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Abstract

By utilizing a reversed Hölder inequality and a reversed convolution inequality,
some new integral inequalities which originate from an open problem posed in
[F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math. 1(2) (2000),
Art. 19. Available online at http://jipam.vu.edu.au/v1n2.html/001_
00.html . RGMIA Res. Rep. Coll. 2 (1999), no. 7, Art. 9, 1039–1042. Available
online at http://rgmia.vu.edu.au/v2n7.html ] are established.

2000 Mathematics Subject Classification: Primary 26D15; Secondary 39B62,
60E15.
Key words: Qi type integral inequality, Reversed Hölder inequality, Reversed convo-

lution inequality.
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1. Introduction
In [6] F. Qi posed the following open problem:

Under what conditions does the inequality

(1.1)
∫ b

a

[
f(x)

]t
dx ≥

(∫ b

a

f(x)dx

)t−1

hold for t > 1?
In response, affirmative answers, generalizations, reversed forms, and inter-

pretations of inequality (1.1) have been obtained by several mathematicians.
The paper [9] first gave an affirmative answer to this open problem using the

integral version of Jensen’s inequality and a lemma of convexity. The second
affirmative answer to (1.1) was given by Towghi in [8]. Motivated by (1.1),
Pogány [5] proved the following

(1.2)
∫ b

a

[
f(x)

]α
dx ≥

(∫ b

a

f(x)dx

)β

and its reversed form under assumptions of the bounds, depending onb − a, α
andβ, and convexity off , which contains an answer to the above open problem
and some reversed forms of (1.1).

In [3, 4], by employing a functional inequality which is an abstract general-
ization of the classical Jessen’s inequality, the following functional inequality
(1.4) was established, from which inequality (1.1), some integral inequalities,
and an interesting discrete inequality involving sums can be deduced:
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Let L be a linear vector space of real-valued functions,p andq be two real
numbers such thatp ≥ q ≥ 1. Assume thatf andg are two positive functions
in L andG is a positive linear form onL such thatG(g) > 0, fg ∈ L, and
gfp ∈ L. If

(1.3) [G(gf)]p−q ≥ [G(g)]p−1,

then

(1.4) G(gfp) ≥ [G(gf)]q.

Very recently, Csiszár and Móri [1] interpreted inequality (1.2) in terms of
moments as

(1.5) E(Xα) ≥ C(EX)β,

whereC = (b − a)β−1 andX = f is a random variable. To demonstrate the
power of the convexity method in probability theory, among other things, they
found sharp conditions on the range ofX, under which (1.5) or the converse
inequality holds for fixed0 < β < α. Hence, the results by Pogány [5] were
improved slightly by a factor of at least

(
3
2

) α
α−β .

In this short note, by utilizing the reversed Hölder inequality in [2] and a
reversed convolution inequality in [7], we establish some new Qi type integral
inequalities which extend related results in references.
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2. Two Lemmas
In order to prove our main results, the following two lemmas are necessary.

Lemma 2.1 ([2]). For two positive functionsf andg satisfying0 < m ≤ f
g
≤

M < ∞ on the setX, and forp > 1 andq > 1 with 1
p

+ 1
q

= 1, we have

(2.1)

(∫
X

fdµ

) 1
p
(∫

X

gdµ

) 1
q

≤ Ap,q

(m

M

)∫
X

f
1
p g

1
q dµ,

where

(2.2) Ap,q(t) =
1

p
1
p q

1
q

· 1− t

t
1
pq

(
1− t

1
p

) 1
p
(
1− t

1
q

) 1
q

.

Inequality (2.1) is called the reverse Hölder inequality.

Lemma 2.2 ([7]). For two positive functionsf andg satisfying0 < m ≤ fp

gq ≤
M < ∞ on the setX, and forp > 1 andq > 1 with 1

p
+ 1

q
= 1, we have

(2.3)

(∫
X

fpdµ

) 1
p
(∫

X

gqdµ

) 1
q

≤
(

M

m

) 1
pq
∫

X

fgdµ.
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3. Main Results and Proofs
In this section, we will state our main results and give their proofs as follows.

Using Lemma2.1and an estimation due to Lars-Erik Persson, we obtain:

Theorem 3.1. If 0 < m ≤ f ≤ M < ∞ on [a, b], then

(3.1)
∫

[a,b]

f
1
p dµ ≥ B

(∫
[a,b]

fdµ

) 1
p
−1

,

whereB = m[µ(b)− µ(a)]1+ 1
q
(

m
M

) 1
pq andp > 1, q > 1 with 1

p
+ 1

q
= 1.

Proof. In Lemma2.1, puttingg ≡ 1 yields

(3.2) [µ(b)− µ(a)]
1
q

(∫
[a,b]

fdµ

) 1
p

≤ Ap,q

(m

M

)∫
[a,b]

f
1
p dµ,

and so

(3.3)
∫

[a,b]

f
1
p dµ ≥ [µ(b)− µ(a)]

1
q

Ap,q

(
m
M

) (∫
[a,b]

fdµ

) 1
p
−1(∫

[a,b]

fdµ

)
.

Since0 < m ≤ f , we have

(3.4)
∫

[a,b]

f
1
p dµ ≥ m [µ(b)− µ(a)]1+ 1

q

Ap,q

(
m
M

) (∫
[a,b]

fdµ

) 1
p
−1

.

Now, using the estimationAp,q(t) < t−
1
pq due to Lars-Erik Persson (see [7]),

we obtain inequality (3.1).
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Corollary 3.2. Letp > 1 andq > 1 with 1
p

+ 1
q

= 1. If

(3.5) m
(m

M

) 1
pq

=
1

[µ(b)− µ(a)]1+ 1
q

and0 < m ≤ f ≤ M < ∞ on [a, b], then

(3.6)
∫

[a,b]

f
1
p dµ ≥

(∫
[a,b]

fdµ

) 1
p
−1

.

Using Lemma2.1, Lemma2.2and the estimation due to Lars-Erik Persson,
we have the following:

Theorem 3.3.Letp > 1 andq > 1 with 1
p
+ 1

q
= 1. If 0 < m

1
p ≤ f ≤ M

1
p < ∞

on [a, b], then

(3.7)

(∫
[a,b]

f
1
p dµ

)p

≥ [µ(b)− µ(a)]
p+1

q

(m

M

) 2
pq

(∫
[a,b]

fpdµ

) 1
p

.

Proof. Puttingg ≡ 1 into Lemma2.2, we obtain

(3.8)

(∫
[a,b]

fpdµ

) 1
p

[µ(b)− µ(a)]
1
q ≤

(m

M

)− 1
pq

∫
[a,b]

fdµ.

Therefore

(3.9)

(∫
[a,b]

fpdµ

) 1
p

≤
(m

M

)− 1
pq

[µ(b)− µ(a)]−
1
q

∫
[a,b]

fdµ.
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Again, substitutingg ≡ 1 in the reverse Hölder inequality in Lemma2.1
leads to (∫

[a,b]

fdµ

) 1
p

≤ [µ(b)− µ(a)]−
1
q Ap,q

(
m

1
p

M
1
p

)∫
[a,b]

f
1
p dµ,

and so,

(3.10)
∫

[a,b]

fdµ ≤ [µ(b)− µ(a)]−
p
q Ap

p,q

(
m

1
p

M
1
p

)(∫
[a,b]

f
1
p dµ

)p

.

Combining (3.9) with (3.10), we obtain

(3.11)

(∫
[a,b]

f
1
p dµ

)p

≥ [µ(b)− µ(a)]
p+1

q

(m

M

) 1
pq

A−p
p,q

(
m

1
p

M
1
p

)(∫
[a,b]

fpdµ

) 1
p

.

Then, by using the estimationAp,q(t) < t−
1
pq due to Lars-Erik Persson (see [7]),

we obtain inequality (3.7).

Corollary 3.4. If 0 < m
1
p ≤ f ≤ M

1
p < ∞ on[a, b] and m

M
= [µ(b)− µ(a)]

−p(p+1)
2

for p > 1, then

(3.12)

(∫
[a,b]

f
1
p dµ

)p

≥
(∫

[a,b]

fpdµ

) 1
p

.
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