
Volume 8 (2007), Issue 2, Article 79, 6 pp.

THE BEST CONSTANT FOR AN ALGEBRAIC INEQUALITY

Y.N. ALIYEV

DEPARTMENT OFMATHEMATICS

FACULTY OF PEDAGOGY

QAFQAZ UNIVERSITY

KHYRDALAN , BAKU AZ 0101
AZERBAIJAN.

yakubaliyev@yahoo.com

Received 27 March, 2006; accepted 02 June, 2007
Communicated by S.S. Dragomir

ABSTRACT. We determine the best constantλ for the inequality1
x+ 1

y + 1
z + 1

t ≥
λ

1+16(λ−16)xyzt ;
wherex, y, z, t > 0; x + y + z + t = 1. We also consider an analogous inequality with three
variables. As a corollary we establish a refinement of Euler’s inequality.
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1. I NTRODUCTION

Recently the following inequality was proved [1, 2]:

(1.1)
1

x
+

1

y
+

1

z
≥ 25

1 + 48xyz
,

wherex, y, z > 0; x + y + z = 1. This inequality is the special case of the inequality

(1.2)
1

x
+

1

y
+

1

z
≥ λ

1 + 3(λ− 9)xyz
,

whereλ > 0. Substituting in this inequalityx = y = 1
4
, z = 1

2
we obtain0 < λ ≤ 25. So

λ = 25 is the best constant for the inequality (1.2). As an immediate application one has the
following geometric inequality [3]:

(1.3)
R

r
≥ 2 + λ

(a− b)2 + (b− c)2 + (c− a)2

(a + b + c)2
,

whereR andr are respectively the circumradius and inradius, anda, b, c are sides of a triangle,
andλ ≤ 8. Substitutinga = b = 3, c = 2 and the corresponding valuesR = 9

√
2

8
andr = 1√

2

in (1.3) we obtainλ ≤ 8. Soλ = 8 is the best constant for the inequality (1.3), which is a
refinement of Euler’s inequality.
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It is interesting to compare (1.3) with other known estimates ofR
r
. For example, it is well

known that:

(1.4)
R

r
≥ (a + b)(b + c)(c + a)

4abc
.

For the triangle with sidesa = b = 3, c = 2 inequality (1.3) is stronger than (1.4) even for
λ = 3. But for λ = 2 inequality (1.4) is stronger than (1.3) for arbitrary triangles. This follows
from the algebraic inequality:

(1.5)
(x + y)(y + z)(z + x)

8xyz
≥ 3(x2 + y2 + z2)

(x + y + z)2
,

wherex, y, z > 0, which is in turn equivalent to (1.1).
The main aim of the present article is to determine the best constant for the following ana-

logue of the inequality (1.2):

(1.6)
1

x
+

1

y
+

1

z
+

1

t
≥ λ

1 + 16(λ− 16)xyzt
,

wherex, y, z, t > 0; x + y + z + t = 1.
It is known that the best constant for the inequality

(1.7)
1

x
+

1

y
+

1

z
+

1

t
≤ λ +

16− λ

256xyzt
,

wherex, y, z, t > 0; x + y + z + t = 1, is λ = 176
27

(see e.g. [4, Corollary 2.13]). In [4]
the problem on the determination of the best constants for inequalities similar to (1.7), withn
variables was also completely studied:

n∑
i=1

1

xi

≤ λ +
n2 − λ

nn
∏n

i=1 xi

,

wherex1, x2, . . . , xi > 0,
∑n

i=1 xi = 1. The best constant for this inequality isλ = n2 −
nn

(n−1)n−1 . In particular ifn = 3 then the strongest inequality is

1

x
+

1

y
+

1

z
≤ 9

4
+

1

4xyz
,

wherex, y, z > 0, x + y + z = 1, which is in turn equivalent to the geometric inequality

p2 ≥ 16Rr − 5r2,

wherep is the semiperimeter of a triangle. But this inequality follows directly from the formula
for the distance between the incenterI and the centroidG of a triangle:

|IG|2 =
1

9
(p2 + 5r2 − 16Rr).

For some recent results see [4], [6] – [8] and especially [9].

2. PRELIMARY RESULTS

The results presented in this section aim to demonstrate the main ideas of the proof of Theo-
rem 3.1 in a more simpler problem. Corollaries have an independent interest.

Theorem 2.1.Letx, y, z > 0 andx + y + z = 1. Then the inequality (1.1) is true.

J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 79, 6 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


THE BEST CONSTANT FOR AN ALGEBRAIC INEQUALITY 3

Proof. We shall prove the equivalent inequality

1

x
+

1

y
+

1

z
+ 48(xy + yz + zx) ≥ 25.

Without loss of generality we may suppose thatx+y ≤ 1
3√3

. Indeed, ifx+y > 1
3√3

, y+z > 1
3√3

,

z + x > 1
3√3

then by summing these inequalities we obtain2 > 3
3√3

, which is false.
Let

f(x, y, z) =
1

x
+

1

y
+

1

z
+ 48(xy + yz + zx).

We shall prove that

f(x, y, z) ≥ f

(
x + y

2
,
x + y

2
, z

)
≥ 25.

The first inequality in this chain obtains, after simplifications, the form1
12
≥ xy(x + y), which

is the consequence ofx + y ≤ 1
3√3

. Denotingx+y
2

= ` (z = 1− 2`) in the second inequality of
the chain, after some simplification, we obtain

144`4 − 168`3 + 73`2 − 14` + 1 ≥ 0 ⇐⇒ (3`− 1)2(4`− 1)2 ≥ 0.

�

Corollary 2.2. Letx, y, z > 0 . Then inequality (1.5) holds true.

Proof. Inequality (1.5) is homogeneous in its variablesx, y, z. We may suppose, without loss
of generality, thatx + y + z = 1, after which the inequality obtains the following form:

xy + yz + zx− xyz

xyz
≥ 24(1− 2(xy + yz + zx))

⇐⇒ 1

x
+

1

y
+

1

z
− 1 ≥ 24− 48(xy + yz + zx).

By Theorem 2.1 the last inequality is true. �

Corollary 2.3. For an arbitrary triangle the following inequality is true:

R

r
≥ 2 + 8

(a− b)2 + (b− c)2 + (c− a)2

(a + b + c)2
.

Proof. Using known formulas

S =
√

p(p− a)(p− b)(p− c), R =
abc

4S
, r =

S

p
,

whereS and p are respectively, the area and semiperimeter of a triangle, we transform the
inequality to

2abc

(a + b− c)(b + c− a)(c + a− b)
≥ 18(a2 + b2 + c2)− 12(ab + bc + ca)

(a + b + c)2
.

Using substitutionsa = x + y, b = y + z, c = z + x, wherex, y, z are positive numbers by the
triangle inequality, we transform the last inequality to

(x + y)(y + z)(z + x)

xyz
≥ 24(x2 + y2 + z2)

(x + y + z)2
,

which follows from Corollary 2.2. �
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3. M AIN RESULT

Theorem 3.1.The greatest value of the parameterλ, for which the inequality

1

x
+

1

y
+

1

z
+

1

t
≥ λ

1 + 16(λ− 16)xyzt
,

wherex, y, z, t > 0, x + y + z + t = 1, is true is

λ =
582
√

97− 2054

121
.

Proof. Substituting in the inequality (1.6) the values

x = y = z =
5 +

√
97

72
, t =

19−
√

97

24
,

we obtain,

λ ≤ λ0 =
582
√

97− 2054

121
.

We shall prove that inequality (1.6) holds forλ = λ0.
Without loss of generality we may suppose thatx ≤ y ≤ z ≤ t. We define sequences

{xn}, {yn}, {zn} (n ≥ 0) by the equalities

x0 = x, y0 = y, z0 = z,

x2k+1 =
1

2
(x2k + y2k), y2k+1 =

1

2
(x2k + y2k), z2k+1 = z2k,

and

x2k+2 = x2k+1, y2k+2 =
1

2
(y2k+1 + z2k+1), z2k+2 =

1

2
(y2k+1 + z2k+1),

wherek ≥ 0. From these equalities we obtain,

yn =
x + y + z

3
+

2z − x− y

3

(
−1

2

)n

,

wheren ≥ 1. Then we have,

lim yn =
x + y + z

3
.

Sincex2k = x2k−1 = y2k−1 and z2k+1 = z2k = y2k for k > 0, then we have also,

(3.1) lim xn = lim zn = lim yn =
x + y + z

3
.

We note also that,

(3.2) (x + y)3(z + t) ≤ 1

λ0 − 16
.

Indeed, on the contrary we have,

(x + y)(z + t)3 ≥ (x + y)3(z + t) >
1

λ0 − 16
,

from which we obtain,

(x + y)2(z + t)2 >
1

λ0 − 16
.

Then
1

16
=

(
(x + y) + (z + t)

2

)4

≥ (x + y)2(z + t)2 >
1

λ0 − 16
,
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which is false, becauseλ0 < 32. Therefore the inequality (3.2) is true. In the same manner, we
can prove that

(3.3) (x + z)3(y + t) ≤ 1

λ0 − 16
.

Let

f(x, y, z, t) =
1

x
+

1

y
+

1

z
+

1

t
+ 16(λ0 − 16)(xyz + xyt + xzt + yzt).

Firstly we prove that

f(x, y, z, t) = f(x0, y0, z0, t) ≥ f(x1, y1, z1, t)

(3.4)

⇐⇒ 1

x
+

1

y
+ 16(λ0 − 16)xy(z + t) ≥ 4

x + y
+ 16(λ0 − 16)

(
x + y

2

)2

(z + t)

⇐⇒ 1

λ0 − 16
≥ 4xy(x + y)(z + t),

which follows from (3.2).
Since for arbitraryn ≥ 0 the inequalityxn ≤ yn ≤ zn ≤ t is true then in the same manner

we can prove that

(3.5) f(x2k, y2k, z2k, t) ≥ f(x2k+1, y2k+1, z2k+1, t),

wherek > 0.
We shall now prove that

(3.6) f(x2k+1, y2k+1, z2k+1, t) ≥ f(x2k+2, y2k+2, z2k+2, t),

wherek ≥ 0. Denotex′ = x2k+1, y′ = y2k+1, z′ = z2k+1, t′ = t. By analogy with (3.3) we
may write,

(x′ + z′)3(y′ + t′) ≤ 1

λ0 − 16
.

Sincex′ = y′ then we can write the last inequality in this form:

(3.7) (y′ + z′)3(x′ + t′) ≤ 1

λ0 − 16
.

Similar to (3.4), simplifying (3.6) we obtain,

1

λ0 − 16
≥ 4y′z′(y′ + z′)(x′ + t′),

which follows from (3.7).
By (3.4) – (3.6) we have,

(3.8) f(x, y, z, t) ≥ f(xn, yn, zn, t),

for n ≥ 0. Denote` = x+y+z
3

thent = 1 − 3`. Sincef(x, y, z, t) is a continuous function for
x, y, z, t > 0, then tendingn to∞ in (3.8), we obtain, by (3.1),

(3.9) f(x, y, z, t) ≥ lim f(xn, yn, zn, t) = f(`, `, `, 1− 3`).

Thus it remains to show that

(3.10) f(`, `, `, 1− 3`) ≥ λ0.

After elementary but lengthy computations we transform (3.10) into

(4`− 1)2 ((λ0 − 16)`(3`− 1)(8` + 1) + 3) ≥ 0,
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where0 < ` < 1
3
. It suffices to show that

λ0 − 16 ≤ −3

`(3`− 1)(8` + 1)
= g(`),

for 0 < ` < 1
3
. The functiong(`) obtains its minimum value at the point

` = `0 =
5 +

√
97

72
∈

(
0,

1

3

)
,

at whichg(`0) = λ0 − 16. Consequently, the last inequality is true.
From (3.9) and (3.10) it follows that

1

x
+

1

y
+

1

z
+

1

t
≥ λ0

1 + 16(λ0 − 16)xyzt
,

and the equality holds only for quadruples
(

1
4
, 1

4
, 1

4
, 1

4

)
, (`0, `0, `0, 1− 3`0) and 3 other permu-

tations of the last.
The proof of Theorem 3.1 is complete. �

Remark 3.2. An interesting problem for further exploration would be to determine the best
constantλ for the inequality

n∑
i=1

1

xi

≥ λ

1 + nn−2(λ− n2)
∏n

i=1 xi

,

wherex1, x2, . . . , xn > 0,
∑n

i=1 xi = 1, for n > 4. It seems very likely that the number

λ =
12933567− 93093

√
22535

4135801
α +

17887113 + 560211
√

22535

996728041
α2 − 288017

17161
,

whereα =
3
√

8119 + 48
√

22535, is the best constant in the casen = 5. For greater values of
n, it is reasonable to find an asymptotic formula of the best constant.
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