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ABSTRACT. We study the Sobolev spaces of exponential type associated with the Dunkl-Bessel
Laplace operator. Some properties including completeness and the imbedding theorem are
proved. We next introduce a class of symbols of exponential type and the associated pseudo-
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of exponential type. Finally, using the theory of reproducing kernels, some applications are given
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1. I NTRODUCTION

The Sobolev spaceW s,p(Rd) serves as a very useful tool in the theory of partial differential

equations, which is defined as follows

W s,p(Rd) =
{
u ∈ S ′(Rd), (1 + ||ξ||2)

s
pF(u) ∈ Lp(Rd)

}
.

In this paper we consider the Dunkl-Bessel Laplace operator4k,β defined by

∀x = (x′, xd+1) ∈ Rd×]0,+∞[, 4k,β = 4k,x′ + Lβ,xd+1
, β ≥ −1

2
,

where4k is the Dunkl Laplacian onRd, andLβ is the Bessel operator on]0,+∞[. We in-

troduce the generalized Dunkl-Sobolev space of exponential typeW s,p
G∗,k,β(Rd+1

+ ) by replacing
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(1 + ||ξ||2)
s
p by an exponential weight function defined as follows

W s,p
G∗,k,β(Rd+1

+ ) =
{
u ∈ G ′∗, es||ξ||FD,B(u) ∈ Lp

k,β(Rd+1
+ )

}
,

whereLp
k,β(Rd+1

+ ) it is the Lebesgue space associated with the Dunkl-Bessel transform andG ′∗
is the topological dual of the Silva space. We investigate their properties such as the imbedding

theorems and the structure theorems. In fact, the imbedding theorems mean that fors > 0,

u ∈ W s,p
G∗,k,β(Rd+1

+ ) can be analytically continued to the set{z ∈ Cd+1 / | Im z| < s}. For

the structure theorems we prove that fors > 0, u ∈ W−s,2
G∗,k,β(Rd+1

+ ) can be represented as an

infinite sum of fractional Dunkl-Bessel Laplace operators of square integrable functionsg, in

other words,

u =
∑
m∈N

sm

m!
(−4k,β)

m
2 g.

We prove also that the generalized Dunkl-Sobolev spaces are stable by multiplication of the

functions of the Silva spaces. As applications on these spaces, we study the action for the class

of pseudo differential-difference operators and we apply the theory of reproducing kernels on

these spaces. We note that special cases include: the classical Sobolev spaces of exponential

type, the Sobolev spaces of exponential types associated with the Weinstein operator and the

Sobolev spaces of exponential type associated with the Dunkl operators.

We conclude this introduction with a summary of the contents of this paper. In Section 2

we recall the harmonic analysis associated with the Dunkl-Bessel Laplace operator which we

need in the sequel. In Section 3 we consider the Silva spaceG∗ and its dualG ′∗. We study the

action of the Dunkl-Bessel transform on these spaces. Next we prove two structure theorems

for the spaceG ′∗. We define in Section 4 the generalized Dunkl-Sobolev spaces of exponen-

tial typeW s,p
G∗,k,β(Rd+1

+ ) and we give their properties. In Section 5 we give two applications on

these spaces. More precisely, in the first application we introduce certain classes of symbols

of exponential type and the associated pseudo-differential-difference operators of exponential

type. We show that these pseudo-differential-difference operators naturally act on the general-

ized Sobolev spaces of exponential type. In the second, using the theory of reproducing kernels,

some applications are given for these spaces.

2. PRELIMINARIES

In order to establish some basic and standard notations we briefly overview the theory of

Dunkl operators and its relation to harmonic analysis. Main references are [3, 4, 5, 8, 16, 17,

19, 20, 21].

2.1. The Dunkl Operators. LetRd be the Euclidean space equipped with a scalar product〈·, ·〉
and let||x|| =

√
〈x, x〉. Forα in Rd\{0}, let σα be the reflection in the hyperplaneHα ⊂ Rd
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DUNKL -SOBOLEV SPACES 3

orthogonal toα, i.e. forx ∈ Rd,

σα(x) = x− 2
〈α, x〉
||α||2

α.

A finite setR ⊂ Rd\{0} is called a root system ifR ∩ R α = {α,−α} andσαR = R for all

α ∈ R. For a given root systemR, reflectionsσα, α ∈ R, generate a finite groupW ⊂ O(d),

called the reflection group associated withR. We fix aβ ∈ Rd\
⋃

α∈RHα and define a positive

root systemR+ = {α ∈ R | 〈α, β〉 > 0}. We normalize eachα ∈ R+ as〈α, α〉 = 2. A function

k : R −→ C onR is called a multiplicity function if it is invariant under the action ofW . We

introduce the indexγ as

γ = γ(k) =
∑

α∈R+

k(α).

Throughout this paper, we will assume thatk(α) ≥ 0 for all α ∈ R. We denote byωk the

weight function onRd given by

ωk(x) =
∏

α∈R+

|〈α, x〉|2k(α),

which is invariant and homogeneous of degree2γ, and byck the Mehta-type constant defined

by

ck =

(∫
Rd

exp(−||x||2)ωk(x) dx

)−1

.

We note that Etingof (cf. [6]) has given a derivation of the Mehta-type constant valid for all

finite reflection group.

The Dunkl operatorsTj, j = 1, 2, . . . , d, onRd associated with the positive root systemR+

and the multiplicity functionk are given by

Tjf(x) =
∂f

∂xj

(x) +
∑

α∈R+

k(α)αj
f(x)− f(σα(x))

〈α, x〉
, f ∈ C1(Rd).

We define the Dunkl-Laplace operator4k onRd for f ∈ C2(Rd) by

4kf(x) =
d∑

j=1

T 2
j f(x)

= 4f(x) + 2
∑

α∈R+

k(α)

(
〈∇f(x), α〉
〈α, x〉

− f(x)− f(σα(x))

〈α, x〉2

)
,

where4 and∇ are the usual Euclidean Laplacian and nabla operators onRd respectively. Then

for eachy ∈ Rd, the system{
Tju(x, y) = yju(x, y), j = 1, . . . , d,

u(0, y) = 1

admits a unique analytic solutionK(x, y), x ∈ Rd, called the Dunkl kernel. This kernel has a

holomorphic extension toCd × Cd, (cf. [17] for the basic properties ofK).
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2.2. Harmonic Analysis Associated with the Dunkl-Bessel Laplace Operator.In this sub-

section we collect some notations and results on the Dunkl-Bessel kernel, the Dunkl-Bessel

intertwining operator and its dual, the Dunkl-Bessel transform, and the Dunkl-Bessel convolu-

tion (cf. [12]).

In the following we denote by

• Rd+1
+ = Rd × [0,+∞[.

• x = (x1, . . . , xd, xd+1) = (x′, xd+1) ∈ Rd+1
+ .

• C∗(Rd+1) the space of continuous functions onRd+1, even with respect to the last

variable.

• Cp
∗ (Rd+1) the space of functions of classCp on Rd+1, even with respect to the last

variable.

• E∗(Rd+1) the space ofC∞-functions onRd+1, even with respect to the last variable.

• S∗(Rd+1) the Schwartz space of rapidly decreasing functions onRd+1, even with re-

spect to the last variable.

• D∗(Rd+1) the space ofC∞-functions onRd+1 which are of compact support, even

with respect to the last variable.

• S ′
∗(Rd+1) the space of temperate distributions onRd+1, even with respect to the last

variable. It is the topological dual ofS∗(Rd+1).

We consider the Dunkl-Bessel Laplace operator4k,β defined by

∀x = (x′, xd+1) ∈ Rd×]0,+∞[,(2.1)

4k,βf(x) = 4k,x′f(x′, xd+1) + Lβ,xd+1
f(x′, xd+1), f ∈ C2

∗(Rd+1),

where4k is the Dunkl-Laplace operator onRd, andLβ the Bessel operator on]0,+∞[ given

by

Lβ =
d2

dx2
d+1

+
2β + 1

xd+1

d

dxd+1

, β > −1

2
.

The Dunkl-Bessel kernelΛ is given by

(2.2) Λ(x, z) = K(ix′, z′)jβ(xd+1zd+1), (x, z) ∈ Rd+1 × Cd+1,

whereK(ix′, z′) is the Dunkl kernel andjβ(xd+1zd+1) is the normalized Bessel function. The

Dunkl-Bessel kernel satisfies the following properties:

i) For all z, t ∈ Cd+1, we have

(2.3) Λ(z, t) = Λ(t, z); Λ(z, 0) = 1 and Λ(λz, t) = Λ(z, λt), for all λ ∈ C.

ii) For allν ∈ Nd+1, x ∈ Rd+1 andz ∈ Cd+1, we have

(2.4) |Dν
zΛ(x, z)| ≤ ||x|||ν| exp(||x|| || Im z||),

whereDν
z = ∂ν

∂z
ν1
1 ···∂z

νd+1
d+1

and|ν| = ν1 + · · ·+ νd+1. In particular

(2.5) |Λ(x, y)| ≤ 1, for all x, y ∈ Rd+1.
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The Dunkl-Bessel intertwining operator is the operatorRk,β defined onC∗(Rd+1) by

(2.6) Rk,βf(x′, xd+1)

=


2Γ(β + 1)√
πΓ(β + 1

2
)
x−2β

d+1

∫ xd+1

0

(x2
d+1 − t2)β− 1

2Vkf(x′, t)dt, xd+1 > 0,

f(x′, 0), xd+1 = 0,

whereVk is the Dunkl intertwining operator (cf. [16]).

Rk,β is a topological isomorphism fromE∗(Rd+1) onto itself satisfying the following trans-

mutation relation

(2.7) 4k,β(Rk,βf) = Rk,β(4d+1f), for all f ∈ E∗(Rd+1),

where4d+1 =
d+1∑
j=1

∂2
j is the Laplacian onRd+1.

The dual of the Dunkl-Bessel intertwining operatorRk,β is the operatortRk,β defined on

D∗(Rd+1) by: ∀y = (y′, yd+1) ∈ Rd × [0,∞[,

(2.8) tRk,β(f)(y′, yd+1) =
2Γ(β + 1)

√
πΓ
(
β + 1

2

) ∫ ∞

yd+1

(s2 − y2
d+1)

β− 1
2

tVkf(y′, s)sds,

wheretVk is the dual Dunkl intertwining operator (cf. [20]).
tRk,β is a topological isomorphism fromS∗(Rd+1) onto itself satisfying the following trans-

mutation relation

(2.9) tRk,β(4k,βf) = 4d+1(
tRk,βf), for all f ∈ S∗(Rd+1).

We denote byLp
k,β(Rd+1

+ ) the space of measurable functions onRd+1
+ such that

||f ||Lp
k,β(Rd+1

+ ) =

(∫
Rd+1

+

|f(x)|pdµk,β(x) dx

) 1
p

< +∞, if 1 ≤ p < +∞,

||f ||L∞k,β(Rd+1
+ ) = ess sup

x∈Rd+1
+

|f(x)| < +∞,

wheredµk,β is the measure onRd+1
+ given by

dµk,β(x′, xd+1) = ωk(x
′)x2β+1

d+1 dx
′dxd+1.

The Dunkl-Bessel transform is given forf in L1
k,β(Rd+1

+ ) by

(2.10) FD,B(f)(y′, yd+1) =

∫
Rd+1

+

f(x′, xd+1)Λ(−x, y)dµk,β(x),

for all y = (y′, yd+1) ∈ Rd+1
+ .

Some basic properties of this transform are the following:

i) Forf in L1
k,β(Rd+1

+ ),

(2.11) ||FD,B(f)||L∞k,β(Rd+1
+ ) ≤ ||f ||L1

k,β(Rd+1
+ ).
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ii) Forf in S∗(Rd+1) we have

(2.12) FD,B(4k,βf)(y) = −||y||2FD,B(f)(y), for all y ∈ Rd+1
+ .

iii) For allf ∈ S(Rd+1
∗ ), we have

(2.13) FD,B(f)(y) = Fo ◦ tRk,β(f)(y), for all y ∈ Rd+1
+ ,

whereFo is the transform defined by:∀ y ∈ Rd+1
+ ,

(2.14) Fo(f)(y) =

∫
Rd+1

+

f(x)e−i〈y′,x′〉 cos(xd+1yd+1)dx, f ∈ D∗(Rd+1).

iv) For allf in L1
k,β(Rd+1

+ ), if FD,B(f) belongs toL1
k,β(Rd+1

+ ), then

(2.15) f(y) = mk,β

∫
Rd+1

+

FD,B(f)(x)Λ(x, y)dµk,β(x), a.e.

where

(2.16) mk,β =
c2k

4γ+β+ d
2 (Γ(β + 1))2

.

v) Forf ∈ S∗(Rd+1), if we define

FD,B(f)(y) = FD,B(f)(−y),

then

(2.17) FD,BFD,B = FD,BFD = mk,βId.

Proposition 2.1.

i) The Dunkl-Bessel transformFD,B is a topological isomorphism fromS∗(Rd+1) onto

itself and for allf in S∗(Rd+1),

(2.18)
∫

Rd+1
+

|f(x)|2dµk,β(x) = mk,β

∫
Rd+1

+

|FD,B(f)(ξ)|2dµk,β(ξ).

ii) In particular, the renormalized Dunkl-Bessel transformf → m
1
2
k,βFD,B(f) can be

uniquely extended to an isometric isomorphism onL2
k,β(Rd+1

+ ).

By using the Dunkl-Bessel kernel, we introduce a generalized translation and a convolution

structure. For a functionf ∈ S∗(Rd+1) and y ∈ Rd+1
+ the Dunkl-Bessel translationτyf is

defined by the following relation:

FD,B(τyf)(x) = Λ(x, y)FD,B(f)(x).

If f ∈ E∗(Rd+1) is radial with respect to thed first variables, i.e.f(x) = F (||x′||, xd+1), then it

follows that

(2.19) τyf(x) = Rk,β

[
F
(√

||x′||2 + ||y′||2 + 2〈y′, ·〉,
√
x2

d+1 + y2
d+1 + 2yd+1

)]
(x′, xd+1).
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By using the Dunkl-Bessel translation, we define the Dunkl-Bessel convolution productf ∗D,Bg

of functionsf, g ∈ S∗(Rd+1) as follows:

(2.20) f ∗D,B g(x) =

∫
Rd+1

+

τxf(−y)g(y)dµk,β(y).

This convolution is commutative and associative and satisfies the following:

i) For allf, g ∈ S∗(Rd+1
+ ), f ∗D,B g belongs toS∗(Rd+1

+ ) and

(2.21) FD,B(f ∗D,B g)(y) = FD,B(f)(y)FD,B(g)(y).

ii) Let 1 ≤ p, q, r ≤ ∞ such that1
p

+ 1
q
− 1

r
= 1. If f ∈ Lp

k,β(Rd+1
+ ) andg ∈ Lq

k,β(Rd+1
+ ) is

radial, thenf ∗D,B g ∈ Lr
k,β(Rd+1

+ ) and

(2.22) ‖f ∗D,B g‖Lr
k,β(Rd+1

+ ) ≤ ‖f‖Lp
k,β(Rd+1

+ ) ‖g‖Lq
k,β(Rd+1

+ ) .

3. STRUCTURE THEOREMS ON THE SILVA SPACE AND ITS DUAL

Definition 3.1. We denote byG∗ or G∗(Rd+1) the set of all functionsϕ in E∗(Rd+1) such that

for anyh, p > 0

Np,h(ϕ) = sup
x∈Rd+1

µ∈Nd+1

(
ep||x|||∂µϕ(x)|

h|µ|µ!

)
is finite. The topology inG∗ is defined by the above seminorms.

Lemma 3.1. Letφ be inG∗. Then for everyh, p > 0

Np,h(ϕ) = sup
x∈Rd+1

m∈N

(
ep||x|||4m

k,βϕ(x)|
hmm!

)
.

Proof. We proceed as in Proposition 5.1 of [13], and by a simple calculation we obtain the

result. �

Theorem 3.2.The transformFD,B is a topological isomorphism fromG∗ onto itself.

Proof. From the relations (2.8), (2.9) and Lemma 3.1 we see thattRk,β is continuous from

G∗ onto itself. On the other hand, J. Chung et al. [1] have proved that the classical Fourier

transform is an isomorphism fromG∗ onto itself. Thus from the relation (2.13) we deduce that

FD,B is continuous fromG∗ onto itself. Finally sinceG∗ is included inS∗(Rd+1), andFD,B is

an isomorphism fromS∗(Rd+1) onto itself, by (2.17) we obtain the result. �

We denote byG ′∗ or G ′∗(Rd+1) the strong dual of the spaceG∗.

Definition 3.2. The Dunkl-Bessel transform of a distributionS in G ′∗ is defined by

〈FD,B(S), ψ〉 = 〈S,FD,B(ψ)〉, ψ ∈ G∗.

The result below follows immediately from Theorem 3.2.

Corollary 3.3. The transformFD,B is a topological isomorphism fromG ′∗ onto itself.
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Let τ be inG ′∗. We define4k,βτ , by

〈4k,βτ, ψ〉 = 〈τ,4k,βψ〉, for all ψ ∈ G∗.

This functional satisfies the following property

(3.1) FD,B(4k,βτ) = −||y||2FD,B(τ).

Definition 3.3. The generalized heat kernelΓk,β is given by

Γk,β(t, x, y) :=
2ck

Γ(β + 1)(4t)γ+β+ d
2
+1
e−

||x||2+||y||2
4t Λ

(
−i x√

2t
,
y√
2t

)
;

x, y ∈ Rd+1
+ , t > 0.

The generalized heat kernelΓk,β has the following properties:

Proposition 3.4. Letx, y in Rd+1
+ andt > 0. Then we have:

i) Γk,β(t, x, y) =

∫
Rd+1

+

exp(−t||ξ||2)Λ(x, ξ)Λ(−y, ξ)dµk,β(ξ).

ii)
∫

Rd+1
+

Γk,β(t, x, y)dµk,β(x) = 1.

iii) For fixedy in Rd+1
+ , the functionu(x, t) := Γk,β(t, x, y) solves the generalized heat

equation:

4k,βu(x, t) =
∂

∂t
u(x, t) on Rd+1

+ ×]0,+∞[.

Definition 3.4. The generalized heat semigroup(Hk,β(t))t≥0 is the integral operator given for

f in L2
k,β(Rd+1

+ ) by

Hk,β(t)f(x) :=


∫

Rd+1
+

Γk,β(t, x, y)f(y)dµk,β(y) if t > 0,

f(x) if t = 0.

From the properties of the generalized heat kernel we have

(3.2) Hk,β(t)f(x) :=

{
f ∗D,B pt(x) if t > 0,

f(x) if t = 0,

where

pt(y) =
2ck

Γ(β + 1)(4t)γ+β+ d
2
+1
e−

||y||2
4t .

Definition 3.5. A function f defined onRd+1
+ is said to be of exponential type if there are

constantsk, C > 0 such that for everyx ∈ Rd+1
+

|f(x)| ≤ exp k||x||.

The following lemma will be useful later. For the details of the proof we refer to Komatsu

[9]:
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Lemma 3.5. For anyL > 0 and ε > 0 there exist a functionv ∈ D(R) and a differential

operatorP ( d
dt

) of infinite order such that

(3.3) supp v ⊂ [0, ε], |v(t)| ≤ C exp

(
−L
t

)
, 0 < t <∞;

(3.4) P

(
d

dt

)
=

∞∑
k=0

ak

(
d

dt

)k

, |ak| ≤ C1
Lk

1

k!2
, 0 < L1 < L;

(3.5) P

(
d

dt

)
v(t) = δ + ω(t),

whereω ∈ D(R), suppω ⊂ [ ε
2
, ε].

Here we note thatP (4k,β) is a local operator where4k,β is a Dunkl-Bessel Laplace operator.

Now we are in a position to state and prove one of the main theorems in this section.

Theorem 3.6. If u ∈ G ′∗ then there exists a differential operatorP ( d
dt

) such that for someC > 0

andL > 0,

P

(
d

dt

)
=

∞∑
n=0

an

(
d

dt

)n

, |an| ≤ C
Ln

n!2
,

and there are a continuous functiong of exponential type and an entire functionh of exponential

type inRd+1
+ such that

(3.6) u = P (4k,β)g(x) + h(x).

Proof. Let U(x, t) = 〈uy,Γk,β(t, x, y)〉. Sincept belongs toG∗ for eacht > 0, U(x, t) is well

defined and real analytic in(Rd+1
+ )x for eacht > 0.

Furthermore,U(x, t) satisfies

(3.7) (∂t −4k,β)U(x, t) = 0 for (x, t) ∈ Rd+1
+ ×]0,∞[.

Hereu ∈ G ′∗ means that for somek > 0 andh > 0

(3.8) |〈u, φ〉| ≤ C sup
x,α

|∂αφ(x)| exp k||x||
h|α|α!

, φ ∈ G∗.

By Cauchy’s inequality and relations (2.4) and (3.8) we obtain, fort > 0

|U(x, t)| ≤ C ′ exp k′
[
||x||+ t+

1

t

]
for someC ′ > 0 andk′ > 0. If we restrict this inequality on the strip0 < t < ε then it follows

that

|U(x, t)| ≤ C exp k

[
||x||+ 1

t

]
, 0 < t < ε

for some constantsC > 0 andk > 0. Now let

G(y, t) =

∫
Rd+1

+

Γk,β(t, x, y)φ(x)dµk,β(x), φ ∈ G∗.
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Moreover, we can easily see that

(3.9) G(·, t) → φ in G∗ ast→ 0+

and

(3.10)
∫

Rd+1
+

U(x, t)φ(x)dµk,β(x) = 〈uy, G(y, t)〉.

Then it follows from (3.9) and (3.10) that

(3.11) lim
t→0+

U(x, t) = u in G ′∗.

Now choose functionsu,w and a differential operator of infinite order as in Lemma 3.5. Let

(3.12) Ũ(x, t) =

∫ ∞

0

U(x, t+ s)v(s)ds.

Then by takingε = 2 andL > k in Lemma 3.5 we have

(3.13) |Ũ(x, t)| ≤ C ′ exp k
(
||x||+ t

)
, t ≥ 0.

Therefore,Ũ(x, t) is a continuous function of exponential type in

Rd+1
+ × [0,∞[=

{
(x, t) : x ∈ Rd+1

+ , t ≥ 0
}
.

Moreover,Ũ satisfies

(3.14) (∂t −4k,β)Ũ(x, t) = 0 in Rd+1
+ ×]0,∞[.

Hence if we setg(x) = Ũ(x, 0) theng is also a continuous function of exponential type, so that

g belongs toG ′∗.
Using (3.5) in Lemma 3.5, we obtain fort > 0

P (−4k,β)Ũ(x, t) = P

(
− d

dt

)
Ũ(x, t)

= U(x, t) +

∫ ∞

0

U(x, t+ s)w(s)ds.(3.15)

If we seth(x) = −
∫∞

0
U(x, s)w(s)ds thenh is an entire function of exponential type. As

t→ 0+, (3.15) becomes

u = P (−4k,β)g(x) + h(x)

which completes the proof by replacing the coefficientsan of P by (−1)nan. �

Theorem 3.7.LetU(x, t) be an infinitely differentiable function inRd+1
+ ×]0,∞[ satisfying the

conditions:

i) (∂t −4k,β)U(x, t) = 0 in Rd+1
+ ×]0,∞[.

ii) There existk > 0 andC > 0 such that

(3.16) |U(x, t)| ≤ C exp k

(
||x||+ 1

t

)
, 0 < t < ε, x ∈ Rd+1

+
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for someε > 0. Then there exists a unique elementu ∈ G ′∗ such that

U(x, t) = 〈uy,Γk,β(t, x, y)〉, t > 0

and

lim
t→0+

U(x, t) = u in G ′∗.

Proof. Consider a function, as in (3.12)

Ũ(x, t) =

∫ ∞

0

U(x, t+ s)v(s)ds.

Then it follows from (3.13), (3.14) and (3.15) that̃U(x, t) andH(x, t) are continuous on

Rd+1
+ × [0,∞[ and

(3.17) U(x, t) = P (−4k,β)Ũ(x, t) +H(x, t),

where

H(x, t) = −
∫ ∞

0

U(x, t+ s)w(s)ds.

Furthermore,g(x) = Ũ(x, 0) andh(x) = H(x, 0) are continuous functions of exponential type

onRd+1
+ . Defineu as

u = P (−4k,β)g(x) + h(x).

Then sinceP (−4k,β) is a local operator,u belongs toG ′∗ and

lim
t→0+

U(x, t) = u in G ′∗.

Now define the generalized heat kernels fort > 0 as

A(x, t) = (g ∗D,B pt)(x) =

∫
Rd+1

+

g(y)Γk,β(t, x, y)dµk,β(y)

and

B(x, t) = (h ∗D,B pt)(x) =

∫
Rd+1

+

h(y)Γk,β(t, x, y)dµk,β(y).

Then it is easy to show thatA(x, t) andB(x, t) converge locally uniformly tog(x) andh(x)

respectively so that they are continuous onRd+1
+ × [0,∞[, A(x, 0) = g(x), andB(x, 0) = h(x).

Now let V (x, t) = Ũ(x, t) − A(x, t) andW (x, t) = H(x, t) − B(x, t). Then, sinceg andh

are of exponential type,V (·, t) andW (·, t) are continuous functions of exponential type and

V (x, 0) = 0,W (x, 0) = 0. Then by the uniqueness theorem of the generalized heat equations

we obtain that

Ũ(x, t) =
(
g ∗D,B pt

)
(x)

and

H(x, t) =
(
h ∗D,B pt

)
(x).
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It follows from these facts and (3.17) that

u ∗D,B pt =
[
P (−4k,β)g + h

]
∗D,B pt

= P (−4k,β)Ũ(·, t) +H(·, t)

= U(·, t).

Now to prove the uniqueness of existence of suchu ∈ G ′∗ we assume that there existu, v ∈ G ′∗
such that

U(x, t) =
(
u ∗D,B pt

)
(x) =

(
v ∗D,B pt

)
(x).

Then

FD,B(u)FD,B(pt) = FD,B(v)FD,B(pt)

which implies thatFD,B(u) = FD,B(v), sinceFD,B(pt) 6= 0. However, since the Dunkl-Bessel

transformation is an isomorphism we haveu = v, which completes the proof. �

4. THE GENERALIZED DUNKL -SOBOLEV SPACES OF EXPONENTIAL TYPE

Definition 4.1. Let s be inR, 1 ≤ p <∞. We define the spaceW s,p
G∗,k,β(Rd+1

+ ) by{
u ∈ G ′∗ : es||ξ||FD,B(u) ∈ Lp

k,β(Rd+1
+ )

}
.

The norm onW s,p
G∗,k,β(Rd+1

+ ) is given by

||u||W s,p
G∗,k,β

=

(
mk,β

∫
Rd+1

+

eps||ξ|||FD,B(u)(ξ)|pdµk,β(ξ)

) 1
p

.

Forp = 2 we provide this space with the scalar product

(4.1) 〈u, v〉W s,2
G∗,k,β

= mk,β

∫
Rd+1

+

e2s||ξ||FD,B(u)(ξ)FD,B(v)(ξ)dµk,β(ξ),

and the norm

(4.2) ||u||2
W s,2
G∗,k,β

= 〈u, u〉W s,2
G∗,k,β

.

Proposition 4.1.

i) Let 1 ≤ p < +∞. The spaceW s,p
G∗,k,β(Rd+1

+ ) provided with the norm‖·‖W s,p
G∗,k,β

is a

Banach space.

ii) We have

W 0,2
G∗,k,β(Rd+1

+ ) = L2
k,β(Rd+1

+ ).

iii) Let1 ≤ p < +∞ ands1, s2 in R such thats1 ≥ s2 then

W s1,p
G∗,k,β(Rd+1

+ ) ↪→ W s2,p
G∗,k,β(Rd+1

+ ).

Proof. i) It is clear that the spaceLp(Rd+1
+ , eps||ξ||dµk,β(ξ)) is complete and sinceFD,B is an

isomorphism fromG ′∗ onto itself,W s,p
G∗,k,β(Rd+1

+ ) is then a Banach space.

The results ii) and iii) follow immediately from the definition of the generalized Dunkl-

Sobolev space of exponential type. �
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Proposition 4.2. Let1 ≤ p < +∞, ands1, s, s2 be three real numbers satisfyings1 < s < s2.

Then, for allε > 0, there exists a nonnegative constantCε such that for allu in W s,p
G∗,k,β(Rd+1

+ )

(4.3) ||u||W s,p
G∗,k,β

≤ Cε||u||W s1,p
G∗,k,β

+ ε||u||W s2,p
G∗,k,β

.

Proof. We considers = (1− t)s1 + ts2, (with t ∈]0, 1[). Moreover it is easy to see

||u||W s,p
G∗,k,β

≤ ||u||1−t
W

s1,p
G∗,k,β

||u||t
W

s2,p
G∗,k,β

.

Thus

||u||W s,p
G∗,k,β

≤
(
ε−

t
1−t ||u||W s1,p

G∗,k,β

)1−t (
ε||u||W s2,p

G∗,k,β

)t

≤ ε−
t

1−t ||u||W s1,p
G∗,k,β

+ ε||u||W s2,p
G∗,k,β

.

Hence the proof is completed forCε = ε−
t

1−t . �

Proposition 4.3. For s in R, 1 ≤ p < ∞ andm in N, the operator4m
k,β is continuous from

W s,p
G∗,k,β(Rd+1

+ ) intoW s−ε,p
G∗,k,β(Rd+1

+ ) for anyε > 0.

Proof. Let u be inW s,p
G∗,k,β(Rd+1

+ ), andm in N. From (3.1) we have∫
Rd+1

+

ep(s−ε)||ξ|||FD,B(4m
k,βu)(ξ)|pdµk,β(ξ) =

∫
Rd+1

+

ep(s−ε)||ξ||||ξ||2mp|FD,B(u)(ξ)|pdµk,β(ξ).

As supξ∈Rd+1
+

||ξ||2mpe−ε||ξ|| <∞, for everym ∈ N andε > 0∫
Rd+1

+

ep(s−ε)||ξ|||FD,B(4m
k,βu)(ξ)|pdµk,β(ξ) ≤

∫
Rd+1

+

eps||ξ|||FD,B(u)(ξ)|pdµk,β(ξ) < +∞.

Then4m
k,βu belongs toW s−ε,p

G∗,k,β(Rd+1
+ ), and

||4m
k,βu||W s−ε,p

G∗,k,β
≤ ||u||W s,p

G∗,k,β
.

�

Definition 4.2. We define the operator(−4k,β)
1
2 by ∀x ∈ Rd+1

+ ,

(−4k,β)
1
2u(x) = mk,β

∫
Rd+1

+

Λ(x, ξ)||ξ||FD,B(u)(ξ)dµk,β(ξ), u ∈ S∗(Rd+1).

Proposition 4.4.LetP ((−4k,β)
1
2 ) =

∑
m∈N am(−4k,β)

m
2 be a fractional Dunkl-Bessel Laplace

operators of infinite order such that there exist positive constantsC andr such that

(4.4) |am| ≤ C
rm

m!
, for all m ∈ N.

Let1 ≤ p < +∞ ands in R. If an elementu is inW s,p
G∗,k,β(Rd+1

+ ), thenP ((−4k,β)
1
2 )u belongs

toW s−r,p
G∗,k,β(Rd+1

+ ), and there exists a positive constantC such that

||P ((−4k,β)
1
2 )u||W s−r,p

G∗,k,β
≤ C||u||W s,p

G∗,k,β
.
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Proof. The condition (4.4) gives that

|P (||ξ||)| ≤ C exp(r ||ξ||).

Thus the result is immediate. �

Proposition 4.5. Let1 ≤ p < +∞, t, s in R. The operatorexp(t(−4k,β)
1
2 ) defined by

∀x ∈ Rd+1
+ , exp(t(−4k,β)

1
2 )u(x) = mk,β

∫
Rd+1

+

Λ(x, ξ)et||ξ||FD,B(u)(ξ)dµk,β(ξ), u ∈ G∗.

is an isomorphism fromW s,p
G∗,k,β(Rd+1

+ ) ontoW s−t,p
G∗,k,β(Rd+1

+ ).

Proof. Foru in W s,p
G∗,k,β(Rd+1

+ ) it is easy to see that

‖ exp(t(−4k,β)
1
2 )u‖W s−t,p

G∗,k,β
= ||u||W s,p

G∗,k,β
,

and thus we obtain the result. �

Proposition 4.6. The dual ofW s,2
G∗,k,β(Rd+1

+ ) can be identified asW−s,2
G∗,k,β(Rd+1

+ ). The relation of

the identification is given by

(4.5) 〈u, v〉k,β = mk,β

∫
Rd+1

+

FD,B(u)(ξ)FD,B(v)(ξ)dµk,β(ξ),

with u in W s,2
G∗,k,β(Rd+1

+ ) andv in W−s,2
G∗,k,β(Rd+1

+ ).

Proof. Let u be inW s,2
G∗,k,β(Rd+1

+ ) andv in W−s,2
G∗,k,β(Rd+1

+ ). The Cauchy-Schwartz inequality

gives

|〈u, v〉k,β| ≤ ||u||W s,2
G∗,k,β

||v||W−s,2
G∗,k,β

.

Thus forv in W−s,2
G∗,k,β(Rd+1

+ ) fixed we see thatu 7−→ 〈u, v〉k,β is a continuous linear form on

W s,2
G∗,k,β(Rd+1

+ ) whose norm does not exceed||v||W−s,2
G∗,k,β

. Taking theu0 = F−1
D,B

(
e−2s||ξ||FD,B(v)

)
element ofW s,2

G∗,k,β(Rd+1
+ ), we obtain〈u0, v〉k,β = ||v||W−s,2

G∗,k,β
.

Thus the norm ofu 7−→ 〈u, v〉k,β is equal to||v||W−s,2
G∗,k,β

, and we have then an isometry:

W−s,2
G∗,k,β

(
Rd+1

+

)
−→

(
W s,2

G∗,k,β(Rd+1
+ )

)′
.

Conversely, letL be in
(
W s,2

G∗,k,β(Rd+1
+ )

)′
. By the Riesz representation theorem and (4.1) there

existsw in W s,2
G∗,k,β(Rd+1

+ ) such that

L(u) = 〈u,w〉W s,2
G∗,k,β

= mk,β

∫
Rd+1

+

e2s||ξ||FD,B(u)(ξ)FD,B(w)(ξ)dµk,β(ξ), for allu ∈ W s,2
G∗,k,β(Rd+1

+ ).

If we setv = F−1
D

(
e2s||ξ||FD,B(w)

)
thenv belongs toW−s,2

G∗,k,β(Rd+1
+ ) andL(u) = 〈u, v〉k,β for

all u in W s,2
G∗,k,β(Rd+1

+ ), which completes the proof. �
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Proposition 4.7.Lets > 0. Then everyu inW−s,2
G∗,k,β(Rd+1

+ ) can be represented as an infinite sum

of fractional Dunkl-Bessel Laplace operators of square integrable functiong, in other words,

u =
∑
m∈N

sm

m!
(−4k,β)

m
2 g.

Proof. If u in W−s,2
G∗,k,β(Rd+1

+ ) then by definition

e−s||ξ||FD,B(u)(ξ) ∈ L2
k,β(Rd+1

+ ),

which Proposition 2.1 ii) implies that

FD,B(g)(ξ) =
FD,B(u)(ξ)∑
m∈N

sm

m!
||ξ||m

∈ L2
k,β(Rd+1

+ ).

Hence, we have

FD,B(u) =
∑
m∈N

sm

m!
||ξ||mFD,B(g), in G ′∗

=
∑
m∈N

sm

m!
FD,B

(
(−4k,β)

m
2 g
)
, in G ′∗

This completes the proof. �

Proposition 4.8. Let1 ≤ p < +∞. Everyu in W s,p
G∗,k,β(Rd+1

+ ) is a holomorphic function in the

strip {z ∈ Cd+1, || Im z|| < s} for s > 0.

Proof. Let

u(z) = mk,β

∫
Rd+1

+

Λ(z, ξ)FD,B(u)(ξ)dµk,β(ξ), z = x+ iy.

From (2.4), for eachµ in Nd+1 we have∣∣∣Dµ
z

(
Λ(z, ξ)FD,B(u)(ξ)

)∣∣∣ ≤ ||ξ|||µ|e||y|| ||ξ|||FD,B(u)(ξ)|.

On the other hand from the Cauchy-Schwartz inequality we have∫
Rd+1

+

||ξµ||e||y|| ||ξ|||FD,B(u)(ξ)|dµk,β(ξ) ≤

(∫
Rd+1

+

||ξ||q|µ|eq||ξ||(||y||−s)dµk,β(ξ)

) 1
q

||u||W s,p
G∗,k,β

.

Since the integral in the last part of the above inequality is integrable if||y|| < s, the result

follows by the theorem of holomorphy under the integral sign. �

Notations. Letm be inN. We denote by:

• E ′m(Rd+1
+ ) the space of distributions onRd+1

+ with compact support and order less than

or equal tom.

• E ′exp,m(Rd+1
+ ) the space of distributionsu in E ′m(Rd+1

+ ) such that there exists a positive

constantC such that

|FD,B(u)(ξ)| ≤ Cem||ξ||.
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Proposition 4.9.

i) Let1 ≤ p < +∞. For s in R such thats < −m, we have

E ′exp,m(Rd+1
+ ) ⊂ W s,p

G∗,k,β(Rd+1
+ ).

ii) Let1 ≤ p < +∞. We have, fors < 0 andm an integer,

E ′m(Rd+1
+ ) ⊂ W s,p

G∗,k,β(Rd+1
+ ).

Proof. The proof uses the same idea as Theorem 3.12 of [13]. �

Theorem 4.10.Letψ be inG∗. For all s in R, the mappingu 7→ ψu fromW s,2
G∗,k,β(Rd+1

+ ) into

itself is continuous.

Proof. Firstly we assume thats > 0.

It is easy to see that

||v||2
W s,2
G∗,k,β

≤
∞∑

j=0

(2s)j

j!
||v||2

Ḣ
j
2
k,β(Rd+1

+ )
,

where‖·‖Ḣs
k,β(Rd+1

+ ) designates the norm associated to the homogeneous Dunkl-Bessel-Sobolev

space defined by

||v||2
Ḣs

k,β(Rd+1
+ )

=

∫
Rd+1

+

||ξ||2s|FD,B(v)(ξ)|2dµk,β(ξ).

On the other hand, proceeding as in Proposition 4.1 of [14] we prove that ifu, v belong to

Ḣs
k,β(Rd+1

+ )
⋂
L∞k,β(Rd+1

+ ), s > 0 thenuv ∈ Ḣs
k,β(Rd+1

+ ) and

||uv||Ḣs
k,β(Rd+1

+ ) ≤ C
[
||u||L∞k,β(Rd+1

+ )||v||Ḣs
k,β(Rd+1

+ ) + ||v||L∞k,β(Rd+1
+ )||u||Ḣs

k,β(Rd+1
+ )

]
.

Thus from this we deduce that fors > 0

||ϕu||2
W s,2
G∗,k,β

≤
∞∑

j=0

(2s)j

j!
||ϕu||2

Ḣ
j
2
k,β(Rd+1

+ )

≤ C
[
||ϕ||2

L∞k,β(Rd+1
+ )

||u||2
W s,2
G∗,k,β

+ ||u||2
L∞k,β(Rd+1

+ )
||ϕ||2

W s,2
G∗,k,β

]
< +∞.

For s = 0 the result is immediate.

For s < 0 the result is obtained by duality. �

5. APPLICATIONS

5.1. Pseudo-differential-difference operators of exponential type.The pseudo-differential-

difference operatorA(x,4k,β) associated with the symbola(x, ξ) := A(x,−||ξ||2) is defined

by

(5.1)
(
A(x,4k,β)u

)
(x) = mk,β

∫
Rd+1

+

Λ(x, ξ)a(x, ξ)FD,B(u)(ξ)dµk,β(ξ), u ∈ G∗,

wherea(x, ξ) belongs to the classSr
exp, r ≥ 0, defined below:
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Definition 5.1. The functiona(x, ξ) is said to be inSr
exp if and only if a(x, ξ) belongs to

C∞(Rd+1 × Rd+1) and for each compact setK ⊂ Rd+1
+ and eachµ, ν in Nd+1, there exists

a constantCK = Cµ,ν,K such that the estimate

|Dµ
ξD

ν
xa(x, ξ)| ≤ CK exp(r ||ξ||), for all (x, ξ) ∈ K × Rd+1

+

hold true.

Proposition 5.1. LetA(x,4k,β) be the pseudo-differential-difference operator associated with

the symbola(x, ξ) := A(x,−||ξ||2). If a(x, ξ) ∈ Sr
exp thenA(x,4k,β) in (5.1) is a well-defined

mapping ofG∗ into E∗(Rd+1).

Proof. For any compact setK ⊂ Rd+1
+ , we have

|a(x, ξ)| ≤ CK exp(r ||ξ||), for all (x, ξ) ∈ K × Rd+1
+ .

On the other hand sinceu is in G∗ the Cauchy-Schwartz inequality gives that∫
Rd+1

+

|Λ(x, ξ)a(x, ξ)FD,B(u)(ξ)|dµk,β(ξ) ≤ CK ||u||W s,2
G,k,β

(∫
Rd+1

+

e−2(s−r)||ξ||dµk,β(ξ)

) 1
2

is integrable fors > r. This prove the existence and the continuity of(A(x,4k,β)u)(x) for all

x in Rd+1
+ . Finally the result follows by using Leibniz formula. �

Now we consider the symbol which belongs to the classSr,l
exp,rad defined below:

Definition 5.2. Let r, l in R be real numbers withl > 0. The functiona(x, ξ) is said to be

in Sr,l
exp,rad if and only if a(x, ξ) is in C∞(Rd+1 × Rd+1), radial with respect to the firstd + 1

variables and for eachL > 0, and for eachµ, ν in Nd+1, there exists a constantC = Cr,µ,ν such

that the estimate

|Dµ
ξD

ν
xa(x, ξ)| ≤ CL|µ|µ! exp(r ||ξ|| − l ||x||)

hold true.

To obtain some deep and interesting results we need the following alternative form ofA(x,4k,β).

Lemma 5.2. LetA(x,4k,β) be the pseudo-differential-difference operator associated with the

symbola(x, ξ) := A(x,−||ξ||2). If a(x, ξ) is in Sr,l
exp,rad thenA(x,4k,β) in (5.1) is given by:(

A(x,4k,β)u
)
(x)

= mk,β

∫
Rd+1

+

Λ(x, ξ)

[∫
Rd+1

+

τ−η

(
FD,B(a)(·, η)

)
(ξ)FD,B(u)(η)dµk,β(η)

]
dµk,β(ξ)

for all u ∈ G∗ where all the involved integrals are absolutely convergent.

Proof. When we proceed as [10] we see that for allL > 0 there existC > 0 and0 < τ <

(Ld)−1 such that

(5.2) |FD,B(a)(ξ, η)| ≤ C exp(r ||η|| − τ ||ξ||).
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On the other hand sinceu in G∗, we have

|FD,B(u)(η)| ≤ C exp(−t ||η||), ∀ t > 0.

Thus from the positivity for the Dunkl-Bessel translation operator for the radial functions we

obtain∣∣τ−η

(
FD,B(a)(·, η)

)
(ξ)FD,B(u)(η)

∣∣ ≤ C exp(−(t− r) ||η||)τ−η(exp(−τ ‖·‖))(ξ).

Moreover it is clear that the functionη 7→ exp(−(t − r) ||η||)τ−η(exp(−τ ‖·‖))(ξ) belongs to

L1
k,β(Rd+1

+ ) for t > r, τ > 0. So that∫
Rd+1

+

∣∣τ−η

(
FD,B(a)(·, η)

)
(ξ)FD,B(u)(η)

∣∣ dµk,β(η)

≤ C

∫
Rd+1

+

exp(−(t− r) ||η||)τ−η(exp(−τ || · ||))(ξ)dµk,β(η).

The right-hand side is a Dunkl-Bessel convolution product of two integrable functions and hence

is an integrable function onRd+1
+ . Therefore the function

ξ 7→
∫

Rd+1
+

τ−η(FD,B(a)(·, η))(ξ)FD,B(u)(η)dµk,β(η)

is inL1
k,β(Rd+1

+ ). Applying the inverse Dunkl-Bessel transform we get the result. �

Now we prove the fundamental result

Theorem 5.3. LetA(x,4k,β) be the pseudo-differential-difference operator where the symbol

a(x, ξ) := A(x,−||ξ||2) belongs toSr,l
exp,rad. Then for allu in G∗ and alls in R

(5.3) ||A(x,4k,β)u||W s,p
G∗,k,β

≤ Cs||u||W r+s,p
G∗,k,β

.

Proof. We consider the function

Us(ξ) = es||ξ||
∫

Rd+1
+

τ−η

(
FD,B(a)(·, η)

)
(ξ)FD,B(u)(η)dµk,β(η), s ∈ R.

Then invoking (5.2) and (2.19) we deduce that

(5.4) |Us(ξ)| ≤
∫

Rd+1
+

exp((r + s) ||η||)|FD,B(u)(η)|

× τ−η

(
exp(−(τ − |s|) ||y||)

)
(ξ)dµk,β(η), s ∈ R.

The integral of (5.4) can be considered as a Dunkl-Bessel convolution product between

f(ξ) = exp(−(τ − |s|) ||ξ||) andg(ξ) = exp((r + s) ||ξ||)|FD,B(u)(ξ)|. It is clear thatf is

radial and belongs toL1
k,β(Rd+1

+ ) for τ > |s|, on the other hand sinceFD,B(u) in G∗ theng in

Lp
k,β(Rd+1

+ ). Hencef ∗D,B g is inLp
k,β(Rd+1

+ ) and we have

||f ∗D,B g||Lp
k,β(Rd+1

+ ) ≤ ||f ||L1
k,β(Rd+1

+ )||g||Lp
k,β(Rd+1

+ ) = Cs||u||W r+s,p
G∗,k,β

.

Thus

||A(x,4k,β)u||W s,p
G∗,k,β

= ||Us||Lp
k,β(Rd+1

+ ) ≤ ||f ∗D,B g||Lp
k,β(Rd+1

+ ) ≤ Cs||u||W r+s,p
G∗,k,β

.
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This proves (5.3). �

5.2. The Reproducing Kernels.

Proposition 5.4. For s > 0, the Hilbert spaceW s,2
G∗,k,β(Rd+1

+ ) admits the reproducing kernel:

Θk,β(x, y) = mk,β

∫
Rd+1

+

Λ(x, ξ)Λ(−y, ξ)e−2s||ξ||dµk,β(ξ),

that is:

i) For everyy in Rd+1
+ , the functionx 7→ Θk,β(x, y) belongs toW s,2

G∗,k,β(Rd+1
+ ).

ii) For everyf in W s,2
G∗,k,β(Rd+1

+ ) andy in Rd+1
+ , we have

〈f,Θk,β(·, y)〉W s,2
G∗,k,β

= f(y).

Proof. i) Let y be inRd+1
+ . From (2.5), the function

ξ 7→ Λ(−y, ξ)e−2s||ξ||

belongs toL1
k,β(Rd+1

+ )
⋂
L2

k,β(Rd+1
+ ) for s > 0, then from Proposition 2.1 ii) there exists a

function inL2
k,β(Rd+1

+ ), which we denote byΘk,β(·, y), such that

(5.5) FD,B

(
Θk,β(·, y)

)
(ξ) = Λ(−y, ξ)e−2s||ξ||.

ThusΘk,β(x, y) is given by

Θk,β(x, y) = mk,β

∫
Rd+1

+

Λ(x, ξ)Λ(−y, ξ)e−2s||ξ||dµk,β(ξ).

ii) Let f be inW s,2
G∗,k,β(Rd+1

+ ) andy in Rd+1
+ . From (4.1),(5.5) and (2.15) we have

〈f,Θk,β(·, y)〉W s,2
G∗,k,β

= mk,β

∫
Rd+1

+

FD,B(f)(ξ)Λ(y, ξ)dµk,β(ξ) = f(y).

�

Proposition 5.5.

i) Letf be inG∗. Thenu(x, t) = Hk,β(t)f(x) solves the problem{ (
4k,β − ∂

∂t

)
u(x, t) = 0 on Rd+1

+ ×]0,∞[

u(·, 0) = f.

ii) The integral transformHk,β(t), t > 0, is a bounded linear operator fromW s,2
G∗,k,β(Rd+1

+ ),

s in R, intoL2
k,β(Rd+1

+ ), and we have

‖Hk,β(t)f‖L2
k,β(Rd+1

+ ) ≤ e
s2

4t ‖f‖W s,2
G∗,k,β

.

Proof. i) This assertion follows from Definition 3.4 and Proposition 3.4 iii).

ii) Let f be inW s,2
G∗,k,β(Rd+1

+ ). Using Proposition 2.1 ii) we have

‖Hk,β(t)f‖2
L2

k,β(Rd+1
+ )

= mk,β‖FD,B(Hk,β(t)f)‖2
L2

k,β(Rd+1
+ )

.
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Invoking the relation ships (2.21) and (3.2) we can write

‖Hk,β(t)f‖2
L2

k,β(Rd+1
+ )

= mk,β

∫
Rd+1

+

e−2t||ξ||2|FD,B(f)(ξ)|2dµk,β(ξ).

Therefore

‖Hk,β(t)f‖L2
k,β(Rd+1

+ ) ≤ e
s2

4t ‖f‖W s,2
G∗,k,β

.

�

Definition 5.3. Let r > 0, t ≥ 0 ands in R. We define the Hilbert spaceHr,s
G∗,k,β(Rd+1

+ ) as the

subspace ofW s,2
G∗,k,β(Rd+1

+ ) with the inner product:

〈f, g〉Hr,s
G∗,k,β

= r〈f, g〉W s,2
G∗,k,β

+ 〈Hk,β(t)f,Hk,β(t)g〉L2
k,β(Rd+1

+ ), f, g ∈ W s,2
G∗,k,β(Rd+1

+ ).

The norm associated to the inner product is defined by:

‖f‖2
Hr,s
G∗,k,β

:= r‖f‖2
W s,2
G∗,k,β

+ ‖Hk,β(t)f‖2
L2

k,β(Rd+1
+ )

.

Proposition 5.6. For s ∈ R, the Hilbert spaceHr,s
G∗,k,β(Rd+1

+ ) admits the following reproducing

kernel:

Pr(x, y) = mk,β

∫
Rd+1

+

Λ(x, ξ)Λ(−y, ξ)dµk,β(ξ)

re2s||ξ|| + e−2t||ξ||2 .

Proof. i) Let y be inRd+1
+ . In the same way as in the proof of Proposition 5.4 i), we can prove

that the functionx 7→ Pr(x, y) belongs toL2
k,β(Rd+1

+ ) and we have

(5.6) FD,B

(
Pr(·, y)

)
(ξ) =

Λ(−y, ξ)
re2s||ξ|| + e−2t||ξ||2 .

On the other hand we have

(5.7) FD,B

(
Hk,β(t)(Pr(·, y)

)
(ξ) = exp(−t||ξ||2)FD,B

(
Pr(·, y)

)
(ξ), for all ξ ∈ Rd+1

+ .

Hence from Proposition 2.1 ii), we obtain

‖Hk,β(t)(Pr(·, y)‖2
L2

k,β(Rd+1
+ )

= mk,β

∫
Rd+1

+

e−2t||ξ||2 ∣∣FD,B

(
Pr(·, y)

)
(ξ)
∣∣ 2dµk,β(ξ)

≤ C

r2

∫
Rd+1

+

e−2t||ξ||2

e4s||ξ|| dµk,β(ξ) <∞.

Therefore we conclude that‖Pr(·, y)‖2
Hr,s
G∗,k,β

<∞.

ii) Let f be inHr,s
G∗,k,β(Rd+1

+ ) andy in Rd+1
+ . Then

(5.8) 〈f, Pr(·, y)〉Hr,s
G∗,k,β

= rI1 + I2,

where

I1 = 〈f, Pr(·, y)〉W s,2
G∗,k,β

and

I2 = 〈Hk,β(t)f,Hk,β(t)(Pr(·, y))〉L2
k,β(Rd+1

+ ).
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From (5.6) and (4.1), we have

I1 = mk,β

∫
Rd+1

+

e2s||ξ||FD,B(f)(ξ)Λ(y, ξ)dµk,β(ξ)

re2s||ξ|| + e−2t||ξ||2 .

From (5.7) and (5.6) and Proposition 2.1 ii) we have

I2 = mk,β

∫
Rd+1

+

e−2t||ξ||2FD,B(f)(ξ)Λ(y, ξ)dµk,β(ξ)

re2s||ξ|| + e−2t||ξ||2 .

The relations (5.8) and (2.15) imply that

〈f, Pr(·, y)〉Hr,s
G∗,k,β

= f(y).

�

5.3. Extremal Function for the Generalized Heat Semigroup Transform. In this subsec-

tion, we prove for a given functiong in L2
k,β(Rd+1

+ ) that the infimum of{
r‖f‖2

W s,2
G∗,k,β

+ ‖g −Hk,β(t)f‖2
L2

k,β(Rd+1
+ )

, f ∈ W s,2
G∗,k,β(Rd+1

+ )
}

is attained at some unique function denoted byf ∗r,g, called the extremal function. We start with

the following fundamental theorem (cf. [11, 18]).

Theorem 5.7. LetHK be a Hilbert space admitting the reproducing kernelK(p, q) on a setE

andH a Hilbert space. LetL : HK → H be a bounded linear operator onHK into H. For

r > 0, introduce the inner product inHK and call itHKr as

〈f1, f2〉HKr
= r〈f1, f2〉HK

+ 〈Lf1, Lf2〉H .

Then

i) HKr is the Hilbert space with the reproducing kernelKr(p, q) onE which satisfies the

equation

K(·, q) = (rI + L∗L)Kr(·, q),

whereL∗ is the adjoint operator ofL : HK → H.

ii) For anyr > 0 and for anyg in H, the infimum

inf
f∈HK

{
r‖f‖2

HK
+ ‖Lf − g‖2

H

}
is attained by a unique functionf ∗r,g in HK and this extremal function is given by

(5.9) f ∗r,g(p) = 〈g, LKr(·, p)〉H .

We can now state the main result of this subsection.

Theorem 5.8.Lets ∈ R. For anyg in L2
k,β(Rd+1

+ ) and for anyr > 0, the infimum

(5.10) inf
f∈W s,2

G∗,k,β(Rd+1
+ )

{
r‖f‖2

W s,2
G∗,k,β

+ ‖g −Hk,β(t)f‖2
L2

k,β(Rd+1
+ )

}
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is attained by a unique functionf ∗r,g given by

(5.11) f ∗r,g(x) =

∫
Rd+1

+

g(y)Qr(x, y)dµk,β(y),

where

Qr(x, y) = Qr,s(x, y)(5.12)

= mk,β

∫
Rd+1

+

e−t||ξ||2Λ(x, ξ)Λ(−y, ξ)
re2s||ξ|| + e−2t||ξ||2 dµk,β(ξ).

Proof. By Proposition 5.6 and Theorem 5.7 ii), the infimum given by (5.10) is attained by a

unique functionf ∗r,g, and from (5.9) the extremal functionf ∗r,g is represented by

f ∗r,g(y) = 〈g,Hk,β(t)(Pr(·, y))〉L2
k,β(Rd+1

+ ), y ∈ Rd+1
+ ,

wherePr is the kernel given by Proposition 5.6. On the other hand we have

Hk,β(t)f(x) = mk,β

∫
Rd+1

+

exp(−t||ξ||2)FD,B(f)(ξ)Λ(x, ξ)dµk,β(ξ), for all x ∈ Rd+1
+ .

Hence by (5.6), we obtain

Hk,β(t)
(
Pr(·, y)

)
(x) = mk,β

∫
Rd+1

+

exp(−t||ξ||2)Λ(x, ξ)Λ(−y, ξ)
re2s||ξ|| + e−2t||ξ||2 dµk,β(ξ)

= Qr(x, y).

This gives (5.12). �

Corollary 5.9. Lets ∈ R, δ > 0 andg, gδ in L2
k,β(Rd+1

+ ) such that

‖g − gδ‖L2
k,β(Rd+1

+ ) ≤ δ.

Then

‖f ∗r,g − f ∗r,gδ
‖W s,2

G∗,k,β
≤ δ

2
√
r
.

Proof. From (5.12) and Fubini’s theorem we have

(5.13) FD,B(f ∗r,g)(ξ) =
e−t||ξ||2FD,B(g)(ξ)

re2s||ξ|| + e−2t||ξ||2 .

Hence

FD,B(f ∗r,g − f ∗r,gδ
)(ξ) =

e−t||ξ||2FD,B(g − gδ)(ξ)

re2s||ξ|| + e−2t||ξ||2 .

Using the inequality(x+ y)2 ≥ 4xy, we obtain

e2s||ξ|| ∣∣FD,B(f ∗r,g − f ∗r,gδ
)(ξ)

∣∣2 ≤ 1

4r
|FD,B(g − gδ)(ξ)|2.

This and Proposition 2.1 ii) give

‖f ∗r,g − f ∗r,gδ
‖2

W s,2
G∗,k,β

≤ mk,β

4r
‖FD,B(g − gδ)‖2

L2
k,β(Rd+1

+ )

≤ 1

4r
‖g − gδ‖2

L2
k,β(Rd+1

+ )
,

from which we obtain the desired result. �
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Corollary 5.10. Lets ∈ R. If f is inW s,2
G∗,k,β(Rd+1

+ ) andg = Hk,β(t)f . Then

‖f ∗r,g − f‖2
W s,2
G∗,k,β

→ 0 as r → 0.

Proof. From (3.2), (5.13) we have

FD,B(f)(ξ) = exp(t||ξ||2)FD,B(g)(ξ)

and

FD,B(f ∗r,g)(ξ) =
e−t||ξ||2FD,B(g)(g)(ξ)

re2s||ξ|| + e−2t||ξ||2 .

Hence

FD,B(f ∗r,g − f)(ξ) =
−re2s||ξ||FD,B(f)(ξ)

re2s||ξ|| + e−2t||ξ||2 .

Then we obtain

‖f ∗r,g − f‖2
W s,2
G∗,k,β

=

∫
Rd+1

+

hr,t,s(ξ)|FD,B(f)(ξ)|2dµk,β(ξ),

with

hr,t,s(ξ) =
r2e6s||ξ||

(re2s||ξ|| + e−2t||ξ||2)2
.

Since

lim
r→0

hr,t,s(ξ) = 0

and

|hr,t,s(ξ)| ≤ e2s||ξ||,

we obtain the result from the dominated convergence theorem. �
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