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Abstract

For any a := (a1, a2, . . . , an) ∈ (R+)n , define ∆Pa(x, t) := (x + a1t)(x + a2t)
· · · (x + ant)− xn and Sa(x, y) := a1x

n−1 + a2x
n−2y + · · ·+ anyn−1. The two ho-

mogeneous polynomials ∆Pa(x, t) and tSa(x, y) are comparable in the positive
octant x, y, t ∈ R+. Recently the authors [2] studied the inequality ∆Pa(x, t) >
tSa(x, y) and its reverse and noted that the boundary between the correspond-
ing regions in the positive octant is fully determined by the equipoise curve
∆Pa(x, 1) = Sa(x, y). In the present paper the asymptotic expansion of the
equipoise curve is shown to exist, and is determined both recursively and ex-
plicitly. Several special cases are then examined in detail, including the general
solution when n = 3, where the coefficients involve a type of generalised Cata-
lan number, and the case where a = 1 + δ is a sequence in which each term
is close to 1. A selection of inequalities implied by these results completes the
paper.
2000 Mathematics Subject Classification: 26D05, 26C99, 05A99.
Key words: Polynomial inequality, Catalan numbers.
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1. Introduction
With any finite real sequencea := (a1, a2, . . . , an) ∈ Rn we associate two
homogeneous polynomials, theproductpolynomial

Pa(x, t) := (x + a1t)(x + a2t) · · · (x + ant) =
n∏

r=1

(x + art),

and thesumpolynomial

Sa(x, y) := a1x
n−1 + a2x

n−2y + · · ·+ any
n−1 =

n∑
r=1

arx
n−ryr−1.

As shown in [2], thefirst differenceof the product polynomial

∆Pa(x, t) := Pa(x, t)− Pa(x, 0) = Pa(x, t)− xn

andt times the sum polynomial are degreen homogeneous polynomials which
are comparable in the positive octantx, y, t ∈ R+ := {r ∈ R : r ≥ 0} when
a ∈ (R+)n. Clearly they are closely related to the comparison of the product
Πn

r=1(1 + ar) and the sumΣn
r=1ar. Indeed Weierstrass [4] derived inequalities

equivalent to

1 +
n∑

r=1

ar <

n∏
r=1

(1 + ar) <
1∏n

r=1(1− ar)
<

1

1−
∑n

r=1 ar

whena ∈ (R+)n and0 < Σn
r=1ar < 1, whence the productsΠn

r=1(1 + ar) and
Πn

r=1(1 − ar) both converge asn → ∞ if Σn
r=1ar converges to a limit strictly
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less than1. The first and third of these inequalities correspond toSa(1, 1) <
∆Pa(1, 1) and−Sa(1, 1) < ∆Pa(1,−1) respectively, while the middle inequal-
ity simply follows from 1 − a2

r ≤ 1 for 1 ≤ r ≤ n, with strict inequality
for at least oner. The first inequality corresponds to results in [2] at the point
(x, y, t) = (1, 1, 1), but the third corresponds to(1, 1,−1), which is outside the
positive octant, and, although easily proved, it is not covered in [2]. (A more
widely accessible source which closely parallels Weierstrass’s reasoning is [1].)

To summarise the results in [2], let us now suppose thatn ≥ 2 and a
is strictly positive, soar > 0 for 1 ≤ r ≤ n. Then the strict inequality
∆Pa(x, t) > tSa(x, y) holds in a region (the “∆P -region”) of the positive
octant which includes the intersection of the octant with the halfspacey <
x + tm(a), wherem(a) := min{ar : 1 ≤ r ≤ n− 1}, and the reverse inequal-
ity ∆Pa(x, t) < tSa(x, y) holds in a region (the “S-region”) of the positive
octant which includes its intersection with the halfspacey > x + tM(a), where
M(a) := max{ar : 1 ≤ r ≤ n − 1}. The boundary between the∆P -region
and theS-region is theequipoise surface

E2(a) := {(x, y, t) ∈ (R+)3 : ∆Pa(x, t) = tSa(x, y)}.

The polynomials are homogeneous ina, so for any realt we have

∆Pta(x, 1) = ∆Pa(x, t) and Sta(x, y) = tSa(x, y),

whereta := (ta1, ta2, . . . , tan) ∈ Rn. Hence for strictly positivea ∈ (R+)n

with n ≥ 2, it suffices to compare the polynomials in the intersection of the
positive octant with the planet = 1, so we consider theequipoise curve

E1(a) := {(x, y) ∈ (R+)2 : ∆Pa(x, 1) = Sa(x, y)}.
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This separates the∆P -region of the positive quadrantx, y ∈ R+, where
∆Pa(x, 1) > Sa(x, y), from theS-region, where∆Pa(x, 1) < Sa(x, y). The
equipoise curve lies in the strip

x + m(a) ≤ y ≤ x + M(a)

of the positive quadrant and is asymptotic toy = x + α, whereα is a certain
function ofa. In fact, if n ≥ 3 the equipoise curve satisfies

y = x + α + βx−1 + O(x−2) asx →∞

whereα, β are functions ofa explicitly determined in [2]. The equipoise curve
approaches the asymptote from the∆P -region side ifβ is negative, and from
theS-region side ifβ is positive.

Our main purpose in this paper is to extend our understanding ofα andβ as
functions ofa, by determining the subsequent members of an infinite sequence
of coefficients constituting the asymptotic expansion of the equipoise curve for
a. But first we shall show that the properties just summarized hold a little more
generally.
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2. Wider Range of Validity
To extend the results of [2] it is convenient to introduce some notation. For
any sequencea := (a1, a2, . . . , an) ∈ Rn and any integerk in the interval
0 ≤ k ≤ n, let

Ak(a) := (a1, a2, . . . , ak) and Ωk(a) := (an−k+1, . . . , an−1, an)

be, respectively, theinitial andfinal k-term subsequences ofa. ThusAn(a) =
Ωn(a) = a and, ifω is the empty sequence,A0(a) = Ω0(a) = ω. Alsom(a) :=
min{ar : 1 ≤ r ≤ n − 1} = min An−1(a) andM(a) := max{ar : 1 ≤ r ≤
n− 1} = max An−1(a). As in [2] we also useΣ(a) := Σn

r=1ar.

First, a simple reformulation of Corollary 2.2 of [2] becomes

Theorem 2.1.For any finite sequencea ∈ (R+)
n withn ≥ 3, and for all strictly

positivex, y, t ∈ R+, if An−1(a) is not constant then fory ≥ x+t max An−1(a)
we have

0 < tΣ(a)xn−1 < ∆Pa(x, t) < tSa(x, y),

while fory ≤ x + t min An−1(a) andz := min{x, y} we have

∆Pa(x, t) > tSa(x, y) ≥ tΣ(a)zn−1 > 0.

To investigate the equality∆Pa(x, 1) = Sa(x, y), in [2] we imposed the
sufficient condition thata ∈ (R+)n be strictly positive. However, we note that
if x, y are strictly positive then

∂

∂y
Sa(x, y) > 0
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holds if and only ifΩn−1(a) 6= 0, where0 ∈ Rn−1 is the constant sequence with
every term equal to0. We shall abbreviate this condition by saying “if and only
if Ωn−1(a) is nonzero”. Then continuity ofSa(x, y) as a function ofy ensures
the following broadening of the scope of Lemma 3.1 of [2]:

Theorem 2.2. For any finite sequencea ∈ (R+)n with n ≥ 2, and strictly
positivex, y ∈ R+, if Ωn−1(a) is nonzero then there is a functiony0(x) such
that

∆Pa(x, 1)


< Sa(x, y) if y > y0(x),

= Sa(x, y) if y = y0(x),

> Sa(x, y) if y < y0(x).

Furthermore

x + min An−1(a) ≤ y0(x) ≤ x + max An−1(a).

As in [2], it is convenient now to define two families ofsequence functions
Σk, Wk : Rn → R, for any positive integern and all positive integersk ≤
n. These functions are needed to describe the coefficients in the asymptotic
expansion ofy = y0(x), the equipoise curve fora.

The kth elementary symmetric functionΣk of a ∈ Rn is the sum of all
productsΠx asx runs through thek-term subsequencesx ⊆ a, thus

Σk(a) := Σ {Πx : x ⊆ a, |x| = k} .

In particular,Σ1(a) = Σn
r=1ar andΣ2(a) = Σn−1

r=1Σn
s=r+1aras if n ≥ 2. We

extend the definition by settingΣk(a) = 0 for any integerk > n.
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Thekth binomially-weighted sumWk of a ∈ Rn is the sequence function

Wk(a) :=
n∑

r=1

(
r − 1

k − 1

)
ar.

In particular,W1(a) = Σn
r=1ar andW2(a) = Σn

r=1(r − 1)ar if n ≥ 2. Note that
W1(a) = Σ1(a) holds for anya. Once again we extend the definition by setting
Wk(a) = 0 for any integerk > n. Now Theorem2.2 justifies the following
broadening of the scope of Theorem 3.1 and Corollary 3.2 of [2].

Theorem 2.3.For any finite sequencea ∈ (R+)n with n ≥ 2, and strictly pos-
itive x, y ∈ R+, if Ωn−1(a) is nonzero then the equality∆Pa(x, 1) = Sa(x, y)
holds for largex when

y = x + α + βx−1 + O(x−2) asx →∞,

where

α := Σ2(a)/W2(a) and β := (Σ3(a)− α2W3(a))/W2(a).

Note thatβ = 0 if n = 2. We will extend Theorem2.3 in the next section.
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3. Asymptotic Expansion of the Equipoise Curve
Let us first establish the existence of the asymptotic expansion ofE1(a) for
suitablea.

Theorem 3.1. For any finite sequencea ∈ (R+)n with n ≥ 2 and Ωn−1(a)
nonzero, there is an infinite sequenceα := (α1, α2, . . .) ∈ R∞ such that the
equipoise curveE1(a) has asymptotic expansion

y ∼ x

(
1 +

∞∑
s=1

αsx
−s

)
asx →∞.

Proof. By Theorem2.3, there is anα1 ∈ R such thatE1(a) is y = x + α1 +
O(x−1) asx → ∞. Now assume for some positive integerN that there is a
sequence(α1, α2, . . . , αN) ∈ RN such thatE1(a) is

y = x

(
1 +

N∑
s=1

αsx
−s

)
+ fN(x),

with O(fN(x)) = O(x−N) asx →∞. Then

∆Pa(x, 1) = Sa(x, y)

=
n∑

r=1

arx
n−r

(
x

(
1 +

N∑
s=1

αsx
−s

)
+ fN(x)

)r−1

=
n∑

r=1

arx
n−1

(
1 +

N∑
s=1

αsx
−s

)r−1
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+
n∑

r=1

(r − 1)arx
n−2fN(x) + O(xn−N−3).

Note thatO(xn−2fN(x)) = O(xn−N−2). Our assumption forN implies that
coefficients of powers ofx down as far asxn−N−1 on the right match the corre-
sponding coefficients in∆Pa(x, 1), so it follows that

n∑
r=1

(r − 1)arfN(x) = cx−N + O(x−N−1),

where the coefficientc is equal to the difference between the coefficients of
xn−N−2 in ∆Pa(x, 1) and inΣn

r=1arx
n−1(1 + ΣN

s=1αsx
−s)r−1. The coefficient

of fN(x) is nonzero becauseΩn−1(a) is nonzero. LetαN+1 := c/Σn
r=1(r−1)ar.

ThenE1(a) is

y = x

(
1 +

N+1∑
s=1

αsx
−s

)
+ O(x−N−1).

The theorem now follows by induction onN.

Under the conditions of Theorem3.1, the equipoise curveE1(a) has an
asymptotic expansion with coefficient sequenceα = (α1, α2, . . .) asx → ∞.
SinceW2(a) = Σn

r=1(r − 1)ar, the proof of Theorem3.1 shows thatαN =
cN/W2(a), wherecN is the difference between the coefficients ofx−N in the
expansions

∆Pa(x, 1)

xn−1
= Σ1(a) + Σ2(a)x−1 + Σ3(a)x−2 + . . . =

∞∑
k=0

Σk+1(a)x−k
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and
n∑

r=1

ar

(
1 +

N−1∑
s=1

αsx
−s

)r−1

:=
∞∑

k=0

CN,k(a)x−k,

socN = ΣN+1(a) − CN,N(a). Of course, we have yet to determine the coeffi-
cientsCN,k(a), but note immediately thatCN,k(a) = 0 for all sufficiently large
k.

Let d := (d1, . . . , dN−1) ∈ (Z+)N−1 be a nonnegative integer sequence such
that ΣN−1

s=1 sds = k andΣN−1
s=1 ds = m. Thend is a partition of k with length

N − 1 andweightm. Corresponding to eachd with weightm ≤ r− 1, there is
a term inx−k in the expansion of

(
1 + ΣN−1

s=1 αsx
−s
)r−1

, with coefficient

(r − 1)!

(r −m− 1)!d1!d2! . . . dN−1!
· αd1

1 αd2
2 . . . α

dN−1

N−1 .

For convenience we abbreviate such expressions with the following compact
notation for the product

α(d) :=
N−1∏
s=1

αds
s

and the multinomial coefficient(
Σ(d)

d

)
:=

m!

ΠN−1
s=1 ds!

,

whereΣ(d) = m. Thus the coefficient of the term inx−k corresponding tod in
the expansion of

(
1 + ΣN−1

s=1 αsx
−s
)r−1

becomes(
r − 1

Σ(d)

)(
Σ(d)

d

)
α(d),
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where the first factor is the binomial coefficient
(

r−1
m

)
, which by definition is0

whenm > r − 1.
Let P (k, N − 1, m) ⊆ (Z+)N−1 be the set of all partitions ofk with length

N − 1 and weightm. Then in the expansion ofΣn
r=1ar

(
1 + ΣN−1

s=1 αsx
−s
)r−1

the coefficient of the term inx−k corresponding to any particulard ∈ P (k,N−
1, m) is

n∑
r=1

(
r − 1

m

)
ar

(
m

d

)
α(d) =

(
m

d

)
α(d)Wm+1(a).

Summing over all partitions inP (k,N − 1, m) and all relevant weights
m yields CN,k(a), the total coefficient ofx−k. When k = N we obtain the
coefficientCN,N(a) needed forαN . Simplifying notation withP (N, m) :=
P (N, N − 1, m), and noting thatP (N, 1) = ∅, we have

Theorem 3.2. For any finite sequencea ∈ (R+)n with n ≥ 2 and Ωn−1(a)
nonzero, the asymptotic expansion of the equipoise curveE1(a) is

y ∼ x

(
1 +

∞∑
s=1

αsx
−s

)
asx →∞,

where the coefficient sequenceα := (α1, α2, . . .) ∈ R∞ is given by

αN =
ΣN+1(a)− CN,N(a)

W2(a)

for eachN ≥ 1, with

CN,N(a) =
N∑

m=2

 ∑
d∈P (N,m)

(
m

d

)
α(d)

Wm+1(a).

http://jipam.vu.edu.au/
mailto:
mailto:roger@math.ilstu.edu
mailto:
mailto:
mailto:mmwpg@cc.newcastle.edu.au
http://jipam.vu.edu.au/


Asymptotic Expansion of the
Equipoise Curve of a
Polynomial Inequality

Roger B. Eggleton and
William P. Galvin

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 30

J. Ineq. Pure and Appl. Math. 3(5) Art. 84, 2002

http://jipam.vu.edu.au

In particular, whenN = 1 we haveP (1, m) = ∅ soC1,1(a) = 0, since its
inner sum is empty. This givesα1 = Σ2(a)/ W2(a), consistent with Theorem
2.3. Again, whenN = 2 the sequence(2) ∈ R1 is the unique partition of2 with
length1, soP (2, 2) = {(2)} and the inner sum forC2,2(a) is

(
2
2

)
α(2) = α2

1,
whenceC2,2(a) = α2

1W3(a). Thenα2 = (Σ3(a)− α2
1W3(a))/ W2(a), again

consistent with Theorem2.3. Substituting here forα1 and suppressing the ar-
gumenta to simplify notation yields

α2 =
Σ3W

2
2 − Σ2

2W3

W 3
2

.

WhenN = 3 we haveP (3, 2) = {(1, 1)} andP (3, 3) = {(3, 0)}, so Theorem
3.2yieldsα3 from C3,3(a) = 2α1α2W3(a) + α3

1W4(a). Substituting forα1 and
α2 and suppressing the argumenta now yields

α3 =
Σ4W

4
2 − Σ3

2W2W4 + 2Σ3
2W

2
3 − 2Σ2Σ3W

2
2 W3

W 5
2

.

Evidently continuing this process will yield an expression for anyαN just
in terms of the elementary symmetric functions and the binomially-weighted
functions of the sequencea. In the next theorem we characterize the summands
in this explicit expression forαN , but first we introduce some notation. For any
integer sequenced ∈ (Z+)N let

Σ(d) :=
N∏

r=1

Σr+1(a)dr and W(d) :=
N∏

r=1

Wr+1(a)dr .
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As previously, we shall usually suppress explicit mention of the argumenta
from expressions of this type. We also need the following family of partition
pairs:

Q(N) :=

{
(d, e) : d, e ∈ (Z+)N ,

N∑
r=1

rdr = N,

N∑
r=1

rer = 2N − 2,
N∑

r=1

(dr + er) = 2N − 1

}
,

that is, pairs(d, e) of partitions ofN and2N − 2 respectively, each of length
N, with sum of weights equal to2N − 1. (This places no effective restriction
ond, but does constraine significantly.)

Theorem 3.3. For each integerN ≥ 1, the coefficientαN in the asymptotic
expansion of the equipoise curveE1(a) satisfies an identity of the form

αNW 2N−1
2 =

∑
(d,e)∈Q(N)

c(d, e)Σ(d)W(e),

where each coefficientc(d, e) is an integer dependent only on the partition pair
(d, e).

Proof. Note thatQ(1) = {((1), (0))} andα1W2 = Σ2, so the theorem holds
whenN = 1, with c((1), (0)) = 1. Now fix N > 1, and suppose inductively
that the theorem holds for allαs with 1 ≤ s < N. By Theorem3.2,

αNW 2N−1
2 = ΣN+1W

2N−2
2 −

N∑
M=2

 ∑
D∈P (N,M)

(
M

D

)
α(D)

W 2N−2
2 WM+1.
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The first term on the right is of the required form, since it isc(d, e)Σ(d)W(e)
with c(d, e) = 1, whered = (0, . . . , 0, 1), e = (2N − 2, 0, . . . , 0) ∈ (Z+)N are
lengthN partitions ofN and2N − 2 respectively, with sum of weights2N − 1.

Now consider the outer sum on the right in theαN identity. Each summand
is of the form  ∑

D∈P (N,M)

(
M

D

)
W 2N−M

2 α(D)

WM−2
2 WM+1.

Since2N −M = ΣN−1
s=1 (2s− 1)Ds for eachD ∈ P (N, M), we have

W 2N−M
2 α(D) =

N−1∏
s=1

(αsW
2s−1
2 )Ds =

N−1∏
s=1

 ∑
(d,e)∈Q(s)

c(d, e)Σ(d)W (e)

Ds

where the last step is by hypothesis. If(d, e), (d′, e′) ∈ Q(s) then

Σ(d)W(e) ·Σ(d′)W(e′) = Σ(d + d′)W(e + e′),

so it follows that every term in the expansion of the sum overQ(s), raised to
the powerDs, is of the formc(d, e)Σ(d)W(e) wherec(d, e) is an integer and
d, e ∈ (Z+)s are partitions ofsDs and(2s − 2)Ds respectively, with sum of
weights(2s − 1)Ds. To calculate the product overs, we modify these length
s partitions by adjoining a furtherN − s zero terms to each. Partitions corre-
sponding to different values ofs can then be added. The sum ofN−1 pairs, one
for each value ofs, is a pair(d, e) of lengthN partitions, whered is a partition
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of ΣN−1
s=1 sDs = N ande is a partition ofΣN−1

s=1 (2s− 2)Ds = 2N − 2M, and the
sum of weights ofd ande is ΣN−1

s=1 (2s− 1)Ds = 2N −M. Before we sum over
M, recall that each such term is multiplied byWM−2

2 WM+1 = W (e∗), where
e∗ ∈ (Z+)N hase∗1 = M − 2, e∗M = 1 and all other terms0. Thuse∗ is a length
N partition of2M − 2 with weightM − 1. Hence(d, e + e∗) is a pair of length
N partitions ofN and2N − 2 respectively, with sum of weights2N − 1, so
(d, e + e∗) ∈ Q(N). This does not depend explicitly onM, so the sum over
M is a sum of terms of the formc(d, e)Σ(d)W(e) where(d, e) ∈ Q(N). All
coefficientsc(d, e) involve sums of products of multinomial coefficients and
integer coefficients fromαs with 1 ≤ s < N, so everyc(d, e) is an integer. The
theorem now follows by induction onN.

For example, the setQ(4) comprises eight partition pairs, each pair being a
length4 partition of4 and a length4 partition of6, with sum of weights7. Thus
α4W

7
2 is a sum of eight products ofΣk’s andWk’s, with coefficients as noted:

(d, e) ∈ Q(4) c(d, e) (d, e) ∈ Q(4) c(d, e)
((0, 0, 0, 1), (6, 0, 0, 0)) +1 ((2, 1, 0, 0), (2, 2, 0, 0)) +6
((1, 0, 1, 0), (4, 1, 0, 0)) −2 ((4, 0, 0, 0), (2, 0, 0, 1)) −1
((0, 2, 0, 0), (4, 1, 0, 0)) −1 ((4, 0, 0, 0), (1, 1, 1, 0)) +5
((2, 1, 0, 0), (3, 0, 1, 0)) −3 ((4, 0, 0, 0), (0, 3, 0, 0)) −5

In particular, the term inα4W
7
2 with the largest coefficient is6Σ2

2Σ3W
2
2 W 2

3 , and
the term independent ofW2 is−5Σ4

2W
3
3 .

Corollary 3.4. For any positive integerN, there are integersc(d, e) corre-
sponding to pairs of partitions(d, e) ∈ Q(N) such that the degree2N − 1
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homogeneous polynomial in2N variables,

FN(u1, . . . , uN ; v1, . . . , vN) :=
∑

(d,e)∈Q(N)

c(d, e)
N∏

r=1

udr
r

N∏
s=1

ves
s ,

when evaluated atur = Σr+1(a), vs = Ws+1(a), 1 ≤ r, s ≤ N, takes the value

FN(Σ2(a), . . . , ΣN+1(a); W2(a), . . . ,WN+1(a)) = αNW2(a)2N−1.

From the2N variablesur, vs(1 ≤ r, s ≤ N) let us form2N − 1 “rational”
variables:

ρr :=
ur

vr

(1 ≤ r ≤ N) and τs :=
vs+1

v1

(1 ≤ s ≤ N − 1).

ThenF1(u1; v1)=u1 =ρ1v1 andF2(u1, u2; v1, v2)=u2v
2
1−u2

1v2 =(ρ2−ρ2
1)v

2
1v2,

whence

F1(u1; v1)

v1

= ρ1 and
F2(u1, u2; v1, v2)

v3
1

= (ρ2 − ρ2
1)τ1.

A corresponding identity can be obtained for eachFN . Indeed ifN ≥ 2 then

cN,N = αN
1 WN+1 +

N−1∑
m=2

 ∑
d∈P (N,m)

(
m

d

)
α(d)

Wm+1,

by Theorem3.2, whence

FN(u1, . . . , uN ; v1, . . . , vN) = uNv2N−2
1 − uN

1 vN−2
1 vN + RN ,
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whereRN = RN(u1, . . . , uN−1; v1, . . . , vN−1) is a polynomial which does not
involve the variablesuN andvN . Now

uNv2N−2
1 − uN

1 vN−2
1 vN = (ρN − ρN

1 )τN−1v
2N−1
1 ,

whence induction onN utilizing Theorem3.2and Corollary3.4establishes the
general identity forFN in Corollary 3.5 below. Once again, some additional
notation allows us to express the result compactly. For anyd ∈ (Z+)N and
e ∈ (Z+)N−1 we write

ρ(d) :=
N∏

r=1

ρdr
r and τ(e) :=

N−1∏
s=1

τ es
s .

Also for any partition pair(d, e) ∈ Q(N) note that the sequenced∗ ∈ (Z+)N−1

given byd∗ := ΩN−1(d + e) is a lengthN − 1 partition ofN − 1, since

N−1∑
r=1

rd∗r =
N∑

r=2

(r − 1)(dr + er)

=
N∑

r=1

rdr +
N∑

r=1

rer −
N∑

r=1

(dr + er)

= N + (2N − 2)− (2N − 1) = N − 1.

LetP (N) be the set of all lengthN partitions ofN, and for eachd∗ ∈ P (N−1),
let us define the subfamily of partition pairsQ∗(d∗) := {(d, e) ∈ Q(N) :
ΩN−1(d + e) = d∗}. Then induction establishes
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Corollary 3.5. For any integerN ≥ 2, the polynomialFN satisfies the identity

FN(u1, . . . , uN ; v1, . . . , vN)

v2N−1
1

=
∑

(d,e)∈Q(N)

c(d, e)ρ(d)τ(ΩN−1(d + e))

=
∑

d∗∈P (N−1)

fd∗(ρ1, . . . , ρN)τ(d∗),

where
fd∗(ρ1, . . . , ρN) :=

∑
(d,e)∈Q∗(d∗)

c(d, e)ρ(d).

In particular we have
f(1) = ρ2 − ρ2

1,

f(2,0) = 2ρ3
1 − 2ρ1ρ2, f(0,1) = ρ3 − ρ3

1,

f(3,0,0) = 6ρ2
1ρ2−ρ2

2−5ρ4
1, f(1,1,0) = 5ρ4

1−3ρ2
1ρ2−2ρ1ρ3, f(0,0,1) = ρ4−ρ4

1.

For eachd∗ ∈ P (N − 1), the polynomialfd∗ in theN variablesρ1, . . . , ρN

has coefficients which are a subfamily of the coefficients introduced in Theorem
3.3. Each(d, e) ∈ Q(N) determines a uniqued∗ = ΩN−1(d + e) ∈ P (N−1),
so the families{c(d, e) : (d, e) ∈ Q∗(d∗)} comprise a partition of the family
of coefficients{c(d, e) : (d, e) ∈ Q(N)} introduced in Theorem3.3. For each
d∗ ∈ P (N − 1), let e ∈ (Z+)N be such thatΩN−1(e) = d∗ ande1 = ΣN−1

r=1 d∗r.
Thene is a lengthN partition of 2N − 2 with weight 2N − 1, and(d, e) ∈
Q∗(d∗) whend = (N, 0, . . . , 0). Hencefd∗ contains the termc(d, e)ρN

1 , and it
follows thatfd∗ is of degreeN. In particular our earlier calculations show that
fd∗(ρ1, . . . , ρN) = ρN − ρN

1 whend∗ = (0, . . . , 0, 1) ∈ P (N − 1), and when
evaluated atρ1 = . . . = ρN = 1 this polynomial takes the value0, so the sum
of its coefficients is0. Then induction establishes
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Corollary 3.6. For any N ≥ 2 and eachd∗ ∈ P (N − 1), the polynomial
fd∗(ρ1, . . . , ρN) is of degreeN, and the sum of its coefficients is0.

Since eachfd∗ satisfiesfd∗(1, . . . , 1) = 0, it immediately follows that we
have

Corollary 3.7. For any integerN ≥ 2, the polynomialFN(u1, . . . , uN ; v1, . . . , vN)
has sum of coefficients equal to0, and in fact satisfies the identityFN(u1, . . . , uN ;
u1, . . . , uN) = 0.
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4. Particular Evaluations of the Asymptotic
Expansion

We shall now consider evaluations of the coefficient sequenceα = (α1, α2, . . .)
of the asymptotic expansion of the equipoise curveE1(a), for particular choices
of a ∈ (R+)n.

First, note thatΣN+1(a) = 0 = WN+1(a) for all N ≥ n. This causes no
concern if we use Corollary3.4 to determineαN by evaluatingFN at ur =
Σr+1(a), vs = Ws+1(a), 1 ≤ r, s ≤ N. On the other hand, it is not immedi-
ately obvious how we should use Corollary3.5 to determineαN whenN ≥ n,
since the rational variableρr = ur/vr does not have a stand-alone value when
ur = 0, vr = 0. However, for each partition pair(d, e) ∈ Q(N) the prod-
uctρ(d)τ(ΩN−1(d + e)) contains the factorρdr

r τ dr+er
r−1 = udr

r ver
r /vdr+er

1 , which
takes the value0 whenur = 0 andvr = 0, sinceΩn−1(a) nonzero ensures
that v1 = W2(a) is nonzero. Thus, Corollary3.5 yields αN as the value of
FN/v2N−1

1 when ur = Σr+1(a), vs = Ws+1(a), 1 ≤ r, s ≤ N, by noting
that the only productsfd∗τ(d∗) that can be nonzero correspond to partitions
d∗ ∈ P (N − 1) with ΩN−n(d∗) = 0.

Example 4.1. If a ∈ (R+)2 with Ω1(a) nonzero, it is trivial to verify that the
equipoise curveE1(a) is the straight liney = x+α1, with α1 = a1 andαN = 0
for N ≥ 2.

Example 4.2. If a ∈ (R+)3 with Ω2(a) nonzero, the equipoise curveE1(a)
is a hyperbola with asymptotey = x + α1. Corollary 3.5 yields αN as the
value offd∗τ(d∗) for d∗ = (N − 1, 0, . . . , 0) ∈ P (N − 1), with the evaluation
ρ1 = Σ2(a)/ W2(a), ρ2 = Σ3(a)/ W3(a) andτ1 = W3(a)/ W2(a), noting that
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any products ofρ2 andτ1 are equal to zero ifa3 = 0. We have

α1 = ρ1, α2 = (ρ2−ρ2
1)τ1, α3 = (2ρ3

1−2ρ1ρ2)τ
2
1 , α4 = (6ρ2

1ρ2−ρ2
2−5ρ4

1)τ
3
1 ,

and so on. However we do not explicitly know the coefficients off(N−1,0,...,0)

in general. On the other hand, Theorem3.2conveniently determinesαN recur-
sively in this case. In fact, withα1 and α2 as determined above, we have all
later terms given by the recurrence

αN = −W3(a)

W2(a)

(
N−1∑
s=1

αsαN−s

)
for N ≥ 3.

The substitutionβN := −τ1αN for N ≥ 1 converts the recurrence to a pure
convolution

βN =
N−1∑
s=1

βsβN−s for N ≥ 3,

corresponding to the classical recurrence satisfied by Catalan numbers, but now
with initial conditionsβ1 = −ρ1τ1 andβ2 = (ρ2

1 − ρ2)τ
2
1 . There is an extensive

literature on Catalan numbers. An accessible and readily available discussion
is the subject of Chapter 7 of [3].

Introducing the generating function

F (z) := β1z + β2z
2 + . . . + βNzN + . . . =

∞∑
r=1

βrz
r,
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and lettingZ := τ1z, we find thatF satisfiesF (z)2−F (z)−Z(ρ1 +ρ2Z) = 0,
so

F (z) =
1−

√
1 + 4Z(ρ1 + ρ2Z)

2
.

Binomial series expansion now leads to an explicit closed-form solution forβN ,
whence

αN = (−τ1)
N−1

bN/2c∑
s=0

(−1)s

2N − 2s− 1

(
2N − 2s− 1

N − 2s, s, N − s− 1

)
ρN−2s

1 ρs
2 for N ≥ 1.

Here the quotient of the trinomial coefficient with2N − 2s− 1 can be regarded
as a generalized Catalan number. For example, this explicit solution readily
yields

α5 = τ 4
1

[
1

9

(
9

5, 0, 4

)
ρ5

1 −
1

7

(
7

3, 1, 3

)
ρ3

1ρ2 +
1

5

(
5

1, 2, 2

)
ρ1ρ

2
2

]
,

whenceα5 = (14ρ5
1−20ρ3

1ρ2+6ρ1ρ
2
2)τ

4
1 . Note by Corollary3.6that eachfd∗ has

coefficient sum zero, so the generalised Catalan numbers have zero alternating
sum forN ≥ 2 :

bN/2c∑
s=0

(−1)s

2N − 2s− 1

(
2N − 2s− 1

N − 2s, s, N − s− 1

)
= 0.

Alternatively, this identity can be deduced from the quadratic identity forF (z)
whenρ2

1 = ρ2. PuttingZ∗ := ρ1τ1z then givesF (z)2−F (z)−Z∗(1+Z∗) = 0,
and binomial series expansion of the solution yields the zero alternating sum
noted.
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Example 4.3. Let us now consider the constant sequencea = 1 ∈ (R+)n in
which each term is equal to1. ThenΣk(1) =

(
n
k

)
= Wk(1) for 1 ≤ k ≤ n,

so in this caseα1 = 1 and Corollaries3.4 and 3.7 imply thatαN = 0 for
N ≥ 2. Hence, as in Example4.1, the equipoise curveE1(1) is the straight line
y = x + 1. This is confirmed by noting that∆P1(x, 1) = (x + 1)n − xn and
S1(x, y) = (xn− yn)/(x− y), so∆P1(x, 1) = S1(x, y) holds wheny = x + 1.

Example 4.4.Letδ := (δ1, δ2, . . . , δn) ∈ Rn be a sequence in which every term
satisfies|δr| ≤ ε for some small strictly positiveε ∈ R+. Thena := 1 + δ ∈
(R+)n is a small perturbation of the constant sequence1. LetΣ0(δ) := 1. Then
for eachk ≥ 1 we have

Σk(1 + δ) =
k∑

s=0

(
n− s

k − s

)
Σs(δ) and Wk(1 + δ) =

(
n

k

)
+ Wk(δ).

It is convenient to scale the functionsΣk and Wk by dividing byΣk(1) =
Wk(1) =

(
n
k

)
when1 ≤ k ≤ n : for all a ∈ (R+)n we define

Σ∗
k(a) := Σk(a)/ Σk(1) and W ∗

k (a) := Wk(a)/Wk(1).

(It can easily be shown thatΣ∗
k(a) is the expected value of the product of terms

in a k-term subsequence ofa, andW ∗
k (a) is the expected value of the last term

in a k-term subsequence ofa.) It is also appropriate to defineΣ∗
0(δ) = 1. Then

for 1 ≤ k ≤ n the earlier identities become

Σ∗
k(1 + δ) =

k∑
s=0

(
k

s

)
Σ∗

s(δ) and W ∗
k (1 + δ) = 1 + W ∗

k (δ).
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We keepn fixed and letε → 0+, soO(Σ∗
k(δ)) = O(εk) andO(W ∗

k (δ)) = O(ε).
In particular,

α1 = 1 + 2Σ∗
1(δ)−W ∗

2 (δ) + O(ε2).

For any integers ≥ 0, put

λs :=

(
n

s + 2

)/(
n

2

)
=

(
n− 2

s

)/(
s + 2

2

)
and for anyd ∈ (Z+)N−1 defineλ(d) := ΠN−1

s=1 λds
s . Now evaluating the coef-

ficient αN at 1 + δ using Corollaries3.4 and 3.5 is convenient so long as we
knowfd∗ explicitly for eachd∗ ∈ P (N − 1). We haveO(fd∗) = O(ε) because
ρr = 1 + O(ε) for 1 ≤ r ≤ n− 1 andfd∗ has zero coefficient sum by Corollary
3.6. Asτs = λs + O(ε) for 1 ≤ s ≤ n− 2, it follows forN ≥ 2 that

αN =
∑

d∗∈P (N−1)

fd∗(ρ1, . . . , ρN)λ(d∗) + O(ε2)

where

fd∗(ρ1, . . . , ρN)

=
∑

(d,e)∈Q∗(d∗)

c(d, e)

(
NΣ∗

1(δ) +
N∑

r=1

dr

[
Σ∗

1(δ)−W ∗
r+1(δ)

])
+ O(ε2).

On the other hand, using Theorem3.2 to evaluateαN at 1 + δ yieldsα1 as
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above and forN ≥ 2 yieldsαN via the recurrence

αN = −
N−2∑
s=1

(s + 1)λsαN−s −NλN−1 (Σ∗
1(δ)−W ∗

2 (δ))

+ λN−1

(
Σ∗

1(δ)−W ∗
N+1(δ)

)
+ O(ε2).

It follows by induction forN ≥ 2 thatαN has zero sum for the coefficients of
the family of functionsΣ∗

1(δ) andW ∗
k (δ) with 2 ≤ k ≤ N + 1.

Note in particular the special case in whichAn−1(δ) = 0, so δr = 0 for
1 ≤ r ≤ n − 1 and |δn| ≤ ε. ThenΣ∗

1(δ) = δn/n andW ∗
k (δ) = kδn/n for

2 ≤ k ≤ n, soα1 = 1 andαN = 0 for N ≥ 2. This is confirmed directly by
checking that∆P1+δ(x, 1) = (x + 1)n − xn + δn(x + 1)n−1 andS1+δ(x, y) =
(xn − yn)/(x− y) + δny

n−1 are equal precisely wheny = x + 1.
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5. Selected Inequalities
To conclude, let us briefly sample some of the inequalities between the polyno-
mials∆Pa(x, 1) andSa(x, y) which are consequences of the preceding asymp-
totic analysis.

Case 5.1.a = 1 ∈ (R+)n with n ≥ 2.

In this case the equipoise curve isy = x+1, and simple but elegant inequalities
are already implied by Theorems2.2and2.3. For instance,∆P1(1, 1) = 2n− 1
andS1(1, 3) = (3n − 1)/2. The point(1, 3) lies above the equipoise curve, so
is in theS-region, and Theorem2.2 implies

2n − 1 <
3n − 1

2
.

Indeed, the linesy = x + 2 andy = x + 1
2

lie, respectively, in theS-region and
the∆P -region, so forx > 0 we have(

x +
1

2

)n

− xn <
(x + 1)n − xn

2
<

(x + 2)n − xn

4
.

These inequalities would usually be deduced from the convexity ofy = xn, and
actually hold for allx ∈ R whenn is even.

Sinceα1 = 1 andαN+1 = 0 for N ≥ 1 whena = 1, less familiar inequali-
ties can be derived by noting that the curvesy = x+1+x−N andy = x+1−x−N

lie, respectively, in theS-region and the∆P -region whenN ≥ 1. Thus for
x > 0 we have(

x + 1− 1
xN

)n − xn

1− 1
xN

< (x + 1)n − xn <

(
x + 1 + 1

xN

)n − xn

1 + 1
xN
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Once again these inequalities could be deduced from convexity ofy = xn, but
now their form is more naturally suggested by the asymptotic expansion of the
equipoise curve.

Case 5.2.a = 1 + δ ∈ (R+)n with n ≥ 3, and there is some small strictly
positiveε ∈ R+ such that|δr| ≤ ε for 1 ≤ r ≤ n.

Let us consider the special case in whichδ1 = −ε, δn = ε and δr = 0 for
2 ≤ r ≤ n− 1. Then

∆P1+δ(x, 1) = (x + 1)n − xn − ε2(x + 1)n−2 and

S1+δ(x, y) =
yn − xn

y − x
+ ε(yn−1 − xn−1).

In this caseΣ∗
1(δ) = 0, Σ∗

2(δ) = −2ε/n(n− 1), Σ∗
k(δ) = 0 for 3 ≤ k ≤ n, and

W ∗
k (δ) = kε/n for 2 ≤ k ≤ n. From Example4.4we have

α1 = 1− 2

n
ε+O(ε2), α2 =

n− 2

3n
ε+O(ε2), α3 = −(n + 1)(n− 2)

18n
ε+O(ε2).

Thenα2 > 0 andα3 < 0, so the curvesy = x + α1 andy = x + α1 + α2x
−1

lie, respectively, below and above the equipoise curve for sufficiently largex.
Hence

(x + α1)
n − xn

α1

+ ε
[
(x + α1)

n−1 − xn−1
]

< (x + 1)n − xn − ε2(x + 1)n−2

<

(
x + α1 + α2

x

)n − xn

α1 + α2

x

+ ε

[(
x + α1 +

α2

x

)n−1

− xn−1

]
,
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whereα1 andα2 take the exact values

α1 =

(
n
2

)
− ε2(

n
2

)
+ (n− 1)ε

and α2 =

(
n
3

)
− (n− 2)ε2 − α2

1

[(
n
3

)
+
(

n−1
2

)
ε
](

n
2

)
+ (n− 1)ε

.

Case 5.3.a := (a, b, c) ∈ (R+)3 with Ω2(a) = (b, c) 6= (0, 0).

As shown in Example4.2, for N ≥ 1 eachαN is a function ofρ1, ρ2 andτ1 in
this case. Ifc = 0, we easily verify thatα1 = a andαN = 0 for N ≥ 2. Now
supposec > 0. Thenρ1, ρ2 andτ1 have stand-alone values, andα2 = 0 precisely
whenρ2 = ρ2

1. But thenαN = 0 for N ≥ 2, by the previously noted alternating
sum identity for the generalised Catalan numbers. Ifρ2 > ρ2

1 thenα2 > 0 and
the summation identity forαN in Example4.2 implies (−1)NαN > 0, soαN

alternates in sign forN ≥ 2. Similarly if ρ2 < ρ2
1 thenα2 < 0 andαN alternates

in sign forN ≥ 2. As in Case5.2above we can deduce relevant inequalities. In
particular, ifρ2 > ρ2

1 then for sufficiently largex we have

ax2 + bx(x + α1) + c(x + α1)
2

< (x + a)(x + b)(x + c)− x3

< ax2 + bx
(
x + α1 +

α2

x

)
+ c
(
x + α1 +

α2

x

)2

,

whereα1 andα2 have their exact values, given explicitly in Example4.2.
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