Journal of Inequalities in Pure and Applied Mathematics

ON THE SEQUENCE $\left(p_{n}^{2}-p_{n-1} p_{n+1}\right)_{n \geq 2}$

LAURENŢIU PANAITOPOL

Faculty of Mathematics
14 Academiei St.
RO-70109 Bucharest, Romania.
EMail: pan@al.math.unibuc.ro
volume 3 , issue 4, article 53, 2002.

Received 17 December, 2001; accepted 24 May, 2002.
Communicated by: L. Toth

Abstract
Contents
Gome Page
Close
Quit

Abstract

Let p_{n} be the n-th prime number and $x_{n}=p_{n}^{2}-p_{n-1} p_{n+1}$. In this paper, we study sequences containing the terms of the sequence $\left(x_{n}\right)_{n \geq 1}$. The main result asserts that the series $\sum_{n=1}^{\infty} x_{n} / p_{n}^{2}$ is convergent, without being absolutely convergent.

2000 Mathematics Subject Classification: 11A25, 11N05, 11N36 Key words: Prime Numbers, Sequences, Series, Asymptotic Behaviour.

Contents

1 Introduction 3
2 The Series $\sum_{n=2}^{\infty} \frac{x_{n}}{p_{n}^{2}}$ 5
3 The Series $\sum_{n=2}^{\infty} \frac{\left|x_{n}\right|}{p_{n}^{2} \log ^{\alpha} n}$ 9
References

On the Sequence
$\left(p_{n}^{2}-p_{n-1} p_{n+1}\right)_{n \geq 2}$
Laurenţiu Panaitopol

J. Ineq. Pure and Appl. Math. 3(4) Art. 53, 2002 http://jipam.vu.edu.au

1. Introduction

We shall use the following notation:

$$
\begin{aligned}
& p_{n} \text { the } n \text {-th prime number } \\
& x_{n}=p_{n}^{2}-p_{n-1} p_{n+1} \text { for } n \geq 2, \\
& d_{n}=p_{n+1}-p_{n} \text { for } n \geq 1, \\
& q_{n}=\frac{p_{n+1}}{p_{n}} \text { for } n \geq 1, \\
& f(x) \\
& \asymp g(x) \text { if there exist } c_{1}, c_{2}, M>0 \text { such that } \\
& c_{1} f(x)<g(x)<c_{2} f(x) \text { for every } x>M .
\end{aligned}
$$

It will be our aim here to study the sequence $\left(x_{n}\right)_{n \geq 2}$ defined above.
It was proved in [1] that the sequence $\left(d_{n}\right)_{n \geq 1}$ is not nonotone. A similar result holds for the sequence $\left(q_{n}\right)_{n \geq 1}$ as well. This means that the sequence $\left(x_{n}\right)_{n \geq 2}$ has infinitely many positive terms, and infinitely many negative terms, hence it is not monotone.

In [1], the so-called method of the triple sieve (due to Vigo Brun) was used to prove that

$$
\begin{equation*}
\sum_{p_{n} \leq x}\left|\log \frac{q_{n}}{q_{n-1}}\right| \asymp \log x \tag{1.1}
\end{equation*}
$$

This result plays an essential role in the following paragraph of the present paper.

Another useful result is proved in [4]:
the series $\sum_{n=1}^{\infty}\left(\frac{d_{n}}{p_{n}}\right)^{n}$ is convergent.

J. Ineq. Pure and Appl. Math. 3(4) Art. 53, 2002 http://jipam.vu.edu.au

2. The Series $\sum_{n=2}^{\infty} \frac{x_{n}}{p_{n}^{2}}$

Theorem 2.1. The series $\sum_{n=2}^{\infty} \frac{x_{n}}{p_{n}^{2}}$ is convergent, but it is not absolutely convergent.

In order to prove this fact, we need the following lemmas.
Lemma 2.2. For $x \geq-\frac{1}{2}$, we have

$$
x^{2}+|x| \geq|\log (1+x)| \geq|x|-\frac{x^{2}}{2} .
$$

Proof. The inequalities are well known for $x>0$. When $x \in\left[-\frac{1}{2}, 0\right]$, they take on the form

$$
x^{2}-x \geq-\log (1+x) \geq-x-\frac{x^{2}}{2} .
$$

Let $f, g:\left[-\frac{1}{2}, 0\right] \rightarrow \mathbb{R}$ be defined by $f(x)=\log (1+x)-x-\frac{x^{2}}{2}$ and $g(x)=$ $\log (1+x)-x+x^{2}$, respectively. We have $f^{\prime}(x)=-\frac{x(x+2)}{1+x} \geq 0$, and $g^{\prime}(x)=$ $\frac{x(2 x+1)}{1+x} \leq 0$. Since f is increasing and $f(0)=0$, we get $f(x) \leq 0$. On the other hand, we have $g^{\prime}(x)<0$ and $g(0)=0$, so that $g(x) \geq 0$.

Lemma 2.3. The series $\sum_{n=2}^{\infty} \frac{d_{n}-d_{n-1}}{p_{n}}$ is convergent.
Proof. Denote $S_{n}=\sum_{k=2}^{n} \frac{d_{k}-d_{k-1}}{p_{k}}$, so that

$$
S_{n}=\frac{d_{n}}{p_{n}}+\sum_{k=2}^{n} \frac{d_{k-1}^{2}}{p_{k} p_{k-1}}-\frac{1}{2}
$$

Since $\lim _{n \rightarrow \infty} \frac{p_{n+1}}{p_{n}}=1$, it suffices to prove that the series $\sum_{k=2}^{\infty} \frac{d_{k-1}^{2}}{p_{k} p_{k-1}}$ is convergent. Since $\frac{d_{k-1}^{2}}{p_{k} p_{k-1}} \sim\left(\frac{d_{k-1}}{p_{k-1}}\right)^{2}$ and the terms of the series are positive, it follows that the series $\sum_{k=2}^{\infty} \frac{d_{k-1}^{2}}{p_{k} p_{k-1}}$ and $\sum_{k=2}^{\infty}\left(\frac{d_{k-1}}{p_{k-1}}\right)^{2}$ are simultaneously convergent or not. Now just use (1.2) and the proof ends.

Lemma 2.4. The series $\sum_{n=2}^{\infty} \frac{x_{n}^{2}}{p_{n}^{4}}$ is convergent.
Proof. Since $x_{n}=d_{n} d_{n-1}+p_{n}\left(d_{n-1}-d_{n}\right)$, it follows that

$$
\begin{equation*}
\frac{x_{n}}{p_{n}^{2}}=\frac{d_{n} d_{n-1}}{p_{n}^{2}}+\frac{d_{n-1}-d_{n}}{p_{n}} \tag{2.1}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{x_{n}^{2}}{p_{n}^{4}} \leq 2\left(\frac{d_{n}^{2} d_{n-1}^{2}}{p_{n}^{4}}+\frac{\left(d_{n-1}-d_{n}\right)^{2}}{p_{n}^{2}}\right) . \tag{2.2}
\end{equation*}
$$

Since the series $\sum_{n=1}^{\infty} \frac{d_{n}^{2}}{p_{n}^{2}}$ is convergent and $\frac{d_{n-1}^{2}}{p_{n-1}^{2}} \sim \frac{d_{n-1}^{2}}{p_{n}^{2}}$, it follows that the series $\sum_{n=2}^{\infty} \frac{d_{n-1}^{2}}{p_{n}^{2}}$ is convergent as well. This implies that the series $\sum_{n=2}^{\infty} \frac{\max \left(d_{n}^{2}, d_{n-1}^{2}\right)}{p_{n}^{2}}$ is also convergent. Since

$$
\frac{d_{n}^{2} d_{n-1}^{2}}{p_{n}^{4}}<\frac{\max \left(d_{n}^{2}, d_{n-1}^{2}\right)}{p_{n}^{2}} \quad \text { and } \quad \frac{\left(d_{n-1}-d_{n}\right)^{2}}{p_{n}^{2}}<\frac{\max \left(d_{n}^{2}, d_{n-1}^{2}\right)}{p_{n}^{2}}
$$

On the Sequence
$\left(p_{n}^{2}-p_{n-1} p_{n+1}\right)_{n \geq 2}$
Laurenţiu Panaitopol

Title Page
Contents

Go Back
Close
Quit
Page 6 of 11
we deduce by (2.2) that the series $\sum_{n=2}^{\infty} \frac{x_{n}^{2}}{p_{n}^{4}}$ is convergent.

Lemma 2.5. For $x>0$ we have

$$
\sum_{p_{n} \leq x}\left|\frac{q_{n}-q_{n-1}}{q_{n-1}}\right| \asymp \log x
$$

Proof. In view of Lemma 2.2, we have
$\left(\frac{q_{n}-q_{n-1}}{q_{n-1}}\right)^{2}+\left|\frac{q_{n}-q_{n-1}}{q_{n-1}}\right| \geq\left|\log \frac{q_{n}}{q_{n-1}}\right| \geq\left|\frac{q_{n}-q_{n-1}}{q_{n-1}}\right|-\frac{1}{2}\left(\frac{q_{n}-q_{n-1}}{q_{n-1}}\right)^{2}$.
Since

$$
\frac{q_{n}-q_{n-1}}{q_{n-1}}=\frac{\frac{p_{n}+1}{p_{n}}-\frac{p_{n}}{p_{n-1}}}{\frac{p_{n}}{p_{n-1}}}=-\frac{x_{n}}{p_{n}^{2}},
$$

we have

$$
\begin{equation*}
\frac{1}{2} \cdot \frac{x_{n}^{2}}{p_{n}^{4}}+\left|\log \frac{q_{n}}{q_{n-1}}\right|>\left|\frac{q_{n}-q_{n-1}}{q_{n-1}}\right| \geq\left|\log \frac{q_{n}}{q_{n-1}}\right|-\frac{x_{n}^{2}}{p_{n}^{4}} \tag{2.3}
\end{equation*}
$$

Now the desired conclusion follows by (1.1) and Lemma 2.4.
Proof of Theorem 2.1. By the relation (2.1) we have

$$
S_{n}=\sum_{k=2}^{n} \frac{x_{k}}{p_{k}^{2}}=\sum_{k=2}^{n} \frac{d_{k} d_{k-1}}{p_{k}^{2}}+\sum_{k=2}^{n} \frac{d_{k-1}-d_{k}}{p_{k}}
$$

Since $d_{k} d_{k-1} \leq \max \left(d_{k}^{2}, d_{k-1}^{2}\right)$, and since the series $\sum_{n=2}^{\infty} \frac{\max \left(d_{n}^{2}, d_{n-1}^{2}\right)}{p_{n}^{2}}$ is convergent, see the proof of Lemma 2.4, it follows that the series $\sum_{n=2}^{\infty} \frac{d_{n} d_{n-1}}{p_{n}^{2}}$ is
convergent too. Consequently the sequence $\left(S_{n}^{\prime}\right)_{n \geq 1}$, defined by $S_{n}^{\prime}=\sum_{k=2}^{n} \frac{d_{k} d_{k-1}}{p_{k}^{2}}$ is convergent. Lemma 2.3 implies that the sequence $\left(S_{n}^{\prime \prime}\right)_{n \geq 1}$, defined by $S_{n}^{\prime \prime}=$ $\sum_{k=2}^{n} \frac{d_{k-1}-d_{k}}{p_{k}}$ is convergent as well. It then follows that the sequence $\left(S_{n}\right)_{n \geq 2}$ is convergent, that is, the series $\sum_{n=2}^{\infty} \frac{x_{n}}{p_{n}^{2}}$ is convergent.

On the other hand, Lemma 2.5 and the relation $\left|\frac{q_{n}-q_{n-1}}{q_{n-1}}\right|=\frac{\left|x_{n}\right|}{p_{n}^{2}}$ imply that

$$
\begin{equation*}
\sum_{p_{n} \leq x} \frac{\left|x_{n}\right|}{p_{n}^{2}} \asymp \log x \tag{2.4}
\end{equation*}
$$

hence the series $\sum_{n=2}^{\infty} \frac{x_{n}}{p_{n}^{2}}$ is not absolutely convergent.

On the Sequence
$\left(p_{n}^{2}-p_{n-1} p_{n+1}\right)_{n \geq 2}$
Laurenţiu Panaitopol

J. Ineq. Pure and Appl. Math. 3(4) Art. 53, 2002

3. The Series $\sum_{n=2}^{\infty} \frac{\left|x_{n}\right|}{p_{n}^{2} \log ^{\alpha} n}$

Since the series $\sum_{n=2}^{\infty} \frac{\left|x_{n}\right|}{p_{n}^{2}}$ is divergent, it is natural to study what "correction" does it need to become convergent. In this connection, we prove the following fact.

Theorem 3.1. The series $\sum_{n=2}^{\infty} \frac{\left|x_{n}\right|}{p_{n}^{2} \log ^{\alpha} n}$ is convergent if and only if $\alpha>1$.
Proof. We are going to put to use a technique from [3].
To begin with, we recall an inequality due to Abel: Let $a_{k}, b_{k} \in \mathbb{R}, k \in \overline{1, n}$ such that, if $S_{i}=\sum_{k=1}^{i} b_{k}$, then $S_{i} \geq 0$ for $i \in \overline{1, n}$. Then $\sum_{i=1}^{n} a_{i} b_{i}=$ $S_{1}\left(a_{1}-a_{2}\right)+S_{2}\left(a_{2}-a_{3}\right)+\cdots+S_{n-1}\left(a_{n-1}-a_{n}\right)+S_{n} a_{n}$, which implies the inequalities

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} b_{i} \geq a_{n} S_{n} \text { provided } a_{1} \geq \cdots \geq a_{n} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} b_{i} \leq a_{n} S_{n} \text { when } a_{1} \leq \cdots \leq a_{n} . \tag{3.2}
\end{equation*}
$$

It follows by (2.4) that there exist c_{1} and c_{2} such that $0<c_{1}<c_{2}$ and

$$
\begin{equation*}
c_{1} \log x<\sum_{p_{n} \leq x} \frac{\left|x_{n}\right|}{p_{n}^{2}}<c_{2} \log x \text { for all } x \geq 2 . \tag{3.3}
\end{equation*}
$$

On the Sequence
$\left(p_{n}^{2}-p_{n-1} p_{n+1}\right)_{n \geq 2}$
Laurenţiu Panaitopol

For $\alpha>0$ and $n \geq 1$, we denote $a_{1}=1, b_{1}=0$ and for $i \geq 2 a_{i}=\frac{1}{\log ^{\alpha} i}$ and $b_{i}=\frac{c^{\prime}}{i} \cdot \frac{\left|x_{i}\right|}{p_{i}^{2}}$, where $c^{\prime}>0$ is chosen such that $S_{1}, S_{2}, \ldots, S_{n} \geq 0$. Such a choice is possible because $\sum_{2 \leq i \leq x} \frac{1}{i} \sim \log x$ and (3.3) holds.

It now follows by (3.1) that $\sum_{i=2}^{n} \frac{1}{\log ^{\alpha} i}\left(\frac{c^{\prime}}{i}-\frac{\left|x_{i}\right|}{p_{i}^{2}}\right) \geq 0$, that is, $\sum_{i=2}^{n} \frac{\left|x_{i}\right|^{2}}{p_{i}^{2} \log ^{\alpha} i}<$ $c^{\prime} \sum_{i=2}^{n} \frac{1}{i \log ^{\alpha} i}$. Since the series $\sum_{i=2}^{\infty} \frac{1}{i \log ^{\alpha} i}$ is convergent for $\alpha>1$, we deduce that the series $\sum_{n=2}^{\infty} \frac{\left|x_{n}\right|}{p_{n}^{2} \log ^{\alpha} n}$ is convergent as well.

One can similarly show that there exists $c^{\prime \prime}>0$ such that

$$
\sum_{i=2}^{n} \frac{\left|x_{i}\right|^{2}}{p_{i}^{2} \log ^{\alpha} i}>c^{\prime \prime} \sum_{i=2}^{n} \frac{1}{i \log ^{\alpha} i}
$$

Since the series $\sum_{i=2}^{\infty} \frac{1}{i \log ^{\alpha} i}$ is divergent for $\alpha \leq 1$, it follows that in this case the series $\sum_{n=2}^{\infty} \frac{\left|x_{n}\right|}{p_{n}^{2} \log ^{\alpha} n}$ is in turn divergent.

References

[1] P. ERDỐS AND A. RÉNYI, Some problems and results on consecutive primes, Simon Stevin, 27 (1950), 115-125.
[2] P. ERDỐS AND P. TURÁN, On some new question on the distribution of prime numbers, Bull. Amer. Math. Soc., 54 (1948), 371-378.
[3] L. PANAITOPOL, Properties of the series of differences of prime numbers, Publications du Centre de Recherches en Mathématiques Pures. Univ. Neuchâtel, Sér. I, Fasc., 31 (2000), 21-28.
[4] P. VLAMOS, Inequalities involving the sequence of the differences of the prime numbers, Publications du Centre de Recherches en Mathématiques Pures. Univ. Neuchâtel, Sér. I, Fasc., 32 (2001), 32-40.

