THE BEST CONSTANT FOR AN ALGEBRAIC INEQUALITY

Y.N. ALIYEV

Department of Mathematics

Faculty of Pedagogy, Qafqaz University Khyrdalan, Baku AZ 0101, Azerbaijan.

EMail: yakubaliyev@yahoo.com

Received: 27 March, 2006

Accepted: 02 June, 2007

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 52A40, 26D05.

Key words: Best constant, Geometric inequality, Euler's inequality.

Abstract: We determine the best constant λ for the inequality $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t} \geq 1$

 $\frac{\lambda}{1+16(\lambda-16)xyzt};$ where x,y,z,t>0; x+y+z+t=1. We also consider an analogous inequality with three variables. As a corollary we establish a re-

finement of Euler's inequality.

Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents

44

Page 1 of 13

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1 Introduction	3
introduction	-

- 2 Prelimary Results 6
- 3 Main Result 8

Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

1. Introduction

Recently the following inequality was proved [1, 2]:

(1.1)
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{25}{1 + 48xyz},$$

where x, y, z > 0; x + y + z = 1. This inequality is the special case of the inequality

(1.2)
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{\lambda}{1 + 3(\lambda - 9)xyz},$$

where $\lambda > 0$. Substituting in this inequality $x = y = \frac{1}{4}$, $z = \frac{1}{2}$ we obtain $0 < \lambda \le 25$. So $\lambda = 25$ is the best constant for the inequality (1.2). As an immediate application one has the following geometric inequality [3]:

(1.3)
$$\frac{R}{r} \ge 2 + \lambda \frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{(a+b+c)^2},$$

where R and r are respectively the circumradius and inradius, and a,b,c are sides of a triangle, and $\lambda \leq 8$. Substituting a=b=3, c=2 and the corresponding values $R=\frac{9\sqrt{2}}{8}$ and $r=\frac{1}{\sqrt{2}}$ in (1.3) we obtain $\lambda \leq 8$. So $\lambda=8$ is the best constant for the inequality (1.3), which is a refinement of Euler's inequality.

It is interesting to compare (1.3) with other known estimates of $\frac{R}{r}$. For example, it is well known that:

(1.4)
$$\frac{R}{r} \ge \frac{(a+b)(b+c)(c+a)}{4abc}.$$

For the triangle with sides a=b=3, c=2 inequality (1.3) is stronger than (1.4) even for $\lambda=3$. But for $\lambda=2$ inequality (1.4) is stronger than (1.3) for arbitrary

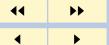
Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents



Page 3 of 13

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

triangles. This follows from the algebraic inequality:

(1.5)
$$\frac{(x+y)(y+z)(z+x)}{8xyz} \ge \frac{3(x^2+y^2+z^2)}{(x+y+z)^2},$$

where x, y, z > 0, which is in turn equivalent to (1.1).

The main aim of the present article is to determine the best constant for the following analogue of the inequality (1.2):

(1.6)
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t} \ge \frac{\lambda}{1 + 16(\lambda - 16)xyzt},$$

where x, y, z, t > 0; x + y + z + t = 1.

It is known that the best constant for the inequality

(1.7)
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t} \le \lambda + \frac{16 - \lambda}{256xyzt},$$

where x, y, z, t > 0; x + y + z + t = 1, is $\lambda = \frac{176}{27}$ (see e.g. [4, Corollary 2.13]). In [4] the problem on the determination of the best constants for inequalities similar to (1.7), with n variables was also completely studied:

$$\sum_{i=1}^{n} \frac{1}{x_i} \le \lambda + \frac{n^2 - \lambda}{n^n \prod_{i=1}^{n} x_i},$$

where $x_1, x_2, \ldots, x_i > 0$, $\sum_{i=1}^n x_i = 1$. The best constant for this inequality is $\lambda = n^2 - \frac{n^n}{(n-1)^{n-1}}$. In particular if n = 3 then the strongest inequality is

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \le \frac{9}{4} + \frac{1}{4xyz},$$

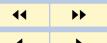
Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents



Page 4 of 13

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where $x,y,z>0,\,x+y+z=1$, which is in turn equivalent to the geometric inequality

$$p^2 \ge 16Rr - 5r^2,$$

where p is the semiperimeter of a triangle. But this inequality follows directly from the formula for the distance between the incenter I and the centroid G of a triangle:

$$|IG|^2 = \frac{1}{9}(p^2 + 5r^2 - 16Rr).$$

For some recent results see [4], [6] - [8] and especially [9].

Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents

Page 5 of 13

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

2. Prelimary Results

The results presented in this section aim to demonstrate the main ideas of the proof of Theorem 3.1 in a more simpler problem. Corollaries have an independent interest.

Theorem 2.1. Let x, y, z > 0 and x + y + z = 1. Then the inequality (1.1) is true.

Proof. We shall prove the equivalent inequality

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + 48(xy + yz + zx) \ge 25.$$

Without loss of generality we may suppose that $x+y \leq \frac{1}{\sqrt[3]{3}}$. Indeed, if $x+y > \frac{1}{\sqrt[3]{3}}$, $y+z > \frac{1}{\sqrt[3]{3}}$, $z+x > \frac{1}{\sqrt[3]{3}}$ then by summing these inequalities we obtain $2 > \frac{3}{\sqrt[3]{3}}$, which is false.

Let

$$f(x,y,z) = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + 48(xy + yz + zx).$$

We shall prove that

$$f(x, y, z) \ge f\left(\frac{x+y}{2}, \frac{x+y}{2}, z\right) \ge 25.$$

The first inequality in this chain obtains, after simplifications, the form $\frac{1}{12} \ge xy(x+y)$, which is the consequence of $x+y \le \frac{1}{\sqrt[3]{3}}$. Denoting $\frac{x+y}{2} = \ell$ $(z=1-2\ell)$ in the second inequality of the chain, after some simplification, we obtain

$$144\ell^4 - 168\ell^3 + 73\ell^2 - 14\ell + 1 \ge 0 \iff (3\ell - 1)^2(4\ell - 1)^2 \ge 0.$$

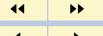
Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents



Page 6 of 13

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Corollary 2.2. Let x, y, z > 0. Then inequality (1.5) holds true.

Proof. Inequality (1.5) is homogeneous in its variables x, y, z. We may suppose, without loss of generality, that x + y + z = 1, after which the inequality obtains the following form:

$$\frac{xy+yz+zx-xyz}{xyz} \ge 24(1-2(xy+yz+zx))$$

$$\iff \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1 \ge 24 - 48(xy+yz+zx).$$

By Theorem 2.1 the last inequality is true.

Corollary 2.3. For an arbitrary triangle the following inequality is true:

$$\frac{R}{r} \ge 2 + 8 \frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{(a+b+c)^2}.$$

Proof. Using known formulas

$$S = \sqrt{p(p-a)(p-b)(p-c)}, \quad R = \frac{abc}{4S}, \quad r = \frac{S}{p},$$

where S and p are respectively, the area and semiperimeter of a triangle, we transform the inequality to

$$\frac{2abc}{(a+b-c)(b+c-a)(c+a-b)} \ge \frac{18(a^2+b^2+c^2)-12(ab+bc+ca)}{(a+b+c)^2}.$$

Using substitutions a = x + y, b = y + z, c = z + x, where x, y, z are positive numbers by the triangle inequality, we transform the last inequality to

$$\frac{(x+y)(y+z)(z+x)}{xyz} \ge \frac{24(x^2+y^2+z^2)}{(x+y+z)^2},$$

which follows from Corollary 2.2.

Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Main Result

Theorem 3.1. The greatest value of the parameter λ , for which the inequality

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t} \ge \frac{\lambda}{1 + 16(\lambda - 16)xyzt},$$

where x, y, z, t > 0, x + y + z + t = 1, is true is

$$\lambda = \frac{582\sqrt{97} - 2054}{121}.$$

Proof. Substituting in the inequality (1.6) the values

$$x = y = z = \frac{5 + \sqrt{97}}{72}, \ t = \frac{19 - \sqrt{97}}{24},$$

we obtain,

$$\lambda \le \lambda_0 = \frac{582\sqrt{97} - 2054}{121}.$$

We shall prove that inequality (1.6) holds for $\lambda = \lambda_0$.

Without loss of generality we may suppose that $x \le y \le z \le t$. We define sequences $\{x_n\}, \{y_n\}, \{z_n\} \ (n \ge 0)$ by the equalities

$$x_0 = x$$
, $y_0 = y$, $z_0 = z$, $x_{2k+1} = \frac{1}{2}(x_{2k} + y_{2k})$, $y_{2k+1} = \frac{1}{2}(x_{2k} + y_{2k})$, $z_{2k+1} = z_{2k}$,

and

$$x_{2k+2} = x_{2k+1}, \quad y_{2k+2} = \frac{1}{2}(y_{2k+1} + z_{2k+1}), \quad z_{2k+2} = \frac{1}{2}(y_{2k+1} + z_{2k+1}),$$

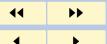
Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents



Page 8 of 13

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where $k \geq 0$. From these equalities we obtain,

$$y_n = \frac{x+y+z}{3} + \frac{2z-x-y}{3} \left(-\frac{1}{2}\right)^n$$

where n > 1. Then we have,

$$\lim y_n = \frac{x+y+z}{3}.$$

Since $x_{2k} = x_{2k-1} = y_{2k-1}$ and $z_{2k+1} = z_{2k} = y_{2k}$ for k > 0, then we have also,

(3.1)
$$\lim x_n = \lim z_n = \lim y_n = \frac{x + y + z}{3}.$$

We note also that,

(3.2)
$$(x+y)^3(z+t) \le \frac{1}{\lambda_0 - 16}.$$

Indeed, on the contrary we have,

$$(x+y)(z+t)^3 \ge (x+y)^3(z+t) > \frac{1}{\lambda_0 - 16}$$

from which we obtain,

$$(x+y)^2(z+t)^2 > \frac{1}{\lambda_0 - 16}.$$

Then

$$\frac{1}{16} = \left(\frac{(x+y) + (z+t)}{2}\right)^4 \ge (x+y)^2(z+t)^2 > \frac{1}{\lambda_0 - 16},$$

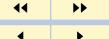
Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents



Page 9 of 13

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

which is false, because $\lambda_0 < 32$. Therefore the inequality (3.2) is true. In the same manner, we can prove that

(3.3)
$$(x+z)^3(y+t) \le \frac{1}{\lambda_0 - 16}.$$

Let

$$f(x,y,z,t) = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t} + 16(\lambda_0 - 16)(xyz + xyt + xzt + yzt).$$

Firstly we prove that

(3.4)
$$f(x, y, z, t) = f(x_0, y_0, z_0, t) \ge f(x_1, y_1, z_1, t)$$

$$\iff \frac{1}{x} + \frac{1}{y} + 16(\lambda_0 - 16)xy(z + t)$$

$$\ge \frac{4}{x + y} + 16(\lambda_0 - 16)\left(\frac{x + y}{2}\right)^2(z + t)$$

$$\iff \frac{1}{\lambda_0 - 16} \ge 4xy(x + y)(z + t),$$

which follows from (3.2).

Since for arbitrary $n \geq 0$ the inequality $x_n \leq y_n \leq z_n \leq t$ is true then in the same manner we can prove that

$$(3.5) f(x_{2k}, y_{2k}, z_{2k}, t) \ge f(x_{2k+1}, y_{2k+1}, z_{2k+1}, t),$$

where k > 0.

We shall now prove that

$$(3.6) f(x_{2k+1}, y_{2k+1}, z_{2k+1}, t) \ge f(x_{2k+2}, y_{2k+2}, z_{2k+2}, t),$$

Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents

Page 10 of 13

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where $k \ge 0$. Denote $x' = x_{2k+1}, \ y' = y_{2k+1}, \ z' = z_{2k+1}, \ t' = t$. By analogy with (3.3) we may write,

$$(x'+z')^3(y'+t') \le \frac{1}{\lambda_0 - 16}.$$

Since x' = y' then we can write the last inequality in this form:

$$(3.7) (y'+z')^3(x'+t') \le \frac{1}{\lambda_0 - 16}.$$

Similar to (3.4), simplifying (3.6) we obtain,

$$\frac{1}{\lambda_0 - 16} \ge 4y'z'(y' + z')(x' + t'),$$

which follows from (3.7).

By (3.4) - (3.6) we have,

(3.8)
$$f(x, y, z, t) \ge f(x_n, y_n, z_n, t)$$

for $n \ge 0$. Denote $\ell = \frac{x+y+z}{3}$ then $t = 1 - 3\ell$. Since f(x,y,z,t) is a continuous function for x,y,z,t>0, then tending n to ∞ in (3.8), we obtain, by (3.1),

(3.9)
$$f(x, y, z, t) \ge \lim_{n \to \infty} f(x_n, y_n, z_n, t) = f(\ell, \ell, \ell, 1 - 3\ell).$$

Thus it remains to show that

$$(3.10) f(\ell,\ell,\ell,1-3\ell) \ge \lambda_0.$$

After elementary but lengthy computations we transform (3.10) into

$$(4\ell - 1)^2 ((\lambda_0 - 16)\ell(3\ell - 1)(8\ell + 1) + 3) \ge 0,$$

where $0 < \ell < \frac{1}{3}$. It suffices to show that

$$\lambda_0 - 16 \le \frac{-3}{\ell(3\ell - 1)(8\ell + 1)} = g(\ell),$$

Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents

Page 11 of 13

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

for $0 < \ell < \frac{1}{3}$. The function $g(\ell)$ obtains its minimum value at the point

$$\ell = \ell_0 = \frac{5 + \sqrt{97}}{72} \in \left(0, \frac{1}{3}\right),$$

at which $g(\ell_0) = \lambda_0 - 16$. Consequently, the last inequality is true.

From (3.9) and (3.10) it follows that

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t} \ge \frac{\lambda_0}{1 + 16(\lambda_0 - 16)xyzt},$$

and the equality holds only for quadruples $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, $(\ell_0, \ell_0, \ell_0, 1 - 3\ell_0)$ and 3 other permutations of the last.

The proof of Theorem 3.1 is complete.

Remark 1. An interesting problem for further exploration would be to determine the best constant λ for the inequality

$$\sum_{i=1}^{n} \frac{1}{x_i} \ge \frac{\lambda}{1 + n^{n-2}(\lambda - n^2) \prod_{i=1}^{n} x_i},$$

where $x_1, x_2, \ldots, x_n > 0$, $\sum_{i=1}^n x_i = 1$, for n > 4. It seems very likely that the number

$$\lambda = \frac{12933567 - 93093\sqrt{22535}}{4135801}\alpha + \frac{17887113 + 560211\sqrt{22535}}{996728041}\alpha^2 - \frac{288017}{17161},$$

where $\alpha = \sqrt[3]{8119 + 48\sqrt{22535}}$, is the best constant in the case n = 5. For greater values of n, it is reasonable to find an asymptotic formula of the best constant.

Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] Y.N. ALIYEV, Problem 11199, Amer. Math. Month., 113(1), (2006), 80.
- [2] Y.N. ALIYEV, Problem M2002, *Kvant* (in Russian), **3** (2006), 17; Solution: **6** (2006), 19.
- [3] Y.N. ALIYEV, Problem 4861, *Mathematics in School* (in Russian), **9** (2005), 68; Solution: **4** (2006), 70–71.
- [4] J.L. DÍAZ-BARRERO, Some cyclical inequalities for the triangle, *J. Ineq. Pure and Appl. Math.*, **6**(1) (2005), Art. 20. [ONLINE: http://jipam.vu.edu.au/article.php?sid=489].
- [5] T.P. MITEV, New inequalities between elementary symmetric polynomials, *J. Ineq. Pure and Appl. Math.*, **4**(2) (2003), Art. 48. [ONLINE: http://jipam.vu.edu.au/article.php?sid=286].
- [6] C.P. NICULESCU, A new look at Newton's inequalities, *J. Ineq. Pure and Appl. Math.*, **1**(2) (2000), Art. 17. [ONLINE: http://jipam.vu.edu.au/article.php?sid=111].
- [7] J. ROOIN, AGM inequality with binomial expansion, *Elem. Math.*, **58** (2003), 115–117.
- [8] S.H. WU, Generalization and sharpness of the power means inequality and their applications, *J. Math. Anal. Appl.*, **312** (2005), 637–652.
- [9] Y.-D. WU, The best constant for a geometric inequality, *J. Ineq. Pure and Appl. Math.*, **6**(4) (2005), Art. 111. [ONLINE: http://jipam.vu.edu.au/article.php?sid=585].

Best Constant For An Algebraic Inequality

Y.N. Aliyev

vol. 8, iss. 3, art. 79, 2007

Title Page

Contents

Page 13 of 13

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756