ON THE ℓ_{p} NORM OF GCD AND RELATED MATRICES

PENTTI HAUKKANEN
Department of Mathematics, Statistics and Philosophy, FIN-33014 University of Tampere, Finland mapehau@uta.fi

Received 12 March, 2004; accepted 06 April, 2004
Communicated by J. Sándor

Abstract

We estimate the ℓ_{p} norm of the $n \times n$ matrix, whose $i j$ entry is $(i, j)^{s} /[i, j]^{r}$, where $r, s \in \mathbb{R},(i, j)$ is the greatest common divisor of i and j and $[i, j]$ is the least common multiple of i and j.

Key words and phrases: GCD matrix, LCM matrix, Smith's determinant, ℓ_{p} norm, O-estimate.
2000 Mathematics Subject Classification 11C20; 15A36; 11A25.

1. Introduction

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers, and let f be an arithmetical function. Let $(S)_{f}$ denote the $n \times n$ matrix having f evaluated at the greatest common divisor $\left(x_{i}, x_{j}\right)$ of x_{i} and x_{j} as its $i j$ entry, that is, $(S)_{f}=\left(f\left(\left(x_{i}, x_{j}\right)\right)\right)$. Analogously, let $[S]_{f}$ denote the $n \times n$ matrix having f evaluated at the least common multiple $\left[x_{i}, x_{j}\right]$ of x_{i} and x_{j} as its $i j$ entry, that is, $[S]_{f}=\left(f\left(\left[x_{i}, x_{j}\right]\right)\right)$. The matrices $(S)_{f}$ and $[S]_{f}$ are referred to as the GCD and LCM matrix on S associated with f, respectively. H. J. S. Smith [7] calculated $\operatorname{det}(S)_{f}$ when S is a factor-closed set and $\operatorname{det}[S]_{f}$ in a more special case. Since Smith, a large number of results on GCD and LCM matrices have been presented in the literature. For general accounts see e.g. [3, 4, 5].

Norms of GCD matrices have not been studied much in the literature. Some results are obtained in [2, 8, 9, 10, 11]. In this paper we provide further results.

Let $p \in \mathbb{Z}^{+}$. The ℓ_{p} norm of an $n \times n$ matrix M is defined as

$$
\|M\|_{p}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|m_{i j}\right|^{p}\right)^{\frac{1}{p}}
$$

Let $r, s \in \mathbb{R}$. Let A denote the $n \times n$ matrix, whose i, j entry is given as

$$
\begin{equation*}
a_{i j}=\frac{(i, j)^{s}}{[i, j]^{r}}, \tag{1.1}
\end{equation*}
$$

[^0]where (i, j) is the greatest common divisor of i and j and $[i, j]$ is the least common multiple of i and j. For $s=1, r=0$ and $s=0, r=-1$, respectively, the matrix A is the GCD and the LCM matrix on $\{1,2, \ldots, n\}$. For $s=1, r=1$ the matrix A is the Hadamard product of the GCD matrix and the reciprocal LCM matrix on $\{1,2, \ldots, n\}$. In this paper we estimate the ℓ_{p} norm of the matrix A given in (1.1) for all $r, s \in \mathbb{R}$ and $p \in \mathbb{Z}^{+}$.

2. Preliminaries

In this section we review the basic results on arithmetical functions needed in this paper. For more comprehensive treatments on arithmetical functions and their estimates we refer to [1] and [6].

The Dirichlet convolution $f * g$ of two arithmetical functions f and g is defined as

$$
(f * g)(n)=\sum_{d \mid n} f(d) g(n / d) .
$$

Let $N^{u}, u \in \mathbb{R}$, denote the arithmetical function defined as $N^{u}(n)=n^{u}$ for all $n \in \mathbb{Z}^{+}$, and let E denote the arithmetical function defined as $E(n)=1$ for all $n \in \mathbb{Z}^{+}$. The divisor function $\sigma_{u}, u \in \mathbb{R}$, is defined as

$$
\begin{equation*}
\sigma_{u}(n)=\sum_{d \mid n} d^{u}=\left(N^{u} * E\right)(n) . \tag{2.1}
\end{equation*}
$$

The Jordan totient function $J_{k}(n), k \in \mathbb{Z}^{+}$, is defined as the number of k-tuples $a_{1}, a_{2}, \ldots, a_{k}$ $(\bmod n)$ such that the greatest common divisor of $a_{1}, a_{2}, \ldots, a_{k}$ and n is 1 . By convention, $J_{k}(1)=1$. The Möbius function μ is the inverse of E under the Dirichlet convolution. It is well known that $J_{k}=N^{k} * \mu$. This suggests we define $J_{u}=N^{u} * \mu$ for all $u \in \mathbb{R}$. Since μ is the inverse of E under the Dirichlet convolution, we have

$$
\begin{equation*}
n^{u}=\sum_{d \mid n} J_{u}(d) . \tag{2.2}
\end{equation*}
$$

It is easy to see that

$$
J_{u}(n)=n^{u} \prod_{p \mid n}\left(1-p^{-u}\right)
$$

We thus have

$$
\begin{equation*}
0 \leq J_{u}(n) \leq n^{u} \text { for } u \geq 0 \tag{2.3}
\end{equation*}
$$

Lemma 2.1.
(a) If $s>-1$, then $\sum_{k \leq n} k^{s}=O\left(n^{s+1}\right)$.
(b) $\sum_{k \leq n} k^{-1}=O(\log n)$.
(c) If $s<-1$, then $\sum_{k \leq n} k^{s}=O(1)$.

Lemma 2.1 follows from the well-known asymptotic formulas for n^{s}, see [1, Chapter 3].
Lemma 2.2. Suppose that $t>1$.
(a) If $u-t>-1$, then $\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O\left(n^{u-t+1}\right)$.
(b) If $u-t=-1$, then $\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(\log n)$.
(b) If $u-t<-1$, then $\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(1)$.

Proof. For all u and t we have

$$
\begin{equation*}
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=\sum_{k \leq n} k^{-t} \sum_{d \mid k} d^{u}=\sum_{d q \leq n} d^{u-t} q^{-t}=\sum_{d \leq n} d^{u-t} \sum_{q \leq n / d} q^{-t} . \tag{2.4}
\end{equation*}
$$

Now, let $t>1$. Then, by Lemma 2.1(c),

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(1) \sum_{d \leq n} d^{u-t}
$$

If $u-t>-1$, then on the basis of Lemma 2.1 (a)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(1) O\left(n^{u-t+1}\right) .
$$

If $u-t=-1$, then on the basis of Lemma 2.1] b)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(1) O(\log n)
$$

If $u-t<-1$, then on the basis of Lemma 2.1 (c)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(1) O(1) .
$$

Lemma 2.3.

(a) If $u>0$, then $\sum_{k \leq n} \frac{\sigma_{u}(k)}{k}=O\left(n^{u} \log n\right)$.
(b) If $u=0$, then $\sum_{k \leq n} \frac{\sigma_{u}(k)}{k}=O\left(\log ^{2} n\right)$.
(c) If $u<0$, then $\sum_{k \leq n} \frac{\sigma_{u}(k)}{k}=O(\log n)$.

Proof. According to (2.4) with $t=1$ we have

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k}=\sum_{d \leq n} d^{u-1} \sum_{q \leq n / d} q^{-1} .
$$

Thus on the basis of Lemma 2.1(b)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(\log n) \sum_{d \leq n} d^{u-1}
$$

If $u>0$, then on the basis of Lemma 2.1(a)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(\log n) O\left(n^{u}\right)
$$

If $u=0$, then on the basis of Lemma 2.1(b)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(\log n) O(\log n)
$$

If $u<0$, then on the basis of Lemma 2.1(c)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O(\log n) O(1)
$$

Lemma 2.4. Suppose that $t<1$.
(a) If $u>0$, then $\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O\left(n^{1+u-t}\right)$.
(b) If $u=0$, then $\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O\left(n^{1-t} \log n\right)$.
(c) If $u<0$, then $\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O\left(n^{1-t}\right)$.

Proof. According to (2.4) we have

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=\sum_{d \leq n} d^{u-t} \sum_{q \leq n / d} q^{-t} .
$$

Thus on the basis of Lemma 2.1(a)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O\left(n^{1-t}\right) \sum_{d \leq n} d^{u-1}
$$

If $u>0$, then on the basis of Lemma 2.1(a)

$$
\sum_{k \leq n} \frac{\overline{\sigma_{u}}(k)}{k^{t}}=O\left(n^{1-t}\right) O\left(n^{u}\right)
$$

If $u=0$, then on the basis of Lemma 2.1(b)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O\left(n^{1-t}\right) O(\log n)
$$

If $u<0$, then on the basis of Lemma 2.1(c)

$$
\sum_{k \leq n} \frac{\sigma_{u}(k)}{k^{t}}=O\left(n^{1-t}\right) O(1)
$$

3. Results

In Theorems 3.1, 3.2 and 3.3 we estimate the ℓ_{p} norm of the matrix A given in (1.1). Their proofs are based on the formulas in Section 2 and the following observations.

Since $(i, j)[i, j]=i j$, we have for all p, r, s

$$
\begin{equation*}
\|A\|_{p}^{p}=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(i, j)^{s p}}{[i, j]^{r p}}=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(i, j)^{(r+s) p}}{i^{r p} j^{r p}} \tag{3.1}
\end{equation*}
$$

From (2.2) we obtain

$$
\begin{align*}
\|A\|_{p}^{p} & =\sum_{i=1}^{n} \frac{1}{i^{r p}} \sum_{j=1}^{n} \frac{1}{j^{r p}} \sum_{d \mid(i, j)} J_{(r+s) p}(d) \\
& =\sum_{i=1}^{n} \frac{1}{i^{r p}} \sum_{d \mid i} J_{(r+s) p}(d) \sum_{\substack{j=1 \\
d \mid j}}^{n} \frac{1}{j^{r p}} \\
& =\sum_{i=1}^{n} \frac{1}{i^{r p}} \sum_{d \mid i} \frac{J_{(r+s) p}(d)}{d^{r p}} \sum_{j=1}^{[n / d]} \frac{1}{j^{r p}} . \tag{3.2}
\end{align*}
$$

Theorem 3.1. Suppose that $r>1 / p$.
(1) If $s>r-1 / p$, then $\|A\|_{p}=O\left(n^{s-r+1 / p}\right)$.
(2) If $s=r-1 / p$, then $\|A\|_{p}=O\left(\log ^{1 / p} n\right)$.
(3) If $s<r-1 / p$, then $\|A\|_{p}=O(1)$.

Proof. Let $r>1 / p$ or $r p>1$. Then, by (3.2) and Lemma 2.1(c),

$$
\|A\|_{p}^{p}=O(1) \sum_{i=1}^{n} \frac{1}{i^{r p}} \sum_{d \mid i} \frac{\left|J_{(r+s) p}(d)\right|}{d^{r p}} .
$$

Assume that $r+s \geq 0$. Then, by (2.3) and (2.1),

$$
\|A\|_{p}^{p}=O(1) \sum_{i=1}^{n} \frac{\sigma_{s p}(i)}{i^{r p}} .
$$

Case 1. Let $s>r-1 / p$ or $s p-r p>-1$. Then, by Lemma 2.2(a),

$$
\|A\|_{p}^{p}=O(1) O\left(n^{s p-r p+1}\right)=O\left(n^{s p-r p+1}\right) .
$$

Case 2. Let $s=r-1 / p$ or $s p-r p=-1$. Then, by Lemma $2.2(b)$,

$$
\|A\|_{p}^{p}=O(1) O(\log n)=O(\log n) .
$$

Case 3. Let $s<r-1 / p$ or $s p-r p<-1$. Then, by Lemma 2.2(c),

$$
\|A\|_{p}^{p}=O(1) O(1)=O(1) .
$$

Now, assume that $r+s<0$. Since $r>1 / p$, we have $s<r-1 / p$ and thus we consider Case 3. Since $r+s<0$, then $(i, j)^{(r+s) p} \leq 1$ and thus on the basis of (3.1) we have

$$
\|A\|_{p}^{p} \leq \sum_{i=1}^{n} i^{-r p} \sum_{j=1}^{n} j^{-r p} .
$$

Since $r p>1$, we obtain from Lemma 2.1(c)

$$
\|A\|_{p}^{p}=O(1) O(1)=O(1) .
$$

Theorem 3.2. Suppose that $r=1 / p$.
(1) If $s>0$, then $\|A\|_{p}=O\left(n^{s} \log ^{2 / p} n\right)$.
(2) If $s=0$, then $\|A\|_{p}=O\left(\log ^{3 / p} n\right)$.
(3) If $s<0$, then $\|A\|_{p}=O\left(\log ^{2 / p} n\right)$.

Proof. From (3.2) with $r p=1$ we obtain

$$
\|A\|_{p}^{p}=\sum_{i=1}^{n} \frac{1}{i} \sum_{d \mid i} \frac{J_{s p+1}(d)}{d} \sum_{j=1}^{[n / d]} \frac{1}{j} .
$$

By Lemma 2.1 (b),

$$
\|A\|_{p}^{p}=O(\log n) \sum_{i=1}^{n} \frac{1}{i} \sum_{d \mid i} \frac{\left|J_{s p+1}(d)\right|}{d} .
$$

Assume that $s p+1 \geq 0$. Then, by (2.3) and (2.1),

$$
\|A\|_{p}^{p}=O(\log n) \sum_{i=1}^{n} \frac{\sigma_{s p}(i)}{i} .
$$

Case 4. Assume that $s>0$ or $s p>0$. Then, by Lemma 2.3(a),

$$
\|A\|_{p}^{p}=O(\log n) O\left(n^{s p} \log n\right)=O\left(n^{s p} \log ^{2} n\right)
$$

Case 5. Assume that $s=0$ or $s p=0$. Then, by Lemma 2.3.b),

$$
\|A\|_{p}^{p}=O(\log n) O\left(\log ^{2} n\right)=O\left(\log ^{3} n\right)
$$

Case 6. Assume that $s<0$ or $s p<0$. Then, by Lemma 2.3(c),

$$
\|A\|_{p}^{p}=O(\log n) O(\log n)=O\left(\log ^{2} n\right)
$$

Now, assume that $s p+1<0$. Then $s<0$ and thus we consider Case 6. Since $s p+1<0$ and $r p=1$, then $(i, j)^{(r+s) p} \leq 1$ and thus on the basis of 3.1) we have

$$
\|A\|_{p}^{p} \leq \sum_{i=1}^{n} i^{-r p} \sum_{j=1}^{n} j^{-r p} .
$$

Since $r p=1$, we obtain from Lemma 2.1 (b)

$$
\|A\|_{p}^{p}=O\left(\overline{\log n)} O(\log n)=O\left(\log ^{2} n\right)\right.
$$

Theorem 3.3. Suppose that $r<1 / p$.
(1) If $s>-r+1 / p$, then $\|A\|_{p}=O\left(n^{s-r+1 / p}\right)$.
(2) If $s=-r+1 / p$, then $\|A\|_{p}=O\left(n^{-2 r+2 / p} \log ^{1 / p} n\right)$.
(3) If $s<-r+1 / p$, then $\|A\|_{p}=O\left(n^{-2 r+2 / p}\right)$.

Proof. Let $r<1 / p$ or $r p<1$. By (3.2) and Lemma 2.1(a),

$$
\|A\|_{p}^{p}=O\left(n^{1-r p}\right) \sum_{i=1}^{n} \frac{1}{i^{r p}} \sum_{d \mid i} \frac{\left|J_{(r+s) p}(d)\right|}{d} .
$$

Assume that $r+s \geq 0$. Then, by (2.3) and (2.1),

$$
\|A\|_{p}^{p}=O\left(n^{1-r p}\right) \sum_{i=1}^{n} \frac{\sigma_{(r+s) p-1}(i)}{i^{r p}} .
$$

Case 7. Let $s>-r+1 / p$ or $(r+s) p-1>0$. Then, by Lemma 2.4(a),

$$
\|A\|_{p}^{p}=O\left(n^{1-r p}\right) O\left(n^{1+(r+s) p-1-r p}\right)=O\left(n^{1+s p-r p}\right) .
$$

Case 8. Let $s=-r+1 / p$ or $(r+s) p-1=0$. Then, by Lemma2.4 \mathbf{b}),

$$
\|A\|_{p}^{p}=O\left(n^{1-r p}\right) O\left(n^{1-r p} \log n\right)=O\left(n^{2-2 r p} \log n\right)
$$

Case 9. Let $s<-r+1 / p$ or $(r+s) p-1<0$. Then, by Lemma 2.4(c),

$$
\|A\|_{p}^{p}=O\left(n^{1-r p}\right) O\left(n^{1-r p}\right)=O\left(n^{2-2 r p}\right)
$$

Now, assume that $r+s<0$. Then $s<-r+1 / p$ and thus we consider Case 9 . Since $r+s<0$, then $(i, j)^{(r+s) p} \leq 1$ and thus on the basis of (3.1) we have

$$
\|A\|_{p}^{p} \leq \sum_{i=1}^{n} i^{-r p} \sum_{j=1}^{n} j^{-r p}
$$

Since $r p<1$, we obtain from Lemma 2.1 (a)

$$
\|A\|_{p}^{p}=O\left(n^{1-r p}\right) O\left(n^{1-r p}\right)=O\left(n^{2-2 r p}\right)
$$

Corollary 3.4.

(a) $\|(i, j)\|_{p}=O\left(n^{1+1 / p}\right)$ when $p \geq 2$.
(b) $\|(i, j)\|_{p}=O\left(n^{2} \log n\right)$ when $p=1$.
(c) $\|[i, j]\|_{p}=O\left(n^{2+2 / p}\right)$ when $p \geq 1$.
(d) $\|(i, j) /[i, j]\|_{p}=O\left(n^{1 / p}\right)$ when $p \geq 2$.
(e) $\|(i, j) /[i, j]\|_{p}=O\left(n \log ^{2} n\right)$ when $p=1$.

Proof.

(a) Take $r=0, s=1, p \geq 2$ in Case 7 of Theorem 3.3
(b) Take $r=0, s=1, p=1$ in Case 8 of Theorem 3.3
(c) Take $r=-1, s=0, p \geq 1$ in Case 9 of Theorem 3.3
(d) Take $r=s=1, p \geq 2$ in Case 1 of Theorem 3.1.
(e) Take $r=s=p=1$ in Case 4 of Theorem 3.2.

References

[1] T.M. APOSTOL, Introduction to Analytic Number Theory, UTM, Springer-Verlag, New York, 1976.
[2] D. BOZKURT AND S. SOLAK, On the norms of GCD matrices, Math. Comput. Appl., 7(3) (2002), 205-210.
[3] P. HAUKKANEN AND J. SILLANPÄÄÄ, Some analogues of Smith's determinant, Linear and Multilinear Algebra, 41 (1996), 233-244.
[4] P. HAUKKANEN, J. WANG and J. SILLANPÄÄÄ, On Smith's determinant, Linear Algebra Appl., 258 (1997), 251-269.
[5] I. KORKEE AND P. HAUKKANEN, On meet and join matrices associated with incidence functions, Linear Algebra Appl., 372 (2003), 127-153.
[6] D.S. MITRINOVIĆ, J. SÁNDOR AND B. CRSTICI, Handbook of Number Theory, Kluwer Academic Publishers, MIA Vol. 351, 1996.
[7] H.J.S. SMITH, On the value of a certain arithmetical determinant, Proc. London Math. Soc., 7 (1875/76), 208-212.
[8] S. SOLAK, R. TÜRKMEN And D. BOZKURT, On GCD, LCM and Hilbert matrices and their applications, Appl. Math. Comput., 146(2-3) (2003), 595-600.
[9] S. SOLAK, R. TÜRKMEN AND D. BOZKURT, On the norms of GCD, Toeplitz and Hankel matrices related to Fibonacci numbers, Int. Math. J., 3(2) (2003), 195-200.
[10] D. TAŞCI, The bounds for Perron roots of GCD, GMM, and AMM matrices, Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat., 46(1-2) (1997), 165-171.
[11] R. TÜRKMEN AND D. BOZKURT, A note on the norms of the GCD matrix, Math. Comput. Appl., 9(2) (2004), 303-308.

[^0]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 094-04

