2

(
qn − qn−1

qn−1

)2

.

Since
qn − qn−1

qn−1

=

pn+1
pn

− pn

pn−1

pn

pn−1

= −xn

p2
n

,

we have

(2.3)
1

2
· x2

n

p4
n

+

∣∣∣∣log
qn

qn−1

∣∣∣∣ >

∣∣∣∣qn − qn−1

qn−1

∣∣∣∣ ≥ ∣∣∣∣log
qn

qn−1

∣∣∣∣− x2
n

p4
n

.

Now the desired conclusion follows by (1.1) and Lemma 2.4. �

Proof of Theorem 2.1.By the relation (2.1) we have

Sn =
n∑

k=2

xk

p2
k

=
n∑

k=2

dkdk−1

p2
k

+
n∑

k=2

dk−1 − dk

pk

.

Sincedkdk−1 ≤ max(d2
k, d

2
k−1), and since the series

∑∞
n=2

max(d2
n,d2

n−1)

p2
n

is convergent, see the

proof of Lemma 2.4, it follows that the series
∑∞

n=2
dndn−1

p2
n

is convergent too. Consequently the

sequence(S ′n)n≥1, defined byS ′n =
∑n

k=2
dkdk−1

p2
k

is convergent. Lemma 2.3 implies that the

sequence(S ′′n)n≥1, defined byS ′′n =
∑n

k=2
dk−1−dk

pk
is convergent as well. It then follows that the

sequence(Sn)n≥2 is convergent, that is, the series
∑∞

n=2
xn

p2
n

is convergent.

On the other hand, Lemma 2.5 and the relation
∣∣∣ qn−qn−1

qn−1

∣∣∣ = |xn|
p2

n
imply that

(2.4)
∑
pn≤x

|xn|
p2

n

� log x,

hence the series
∑∞

n=2
xn

p2
n

is not absolutely convergent. �

3. THE SERIES
∑∞

n=2
|xn|

p2
n logα n

Since the series
∑∞

n=2
|xn|
p2

n
is divergent, it is natural to study what “correction” does it need

to become convergent. In this connection, we prove the following fact.

Theorem 3.1.The series
∑∞

n=2
|xn|

p2
n logα n

is convergent if and only ifα > 1.

Proof. We are going to put to use a technique from [3].
To begin with, we recall an inequality due to Abel: Letak, bk ∈ R, k ∈ 1, n such that, if

Si =
∑i

k=1 bk, thenSi ≥ 0 for i ∈ 1, n. Then
∑n

i=1 aibi = S1(a1 − a2) + S2(a2 − a3) + · · ·+
Sn−1(an−1 − an) + Snan, which implies the inequalities

(3.1)
n∑

i=1

aibi ≥ anSn provideda1 ≥ · · · ≥ an,
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and

(3.2)
n∑

i=1

aibi ≤ anSn when a1 ≤ · · · ≤ an.

It follows by (2.4) that there existc1 andc2 such that0 < c1 < c2 and

(3.3) c1 log x <
∑
pn≤x

|xn|
p2

n

< c2 log x for all x ≥ 2.

Forα > 0 andn ≥ 1, we denotea1 = 1, b1 = 0 and fori ≥ 2 ai = 1
logα i

andbi = c′

i
· |xi|

p2
i

, where

c′ > 0 is chosen such thatS1, S2, . . . , Sn ≥ 0. Such a choice is possible because
∑

2≤i≤x
1
i
∼

log x and (3.3) holds.

It now follows by (3.1) that
∑n

i=2
1

logα i

(
c′

i
− |xi|

p2
i

)
≥ 0, that is,

∑n
i=2

|xi|2
p2

i logα i
< c′

∑n
i=2

1
i logα i

.

Since the series
∑∞

i=2
1

i logα i
is convergent forα > 1, we deduce that the series

∑∞
n=2

|xn|
p2

n logα n
is

convergent as well.
One can similarly show that there existsc′′ > 0 such that

n∑
i=2

|xi|2

p2
i logα i

> c′′
n∑

i=2

1

i logα i
.

Since the series
∑∞

i=2
1

i logα i
is divergent forα ≤ 1, it follows that in this case the series∑∞

n=2
|xn|

p2
n logα n

is in turn divergent. �
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