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ABSTRACT. We estimate thé, norm of then x n matrix, whosej entry is(s, j)*/[i, 1", where
r,s € R, (4, 7) is the greatest common divisor b&nd; and[i, j] is the least common multiple
of i andj.
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1. INTRODUCTION

Let S = {x1,z2,...,2,} be a set of distinct positive integers, and febe an arithmetical
function. Let(S); denote the: x n matrix havingf evaluated at the greatest common divisor
(w;, z;) of z; andx; as itsij entry, that is(S); = (f((z;,z;))). Analogously, lefS]; denote
then x n matrix havingf evaluated at the least common multipte, x;| of z; andz; as itsij
entry, that is[S]; = (f([z;,z;])). The matricegS), and[S]; are referred to as the GCD and
LCM matrix on.S associated witlf, respectively. H. J. S. Smithl[7] calculatéet(S) ; whenS
is a factor-closed set anitt|S] in a more special case. Since Smith, a large number of results
on GCD and LCM matrices have been presented in the literature. For general accounts see e.g.
[3,14,5].

Norms of GCD matrices have not been studied much in the literature. Some results are
obtained in[[2, 8,9, 10, 11]. In this paper we provide further results.

Letp € Z*. The(, norm of ann x n matrix M is defined as

I, - (ZZ |mij|p) :

i=1 j=1

Letr, s € R. Let A denote the: x n matrix, whose, j entry is given as

(i,5)°
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where(i, j) is the greatest common divisor ©&nd;j and|i, j] is the least common multiple of
1andj. Fors = 1,r = 0 ands = 0, = —1, respectively, the matrixl is the GCD and the
LCM matrix on{1,2,...,n}. Fors = 1,7 = 1 the matrixA is the Hadamard product of the
GCD matrix and the reciprocal LCM matrix dri, 2, ..., n}. In this paper we estimate tlfg
norm of the matrixA given in (1.1) for all, s € R andp € Z*.

2. PRELIMINARIES

In this section we review the basic results on arithmetical functions needed in this paper. For
more comprehensive treatments on arithmetical functions and their estimates we refer to [1] and
[6].

The Dirichlet convolutionf x ¢ of two arithmetical functiong andg is defined as
(f+9)(n) =>_ f(d)g(n/d).
dn

Let N*, u € R, denote the arithmetical function defined/é%(n) = n* for all n € Z*, and let
E denote the arithmetical function defined/dé») = 1 for all n € Z*. The divisor function
ou, U € R, is defined as

(2.1) ou(n) =) d" = (N"xE)(n).

dn
The Jordan totient functiodi,(n), k € Z*, is defined as the number bftuplesay, as, . .., ax
(mod n) such that the greatest common divisora@fas, ..., a; andn is 1. By convention,

Jr(1) = 1. The Mdbius function: is the inverse ofs under the Dirichlet convolution. It is well
known thatJ, = N* % . This suggests we defing, = N“  u for all u € R. Sincep is the
inverse ofE’ under the Dirichlet convolution, we have

(2.2) n* =" Ju(d)
din

It is easy to see that
Ju(n)=n" (1 —p").
pln

We thus have
(2.3) 0 < Jy(n) <n"foru>0.

Lemma 2.1.
(@) If s > —1,then} , _ k* = O(n°*).
(b) Zkgn k= O(logn).
(c) If s < —1,then}_, k% = O(1).
Lemmd 2.1 follows from the well-known asymptotic formulas f6r seel[1, Chapter 3].

Lemma 2.2. Suppose that > 1.
@) Ifu—t>—1,theny, . 2k — O(pu-t+1),
() Ifu—t=—1,theny,_, 2H = O(logn).
(b) Ifu—t < —1,theny,_, 28 — O(1).
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Proof. For all w andt we have

Oy k _ " u—t — U— —
(2.4) k(t):Zk;tZd:Zd =Y dt Y g
k<n k<n dlk dg<n d<n g<n/d
Now, lett > 1. Then, by Lemma 2]1(c),
0u<k) u—t
= O(1)> d'.
k<n d<n

If w—t > —1, then on the basis of Lemma P.1(a)
Z Ju(k> _ O<1)O<nu7t+1>.

k<n Kt
If w — ¢t = —1, then on the basis of Lemrma 2.1(b)
o.(k
]{:(t ) = 0(1)O(logn).
k<n
If w —t < —1, then on the basis of Lemrha 2.1(c)
o.(k
];t ) = 0(1)O(1).
k<n
Lemma 2.3.

- O(n"logn).

(b) If u =0, theny", ., 2& = Of
() If u <0, theny”, ., % = O(

Proof. According to [2.4) witht = 1 we have

ou(k u—1 -1
N DI

(@) If u > 0, theny, _, 28

log®n).

logn).

k<n d<n q<n/d
Thus on the basis of Lemma 2.1(b)
o, (k y
k’(t ) = O(logn)Zd L
k<n d<n
If « > 0, then on the basis of Lemma 2.1(a)
ou(k v
k;(t ) = O(logn)O(n").
k<n

If w = 0, then on the basis of Lemma 2.1(b)

Z J“k_(tk) = O(logn)O(logn).

k<n
If « < 0, then on the basis of Lemrpa 2.1(c)

ou(k)
Lt

= O(logn)O(1).

k<n
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Lemma 2.4. Suppose that < 1.
(@) If u > 0, theny>, _, 28 = O(ni+ut).
(b) If u =0, theny", ., 2% = O(n'~*logn).

(©) If u <0, theny, ., 8 = O(n').

Proof. According to [2.4) we have

k) t
k(t _Zdu Zq

k<n d<n q<n/d

Thus on the basis of Lemma P.1(a)

Uu( 1 t Ei:du 1

k<n d<n

If u > 0, then on the basis of Lemma 2.1(a)
ou(k)

kt
k<n

If u = 0, then on the basis of Lemma 2.1(b)
o,k B
Z % = O0(n*")O(logn).

k<n
If « < 0, then on the basis of Lemrpa 2.1(c)
ou(k)

kt

k<n

= O0(n'"HOo(n").

=0(n'Ho(1).

3. RESULTS

In Theorems 311, 3|2 and 3.3 we estimate thaorm of the matrixA given in (1.1). Their
proofs are based on the formulas in Secfipn 2 and the following observations.
Since(i, j)[4, j| = ij, we have for alp, r, s
l ] r+$p

(3.1) Al =3 Z oy B er]rp

i=1 j=1 =1 j=1

From (Z2.2) we obtain

||A||p—z rpz w5 2 Jesanl

j= 1 d|(i,7)
—~ 1
SDIEE DY)y
dli Jdlal
[n/d)
d) 1
T+S
(3.2) - Z I
dli 7=1

Theorem 3.1. Suppose that > 1/p.
(1) If s > — 1/p, then|| A[l, = O(n>—"+17).
(2) If s =1 — 1/p, then||A||, = O(log"/? n).
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(3) If s <r—1/p, then||A4|, = O(1).
Proof. Letr > 1/p orrp > 1. Then, by[(3.R) and Lemn@ 1(c)

J’I‘ $)p
Al =0mS TPZ’ £

=1

Assume that + s > 0. Then, by|[(2.B) and (2/1),
o - O-Sp(i)
4l = 0y 722,
=1
Case l.Lets >r —1/porsp—rp > —1. Then, by Lemma 2|2(a),
A} = O(1)O(nP~""*1) = O(n =),
Case 2.Lets =r — 1/porsp —rp = —1. Then, by Lemma 2]2(b),
||A||£ = O(1)O(logn) = O(logn).
Case 3.Lets <r —1/porsp—rp < —1. Then, by Lemma 2]2(c),
[A]l; = 0(1)O(1) = O(1).

Now, assume that+ s < 0. Sincer > 1/p, we haves < r — 1/p and thus we consider Case
3. Sincer + s < 0, then(i, )+*)» < 1 and thus on the basis ¢f (8.1) we have

n n
lAll <> i i
i=1 j=1

Sincerp > 1, we obtain from Lemmp 2.1(c)
[All; = 0(1)0(1) = O(1).

Theorem 3.2. Suppose that = 1/p.
(1) If s > 0, then||Al|, = O(n*log*? n).
(2) If s =0, then||Al|, = O(log*? n).
(3) If s < 0, then||Al|, = O(log?? n).

Proof. From (3.2) withrp = 1 we obtain
n/d

1AII5 = Z Z sp“ Z—-

i=1 dli

By Lemmg 2.1(b),
41 = Oflogn) Z Z Vapra(@]
Assume thatp + 1 > 0. Then, by(2.3) and-,
_ "~ (1)
41 = Ofogn) 3 22

Case 4.Assume that > 0 or sp > 0. Then, by Lemma 2|3(a),
|A]2 = O(log n)O(n* log n) = O(n* log?n).
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Case 5.Assume that = 0 or sp = 0. Then, by Lemma 2|3(b),
|A]Z = O(logn)O(log? n) = O(log” n).
Case 6.Assume that < 0 or sp < 0. Then, by Lemma 2]3(c),
| Al = O(log n)O(log n) = O(log?n).

Now, assume thatp + 1 < 0. Thens < 0 and thus we consider Cdse 6. Singe+ 1 < 0
andrp = 1, then(i, j)U"+*” < 1 and thus on the basis ¢f (8.1) we have

n n
lAll <> i i
i=1 j=1

Sincerp = 1, we obtain from Lemmpa 2. 1(b)
|Ally = O(log n)O(log n) = O(log®n).

Theorem 3.3. Suppose that < 1/p.
(1) If s > —r + 1/p, then||Al|, = O(n*~"+1/7).
2) If s = —r 4 1/p, then||A||, = O(n~2+2/P1log!/? n).
(3) If s < —r + 1/p, then||Al|, = O(n=2+%/7),

Proof. Letr < 1/porrp < 1. By (3.2) and Lemmfa 21(a),
oy X L [Jerep(@)]
Il = 00 3 2 ST
1

i= dli

Assume that + s > 0. Then, by|[(2.B) and (2/1),

. O(rts)p—1(1)
Il = On'~r7) 3 =,

=1 e
Case 7.Lets > —r+1/por(r + s)p — 1 > 0. Then, by Lemma 2]4(a),
||A||§ — O(nl—rp)O(n1+(?“+8)p—1—rp> _ O(n1+5p—7“p)‘
Case 8.Lets = —r +1/por(r+ s)p — 1 = 0. Then, by Lemma 2]4(b),
AP = O(n'~"")O(n*"Plogn) = O(n* *"logn).
Case 9.Lets < —r +1/por(r+ s)p—1 < 0. Then, by Lemma 2]4(c),
|42 = O(m'=")O(n* ") = O(n>~>"),

Now, assume that + s < 0. Thens < —r + 1/p and thus we consider Calsg 9. Since
r+s < 0,then(i, j)*+9? < 1 and thus on the basis ¢f (3.1) we have

n n
lAllp <D iy i
i=1 j=1

Sincerp < 1, we obtain from Lemmp 2. 1(a)
JAll; = O('=)0(M!=) = O*~7).

Corollary 3.4.
@) ||(i,9)|l, = O(n'*/?) whenp > 2.
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(b) [|(#, )], = O(n*logn) whenp = 1.
(©) |I[i, 4lll, = O(n**2/7) whenp > 1.

(d) [1(i.5)/ i, jll, = O(n'/?) whenp > 2.
©) |(i,9)/[4, 5], = O(nlogn) whenp = 1.
of.

(@) Taker =0,s =1
(b) Taker =0,s =1, p = 1in Caség 8 of Theorein 3.3.
1,s=

(c) Taker = —1,s =0, p > 1 in Casg 9 of Theorein 3.3.
(d) Taker = s =1,p > 2in Caség I of Theorein 3.1.
(e) Taker = s =p = 1in Casé 4 of Theorem 3.2.
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