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Abstract

In this paper we consider the problem of normal family criteria and improve
some results of I. Lihiri, S. Dewan and Y. Xu.
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1. Introduction and Results
Let C be the open complex plane andD ∈ C be a domain. Letf be a mero-

morphic function in the complex plane, we assume that the reader is familiar
with the notations of Nevanlinna theory (see, e.g., [5][12]).

Definition 1.1. Let k be a positive integer, for anya in the complex plane.
We denote byNk)(r, 1/(f − a)) the counting function ofa-points off with
multiplicity≤ k, byN(k(r, 1/(f−a)) the counting function ofa-points off with
multiplicity≥ k, byNk(r, 1/(f − a)) the counting function ofa-points off with
multiplicity ofk, and denote the reduced counting function byNk)(r, 1/(f−a)),
N (k(r, 1/(f − a)) andNk(r, 1/(f − a)), respectively.

In 1995, Chen-Fang [3] proposed the following conjecture:

Conjecture 1.1. LetF be a family of meromorphic functions in a domainD. If
for every functionf ∈ F , f (k) − afn − b has no zero inD, thenF is normal,
wherea(6= 0), b are two finite numbers andk, n(≥ k + 2) are positive integers.

In response to this conjecture, Xu [11] proved the following result.

Theorem A. LetF be a family of meromorphic functions in a domainD and
a(6= 0), b be two finite constants. Ifk and n are positive integers such that
n ≥ k + 2 and for everyf ∈ F

(i) f (k) − afn − b has no zero,

(ii) f has no simple pole,

thenF is normal.
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The condition (ii) of TheoremA can be dropped if we choosen ≥ k + 4 (cf.
[8][10]). If n ≥ k + 3, is condition (ii) in TheoremA necessary? We will give
an answer.

Theorem 1.2. LetF be a family of meromorphic functions in a domainD and
a(6= 0), b be two finite constants. Ifk and n are positive integers such that
n ≥ k + 3 and for everyf ∈ F , f (k) − afn has no zero, thenF is normal.

In addition, Lahiri and Dewan [6] investigated the situation when the power
of f is negative in condition (i) of TheoremA.

Theorem B. LetF be a family of meromorphic functions in a domainD and
a(6= 0), b be two finite constants. Suppose thatEf = {z : z ∈ D andf (k)(z)−
af−n(z) = b}, wherek andn(≥ k) are positive integers.

If for everyf ∈ F

(i) f has no zero of multiplicity less thank,

(ii) there exists a positive numberM such that for everyf ∈ F, |f(z)| ≥ M
wheneverz ∈ Ef , thenF is normal.

I. Lahiri gave two examples to show that conditions (i) and (ii) are neces-
sary. Naturally, we can question whethern ≥ k is necessary, first we note the
following example.

Example 1.1.LetD : |z| < 1 andF = {fn}, where

fp(z) =
z3

p
, p = 2, 3, . . . ,
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and n = 2, k = 3, a = 1, b = 0. Thenfp has the zeros of multiplicity 3 and
Efp = {z : z ∈ D and 6z6−p3 = 0}. For anyz ∈ Ef , |fp(z)| =

√
p
6
→∞,

asp →∞. But

|f ]
p(z)| =

∣∣∣∣ 3pz2

p2 + z6

∣∣∣∣ <

∣∣∣∣ 3pz2

p2 − |z|6

∣∣∣∣ <
3p

p2 − 1
<

3

p− 1
≤ 3,

for anyp. By Marty’s criterion, the family{fp} is normal.

Hence we can give some answers. In fact, we can prove the following theo-
rem:

Theorem 1.3. LetF be a family of meromorphic functions in a domainD and
a(6= 0), b be two finite constants. Suppose thatEf = {z : z ∈ D andf (k) −
af−n = b},wherek andn are positive integers,

If for everyf ∈ F

(i) f has the zero of multiplicity at leastk,

(ii) there exists a positive numberM such that for everyf ∈ F , |f(z)| ≥ M
wheneverz ∈ Ef .

ThenF is normal inD so long as

(A) n ≥ 2; or

(B) n = 1 andNk

(
r, 1

f

)
= S(r, f).

Especially, iff(z) is an entire function, we can obtain the complete answer.
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Theorem 1.4.LetF be a family of entire functions in a domainD anda(6= 0), b
be two finite constants. Suppose thatEf = {z : z ∈ D andf (k) − af−n = b},
wherek andn are positive integers,

If for everyf ∈ F

(i) f has no zero of multiplicity less thank,

(ii) there exists a positive numberM such that for everyf ∈ F , |f(z)| ≥ M
wheneverz ∈ Ef , thenF is normal.
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2. Preliminaries
Lemma 2.1. [13] Let f be nonconstant meromorphic in the complex plane,
L[f ] = akf

(k)+ak−1f
(k−1)+· · ·+a0f, wherea0, a1, . . . , ak are small functions,

for a 6= 0,∞, let F = fnL[f ]− a, wheren ≥ 2 is a positive integer. Then

lim sup
r→+∞

N(r, a; F )

T (r, F )
> 0 .

Lemma 2.2. Let f be nonconstant meromorphic in the complex plane,L[f ] is
given as in Lemma2.1andF = fL[f ]− a. Then

T (r, f) ≤
(

6 +
6

k

) (
N

(
r,

1

F

)
+ Nk)

(
r,

1

f

))
+ S(r, f).

Proof. For the simplification, we prove the case ofL[f ] = f (k), the general case
is similar. Without loss of generality, leta = 1, then

(2.1) F = fL[f ]− 1.

By differentiating the equation (2.1), we get

(2.2) fβ = −F ′

F
,

where

(2.3) β =
f ′

f
f (k) + f (k+1) − f (k)F

′

F
.
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ObviouslyF 6≡ constant,β 6≡ 0. By the Clunie Lemma ([1] or [4])

(2.4) m(r, β) = S(r, f).

Let z0 be a pole off of orderq. Thenz0 is the simple pole ofF
′

F
, and the poles

of f of orderq(≥ 2) are the zeros ofβ of orderq−1 from (2.2), the simple pole
of f is the non-zero analytic point ofβ, therefore

(2.5) N(2(r, f) ≤ N

(
r,

1

β

)
+ N

(
r,

1

β

)
≤ 2N

(
r,

1

β

)
.

By (2.3), we know the zeros off of orderq > k are not the poles ofβ. From
(2.3), we get

(2.6) N(r, β) ≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).

Then, by (2.4) and (2.6), we have

(2.7) T (r, β) ≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).

Next with (2.5) and (2.7), we obtain

(2.8) N(2(r, f) ≤ 2N

(
r,

1

F

)
+ 2Nk)

(
r,

1

f

)
+ S(r, f).
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Noting by (2.2), (2.7) and the first fundamental theorem, we obtain

m(r, f) ≤ m

(
r,

1

β

)
+ m

(
r,

F ′

F

)
(2.9)

≤ T (r, β)−N

(
r,

1

β

)
+ S(r, f)

= N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).

If f only have finitely many simple poles, we get Lemma2.2 by (2.5) and
(2.9).

Next we discuss thatf have infinity simple poles. Letz0 be any simple pole
of f . Thenz0 is the non-zero analytic point ofβ. In a neighborhood ofz0, we
have

(2.10) f(z) =
d1(z0)

z − z0

+ d0(z0) + O(z − z0)

and

(2.11) β(z) = β(z0) + β′(z0)(z − z0) + O((z − z0)
2),

whered1(z0) 6= 0, β(z0) 6= 0. By differentiating (2.10), we get

(2.12) f (j)(z) = (−1)j j!d1(z0)

(z − z0)j+1
+ · · · , j = 1, 2, . . . , k.

with (2.3) and (2.5) we have

(2.13) fβ = f ′f (k) + ff (k+1) − f 2f (k)β.
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Substituting (2.10)-(2.12) into (2.13), we obtain that the coefficients have the
forms

(2.14) d1(z0) =
k + 2

β(z0)
,

(2.15) d0(z0) = −(k + 2)2

k + 3

β′(z0)

(β(z0))2
,

so that

(2.16)
d0(z0)

d1(z0)
= −k + 2

k + 3

β′(z0)

β(z0)
.

Through the calculating from (2.10) and (2.12), we get

(2.17)
f ′(z)

f(z)
= − 1

z − z0

+
d0(z0)

d1(z0)
+ O(z − z0),

(2.18)
F ′(z)

F (z)
= − k + 2

z − z0

+
d0(z0)

d1(z0)
+ O(z − z0).

Let

(2.19) h(z) =
F ′(z)

F (z)
− (k + 2)

f ′(z)

f(z)
− (k + 1)(k + 2)

(k + 3)

β′(z)

β(z)
.
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Then, by (2.17)-(2.19), clearly,h(z0) = 0. Therefore the simple pole off is the
zero ofh(z). From (2.19), we have

(2.20) m(r, h) = S(r, f).

If f only has finitely many zeros. By (2.3) and the lemma of logarithmic
derivatives, we get

m(

(
r,

1

f

)
≤ m

(
r,

1

β

(
f ′

f

f (k)

f
+

f (k+1)

f
− f (k)

f

F ′

F

))
≤ m

(
r,

1

β

)
+ S(r, f).

It follows by (2.4) and (2.5) that

m

(
r,

1

f

)
≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).

Using Nevanlinna’s first fundamental theorem andf only has finitely many
zeros, we obtain

T (r, f) = T

(
r,

1

f

)
+ O(1)

= m

(
r,

1

f

)
+ S(r, f)

≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).
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Hence the conclusion of Lemma2.2holds.
If f only has infinitely many zeros. We assert thath(z) 6≡ 0. Otherwise

h(z) ≡ 0, then

F ′

F
= (k + 2)

f ′

f
+

(k + 1)(k + 2)

(k + 3)

β′(z0)

β(z0)
.

By integrating, we have

(2.21) F (k+3) = cf (k+2)(k+3)β(k+1)(k+2),

wherec 6= 0 is a constant. Any zeros off of orderq are not the zeros and poles
of F by (2.1), and any zeros off must be the poles ofβ by (2.21). Suppose that
q > k, (otherwise, the conclusion of Lemma2.2holds by above) it contradicts
(2.6), henceh(z) 6≡ 0.

Sinceh(z) 6≡ 0, and the simple pole off is the zeros ofh, we know the poles
of h(z) occur only at the zeros ofF , the zeros off , the multiple poles off , the
zeros and poles ofβ, all are the simple pole ofh(z). At the same time, we note
F ′ = f ′f (k) + ff (k+1), hence the zeros off of the order ofq(≥ k + 2) at least
are the zeros ofF ′ of 2q − (k + 1), and also at least are the zeros ofβ of order
q − (k + 1) by (2.2), hence,

N (k+2

(
r,

1

f

)
≤ 1

k + 2
N(k+2

(
r,

1

f

)
≤ 1

k + 2

(
N

(
r,

1

β

)
+ (k + 1)N

(
r,

1

β

))
≤ N

(
r,

1

β

)
.
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It follows from (2.8),(2.12) and (2.19), we have

N(r, h)(2.22)

≤ N

(
r,

1

F

)
+ Nk+1)

(
r,

1

f

)
+ N(r, β) + N

(
r,

1

β

)
≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ Nk+1

(
r,

1

f

)
+ 2T (r, β) + S(r, f)

≤ 3

(
N

(
r,

1

F

)
+ Nk)

(
r,

1

f

))
+ Nk+1

(
r,

1

f

)
+ S(r, f).

Using (2.20), we get

N1)(r, f)(2.23)

≤ N

(
r,

1

h

)
≤ N(r, h) + S(r, f)

≤ 3

(
N

(
r,

1

F

)
+ Nk)

(
r,

1

f

))
+ Nk+1

(
r,

1

f

)
+ S(r, f).

Note

Nk+1

(
r,

1

f

)
=

1

k + 1
Nk+1

(
r,

1

f

)
≤ 1

k + 1
T (r, f) + S(r, f).

By (2.14),(2.16) and (2.23), we deduce

T (r, f) ≤
(

6 +
6

k

) (
N

(
r,

1

F

)
+ Nk)

(
r,

1

f

))
+ S(r, f).
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Lemma 2.3.Letf be a nonconstant meromorphic function in the complex plane
such that the zeros off(z) are of multiplicity at least≥ k anda(6= 0) be a finite
constant. Then

(i) If n ≥ 2, f (k) − af−n must have some zero, wherek andn are positive
integers.

(ii) If n = 1, andNk

(
r, 1

f

)
= S(r, f), f (k) − af−n must have some zero,

wherek is a positive integer.

Proof. First we assume thatn ≥ 2, by Lemma2.1, we knowfnf (k) − a must
have some zero. Since a zero offnf (k) − a is a zero off (k) − af−n, then
f (k) − af−n must have some zero.

If n = 1, the zeros off(z) are of multiplicity at least≥ k, soNk−1)

(
r, 1

f

)
=

S(r, f). With the condition ofNk

(
r, 1

f

)
= S(r, f), we haveNk)

(
r, 1

f

)
=

S(r, f). By Lemma2.2, we knowff (k) − a must have some zero. As the
preceding paragraph a zero offf (k) − a is a zero off (k) − af−1, the lemma is
proved.

Lemma 2.4 ([13]). Let f(z) be a transcendental meromorphic function in the
complex plane, anda 6= 0 be a constant. Ifn ≥ k + 3, thenf (k)− afn assumes
zeros infinitely often.

Remark 1. In fact, E. Mues’s [7, Theorem 1(b)] gave a counterexample to show
thatf ′ − f 4 = c has no solution. We knowf (k) − afn cannot assume non-zero
values for any positive integern, k andn = k + 3. Hence Theorem1.2may be
best when we drop the condition (ii) in TheoremA.
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Lemma 2.5. Letf be a meromorphic function in the complex plane, anda 6= 0
be a constant. Ifn ≥ k + 3, andf (k) − afn 6= 0, thenf ≡ constant.

Proof. By Lemma2.4, we knowf(z) is not a transcendental meromorphic func-
tion. If f(z) is a rational function. Letf(z) = p(z)/q(z), wherep(z), q(z) are
two co-prime polynomials withdeg p(z) = p, deg q(z) = q.

Thenf (k) =
(

p(z)
q(z)

)(k)

= pk(z)
qk(z)

, wherepk(z), qk(z) are two co-prime polyno-

mials, it is easily seen by induction thatdeg pk(z) = pk = p, deg qk(z) = qk =

q + k, andfn(z) = pn(z)
qn(z)

, wheredeg pn(z) = pn, deg q(z) = qn. Since

f (k) − afn =
pk(z)

qk(z)
− a

pn(z)

qn(z)
=

pk(z)qn(z)− aqk(z)pn(z)

qk(z)qn(z)
,

and the degree of the termpk(z)qn(z)−aqk(z)pn(z) is max{p+nq, q+k+np}.
If p + nq = q + k + np, we have

n− 1 =
k

q − p
≥ k + 2.

It is impossible. Hencepk(z)qn(z) − aqk(z)pn(z) is a polynomial with degree
= max{pk + nq, qk + np} > 0, Obviously,f (k) − afn can assume zeros. It is a
contradiction. Thus we havef ≡ constant.

Lemma 2.6. Let f be meromorphic in the complex plane, anda 6= 0 be a
constant. For any positive integern, k, satisfyn ≥ k + 3. If f (k) − afn ≡ 0,
thenf ≡ is the constant.
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Proof. If f is not the constant, by the condition we knowf is an integer func-
tion. Otherwise, ifz0 is the pole ofp(≥ 1) order of f , thennp = p + k

contradicts withn ≥ k + 3. With the identityfn ≡ −af (k), or (f)n−1 ≡ 1
a

f (k)

f
,

we can get

(n− 1)T (r, f) = (n− 1)m(r, f)

≤ log+ 1

|a|
+ m

(
r,

f (k)

f

)
= S(r, f), if r →∞

andr /∈ E with E being a set ofr values of finite linear measure. It is impossi-
ble. This proves the lemma.

Lemma 2.7 ([9]). LetF be a family of meromorphic functions on the unit disc
4 such that all zeros of functions inF have multiplicity at leastk. If F is not
normal at a pointz0, then for0 ≤ α < k, there exist a sequence of functions
fk ∈ F , a sequence of complex numberszk → z0 and a sequence of positive
numbersρk → 0, such that

ρ−α
k gk(zk + ρkξ) → g(ξ)

spherically uniformly on compact subsets ofC, whereg is a nonconstant mero-
morphic function. Moreover,g is of order at most two, andg has only zeros of
multiplicity at leastk.

Lemma 2.8 ([2]). Let f be a transcendental entire function all of whose zeros
have multiplicity at leastk, and letn be a positive integer. Thenfnf (k) takes
on each nonzero valuea ∈ C infinitely often.
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Lemma 2.9. Letf be a polynomial all of whose zeros have multiplicity at least
k, and letn be a positive integer. Thenfnf (k) can assume each nonzero value
a ∈ C.

The proof is trivial, we omit it here.
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3. Proof of the Theorems
Proof of Theorem1.2. We may assume thatD = 4. Suppose thatF is not
normal atz0 ∈ 4. Then, takingα = k

n−1
, where0 < α < k, and applying

Lemma2.7 to g = {1/f : f ∈ F}, we can findfj ∈ F (j = 1, 2, . . . ),
zj → z0 andρj(> 0) → 0 such thatgj(ζ) = ρα

j fj(zj + ρjζ), converges locally
uniformly with respect to the spherical metric tog(ζ), whereg is a nonconstant
meromorphic function onC. By Lemma2.5, there existsζ0 ∈ {|z| ≤ R} such
that

(3.1) g(ζ0)
n − a(g(k)(ζ0)) = 0.

From the above equality,g(ζ0) 6= ∞. Through the calculation, we have

gn
j (ζ)− a(g

(k)
j (ζ)) = ρ

nk
n−1

j (fn
j (ζ)− a(f

(k)
j (ζ))) 6= 0.

On the other hand,

gn
j (ζ)− a(g

(k)
j (ζ)) → gn(ζ)− a(g(k)(ζ)).

By Hurwitz’s theorem, we knowgn(ζ) − a(g(k)(ζ)) is either identity zero or
identity non-zero. From (3.1), we knowgn(ζ)−a(g(k)(ζ)) ≡ 0, then by Lemma
2.6yieldsg(ζ) is a constant, it is a contradiction. Hence we complete the proof
of Theorem1.2.

Proof of Theorem1.3. Let α = k
n−1

< k. If possible suppose thatF is not
normal atz0 ∈ D. Then by Lemma2.7, there exist a sequence of functionsfj ∈
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F (j = 1, 2, . . . ), a sequence of complex numberszj → z0 andρj(> 0) → 0,
such that

gj(ζ) = ρ−α
j fj(zj + ρjζ)

converges spherically and locally uniformly to a nonconstant meromorphic func-
tion g(ζ) in C. Also the zeros ofg(z) are of multiplicity at least≥ k. So
g(k) 6≡ 0. By the condition of Theorem1.3and Lemma2.3, we get

(3.2) g(k)(ζ0) +
a

g(ζ0)n
= 0

for someζ0 ∈ C. Clearlyζ0 is neither a zero nor a pole ofg. So in some neigh-
borhood ofζ0, gj(ζ) converges uniformly tog(ζ). Now in some neighborhood
of ζ0 we see thatg(k)(ζ) + ag(ζ)−n is the uniform limit of

g(k)(ζ0) + ag(ζ0)
−n − ρnα

j b = ρ
nk

1+n

j

{
f

(k)
j (zj + ρjζj) + af−n

j (zj + ρjζj)− b
}

.

By (3.2) and Hurwitz’s theorem, there exists a sequenceζj → ζ0 such that for
all large values ofj

f
(k)
j (zj + ρjζj) + af−n

j (zj + ρjζj) = b.

Therefore for all large values ofj, it follows from the given condition|gj(ζj)| ≥
M/ρα

j and as in the last part of the proof of Theorem 1.1 in [6], we arrive at a
contradiction. This proves the theorem.

Proof of Theorem1.4. In a similar manner to the proof of Theorem1.3, we can
prove the theorem by Lemma2.7, 2.8and Lemma2.9.
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