PROPERTIES OF q-MEYER-KÖNIG-ZELLER DURRMEYER OPERATORS

HONEY SHARMA

Rayat \& Bahra Institute of Pharmacy
Village Sahauran Kharar Distt. Mohali Punjab, India
pro.sharma.h@gmail.com
Received 09 April, 2009; accepted 26 June, 2009
Communicated by I. Gavrea

AbSTRACT. We introduce a q analogue of the Meyer-König-Zeller Durrmeyer type operators and investigate their rate of convergence.

Key words and phrases: q-integers, q-Meyer-König-Zeller Durrmeyer type operators, A-Statistical convergence, Weighted space, Weighted modulus of smoothness, Lipschitz class.
2000 Mathematics Subject Classification. 41A25, 41A35.

1. Introduction

Abel et al. [5] introduced the Meyer-Konig-Zeller Durrmeyer operators as

$$
\begin{equation*}
M_{n}(f ; x)=\sum_{k=0}^{\infty} m_{n, k}(x) \int_{0}^{1} b_{n, k}(t) f(t) d t, \quad 0 \leq x<1, \tag{1.1}
\end{equation*}
$$

where

$$
m_{n, k}(x)=\binom{n+k-1}{k} x^{k}(1-x)^{n}
$$

and

$$
b_{n, k}(t)=n\binom{n+k}{k} t^{k}(1-t)^{n-1}
$$

Very recently H. Wang [6], O. Dogru and V. Gupta [2], A. Altin, O. Dogru and M.A. Ozarslan [7] and T. Trif [3] studied the q-Meyer-Konig-Zeller operators. This motivated us to introduce the q analogue of the Meyer-Konig-Zeller Durrmeyer operators.

Before introducing the operators, we mention certain definitions based on q-integers; details can be found in [10] and [12].
For each non-negative integer k, the q-integer $[k]$ and the q-factorial $[k]$! are respectively defined by

$$
[k]:= \begin{cases}\left(1-q^{k}\right) /(1-q), & q \neq 1 \\ k, & q=1\end{cases}
$$

[^0]and
\[

[k]!:=\left\{$$
\begin{array}{ll}
{[k][k-1] \cdots[1],} & k \geq 1 \\
1, & k=0
\end{array}
$$.\right.
\]

For the integers n, k satisfying $n \geq k \geq 0$, the q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{[n]!}{[k]![n-k]!} .
$$

We use the following notations

$$
(a+b)_{q}^{n}=\prod_{j=0}^{n-1}\left(a+q^{j} b\right)=(a+b)(a+q b) \cdots\left(a+q^{n-1} b\right)
$$

and

$$
(t ; q)_{0}=1, \quad(t ; q)_{n}=\prod_{j=0}^{n-1}\left(1-q^{j} t\right), \quad(t ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-q^{j} t\right)
$$

Also it can be seen that

$$
(a ; q)_{n}=\frac{(a ; q)_{\infty}}{\left(a q^{n} ; q\right)_{\infty}}
$$

The q-Beta function is defined as

$$
B_{q}(m, n)=\int_{0}^{1} t^{m-1}(1-q t)_{q}^{n-1} d_{q} t
$$

for $m, n \in \mathbb{N}$ and we have

$$
\begin{equation*}
B_{q}(m, n)=\frac{[m-1]![n-1]!}{[m+n-1]!} . \tag{1.2}
\end{equation*}
$$

It can be easily checked that

$$
\prod_{j=0}^{n-1}\left(1-q^{j} x\right) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \tag{1.3}\\
k
\end{array}\right] x^{k}=1
$$

Now we introduce the q-Meyer-Konig-Zeller Durrmeyer operator as follows

$$
\begin{align*}
M_{n, q}(f ; x) & =\sum_{k=0}^{\infty} m_{n, k, q}(x) \int_{0}^{1} b_{n, k, q}(t) f(q t) d_{q} t, \quad 0 \leq x<1 \tag{1.4}\\
& :=\sum_{k=0}^{\infty} m_{n, k, q}(x) A_{n, k, q}(f), \tag{1.5}
\end{align*}
$$

where $0<q<1$ and

$$
\begin{align*}
& m_{n, k, q}(x)=P_{n-1}(x)\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k} \tag{1.6}\\
& b_{n, k, q}(t)=\frac{[n+k]!}{[k]![n-1]!} t^{k}(1-q t)_{q}^{n-1} \tag{1.7}
\end{align*}
$$

Here

$$
P_{n-1}(x)=\prod_{j=0}^{n-1}\left(1-q^{j} x\right)
$$

Remark 1. It can be seen that for $q \rightarrow 1^{-}$, the q-Meyer-Konig-Zeller Durrmeyer operator becomes the operator studied in [4] for $\alpha=1$.

2. Moments

Lemma 2.1. For $g_{s}(t)=t^{s}, s=0,1,2, \ldots$, we have

$$
\begin{equation*}
\int_{0}^{1} b_{n, k, q}(t) g_{s}(q t) d_{q} t=q^{s} \frac{[n+k]![k+s]!}{[k]![k+s+n]!} . \tag{2.1}
\end{equation*}
$$

Proof. By using the q-Beta function (1.2), the above lemma can be proved easily.
Here, we introduce two lemmas proved in [8], as follows:
Lemma 2.2. For $r=0,1,2, \ldots$ and $n>r$, we have

$$
P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \tag{2.2}\\
k
\end{array}\right] \frac{x^{k}}{[n+k-1]^{\underline{r}}}=\frac{\prod_{j=1}^{r}\left(1-q^{n-j} x\right)}{[n-1]^{\underline{r}}},
$$

where $[n-1]^{r}=[n-1][n-2] \cdots[n-r]$.
Lemma 2.3. The identity

$$
\begin{equation*}
\frac{1}{[n+k+r]} \leq \frac{1}{q^{r+1}[n+k-1]}, \quad r \geq 0 \tag{2.3}
\end{equation*}
$$

holds.
Theorem 2.4. For all $x \in[0,1], n \in \mathbb{N}$ and $q \in(0,1)$, we have

$$
\begin{align*}
& M_{n, q}\left(e_{0} ; x\right)=1 \tag{2.4}\\
& M_{n, q}\left(e_{1} ; x\right) \leq x+\frac{\left(1-q^{n-1} x\right)}{q[n-1]} \tag{2.5}\\
& M_{n, q}\left(e_{1} ; x\right) \geq\left(1-\frac{\left(1+q^{n-2}\right)}{[n+1]}\right) x+q^{n-2}(1-q) x^{2} \tag{2.6}
\end{align*}
$$

$$
\begin{equation*}
M_{n, q}\left(e_{2} ; x\right) \leq x^{2}+\frac{(1+q)^{2}}{q^{3}} \frac{\left(1-q^{n-1} x\right)}{[n-1]} x+\frac{(1+q)}{q^{4}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1][n-2]} \tag{2.7}
\end{equation*}
$$

Proof. We have to estimate $M_{n, q}\left(e_{s} ; x\right)$ for $s=0,1,2$. The result can be easily verified for $s=0$. Using the above lemmas and equation (1.3), we obtain relations (2.5) and (2.6) as follows

$$
\begin{aligned}
M_{n, q}\left(e_{1}, x\right)= & q P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{[k+1]}{[n+k+1]} x^{k} \\
\leq & q P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{q[k]+1}{q^{2}[n+k-1]} x^{k} \\
= & x P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k} \\
& \quad+\frac{P_{n-1}(x)}{q} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{x^{k}}{[n+k-1]} \\
= & x+\frac{\left(1-q^{n-1} x\right)}{q[n-1]} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
M_{n, q}\left(e_{1}, x\right) & =q P_{n-1}(x) \sum_{k=1}^{\infty}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right] \frac{[k+1]}{[k]} \frac{[n+k-1]}{[n+k+1]} x^{k} \\
& \geq P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]\left(\frac{[n+k+1]-1}{[n+k+2]}\right) x^{k+1} \\
& \geq P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]\left(\frac{[n+k+1]}{[n+k+2]}-\frac{1}{[n+1]}\right) x^{k+1} \\
& \geq P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]\left(1-\frac{q^{n+k+1}}{[n+k+2]}\right) x^{k+1}-\frac{1}{[n+1]} x \\
& \geq P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]\left(1-\frac{q^{n-2}(1-(1-q)[k])}{[n+k-1]}\right) x^{k+1}-\frac{1}{[n+1]} x \\
& =x-\frac{q^{n-2} x}{[n+1]}+q^{n-2}(1-q) x^{2} P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k}-\frac{1}{[n+1]} x \\
& =\left(1-\frac{\left(1+q^{n-2}\right)}{[n+1]}\right) x+q^{n-2}(1-q) x^{2} .
\end{aligned}
$$

Similar calculations reveal the relation (2.7) as follows

$$
\begin{aligned}
M_{n, q}\left(e_{2}, x\right)= & q^{2} P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{[k+1][k+2]}{[n+k+1][n+k+2]} x^{k} \\
\leq & \frac{1}{q^{4}} P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{q^{3}[k]^{2}+(2 q+1) q[k]+(q+1)}{[n+k-1][n+k-2]} x^{k} \\
= & \frac{P_{n-1}(x)}{q} \sum_{k=0}^{\infty} \frac{[n+k-2]!}{[k]![n-1]!}(q[k]+1) x^{k+1} \\
& +\frac{P_{n-1}(x)(2 q+1) x}{q^{3}} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1] \frac{x^{k}}{k}
\end{array}\right] \\
& +\frac{P_{n-1}(x)(1+q)}{q^{4}} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{x^{k}}{[n+k-1]^{2}} \\
= & x^{2} P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k} \\
& +x \frac{P_{n-1}(x)}{q} \sum_{k=0}^{\infty}[n+k-1] \frac{x^{k}}{k}{ }^{n+k-1]}+x \frac{(2 q+1)}{q^{3}} \frac{\left(1-q^{n-1} x\right)}{[n-1]} \\
& +\frac{(1+q)}{q^{4}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1][n-2]} \\
= & x^{2}+\frac{(1+q)^{2}}{q^{3}} \frac{\left(1-q^{n-1} x\right)}{[n-1]} x+\frac{(1+q)}{q^{4}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1][n-2]} .
\end{aligned}
$$

Remark 2. From Lemma 2.3, it is observed that for $q \rightarrow 1^{-}$, we obtain

$$
\begin{aligned}
& M_{n}\left(e_{0} ; x\right)=1 \\
& M_{n}\left(e_{1} ; x\right) \leq x+\frac{(1-x)}{(n-1)} \\
& M_{n}\left(e_{1} ; x\right) \geq\left(1-\frac{2}{(n+1)}\right) x \\
& M_{n}\left(e_{2} ; x\right) \leq x^{2}+\frac{4 x(1-x)}{(n-1)}+\frac{2(1-x)^{2}}{(n-1)(n-2)},
\end{aligned}
$$

which are moments for a new generalization of the Meyer-Konig-Zeller operators for $\alpha=1$ in [4].

Corollary 2.5. The central moments of $M_{n, q}$ are

$$
\begin{aligned}
& M_{n, q}\left(\psi_{0} ; x\right)=1 \\
& M_{n, q}\left(\psi_{1} ; x\right) \leq \frac{\left(1-q^{n-1} x\right)}{q[n-1]} \\
& M_{n, q}\left(\psi_{2} ; x\right) \leq \frac{(1+q)^{2}}{q^{3}} \frac{\left(1-q^{n-1} x\right)}{[n-1]} x+\frac{(1+q)}{q^{4}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1][n-2]} \\
& \quad+2 \frac{\left(1+q^{n-2}\right)}{[n+1]} x^{2},
\end{aligned}
$$

where $\psi_{i}(x)=(t-x)^{i}$ for $i=0,1,2$.
Proof. By the linearity of $M_{n, q}$ and Theorem 2.4, we directly get the first two central moments. Using simple computations, the third moment can be easily verified as follows

$$
\begin{aligned}
M_{n, q}\left(\psi_{2} ; x\right)= & M_{n, q}\left(e_{2} ; x\right)+x^{2} M_{n, q}\left(e_{0} ; x\right)-2 x M_{n, q}\left(e_{1} ; x\right) \\
\leq & \frac{(1+q)^{2}}{q^{3}} \frac{\left(1-q^{n-1} x\right)}{[n-1]} x+\frac{(1+q)}{q^{4}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1][n-2]} \\
& +\left(1-\frac{\left(1+q^{n-2}\right)}{[n+1]}\right) x-q^{n-2}(1-q) x^{2} \\
\leq & \frac{(1+q)^{2}}{q^{3}} \frac{\left(1-q^{n-1} x\right)}{[n-1]} x+\frac{(1+q)}{q^{4}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1][n-2]} \\
& +2 \frac{\left(1+q^{n-2}\right)}{[n+1]} x^{2} .
\end{aligned}
$$

Remark 3. For $q \rightarrow 1^{-}$, we get

$$
M_{n}\left(\psi_{2} ; x\right) \leq \frac{4 x}{n-1}+\frac{2(1-x)^{2}}{(n-1)(n-2)}
$$

which is similar to the result in [4].
Theorem 2.6. The sequence $M_{n, q_{n}}(f)$ converges to f uniformly on $C[0,1]$ for each $f \in C[0,1]$ iff $q_{n} \rightarrow 1$ as $n \rightarrow \infty$.

Proof. By the Korovkin theorem (see [1]), $M_{n, q_{n}}(f ; x)$ converges to f uniformly on $[0,1]$ as $n \rightarrow \infty$ for $f \in C[0,1]$ iff $M_{n, q_{n}}\left(t^{i} ; x\right) \rightarrow x^{i}$ for $i=1,2$ uniformly on $[0,1]$ as $n \rightarrow \infty$.
From the definition of $M_{n, q}$ and Theorem 2.4, $M_{n, q_{n}}$ is a linear operator and reproduces constant functions.
Moreover, as $q_{n} \rightarrow 1$, then $[n]_{q_{n}} \rightarrow \infty$, therefore by Theorem 2.4, we get

$$
M_{n, q_{n}}\left(t^{i} ; x\right) \rightarrow x^{i}
$$

for $i=0,1,2$.
Hence, $M_{n, q_{n}}(f)$ converges to f uniformly on $C[0,1]$.
Conversely, suppose that $M_{n, q_{n}}(f)$ converges to f uniformly on $C[0,1]$ and q_{n} does not tend to 1 as $n \rightarrow \infty$. Then there exists a subsequence $\left(q_{n_{k}}\right)$ of $\left(q_{n}\right)$ s.t. $q_{n_{k}} \rightarrow q_{0}\left(q_{0} \neq 1\right)$ as $k \rightarrow \infty$. Thus

$$
\frac{1}{[n]_{q_{n_{k}}}}=\frac{1-q_{n_{k}}}{1-q_{n_{k}}{ }^{n}} \rightarrow\left(1-q_{0}\right) .
$$

Taking $n=n_{k}$ and $q=q_{n_{k}}$ in $M_{n, q}\left(e_{2}, x\right)$, we have

$$
M_{n, q_{n_{k}}}\left(e_{2} ; x\right) \leq x+\frac{\left(1-q_{n_{k}}^{n-1} x\right)\left(1-q_{0}\right)}{q_{n_{k}}} \neq x
$$

which is a contradiction. Hence $q_{n} \rightarrow 1$. This completes the proof.
Remark 4. Similar results are proved for the q-Bernstein-Durrmeyer operator in [11].

3. Weighted Statistical Approximation Properties

In this section, we present the statistical approximation properties of the operator $M_{n, q}$ by using a Bohman-Korovkin type theorem [9].
Firstly, we recall the concepts of A-statistical convergence, weight functions and weighted spaces as considered in [9].

Let $A=\left(a_{j n}\right)_{j, n}$ be a non-negative regular summability matrix. A sequence $\left(x_{n}\right)_{n}$ is said to be A-statistically convergent to a number L if, for every $\varepsilon>0, \lim _{j} \sum_{n:\left|x_{n}-L\right| \geq \varepsilon} a_{j n}=0$. It is denoted by $s t_{A}-\lim _{n} x_{n}=L$. For $A:=C_{1}$, the Cesàro matrix of order one is defined as

$$
c_{j n}:= \begin{cases}\frac{1}{j} & 1 \leq n \leq j \\ 0 & n>j .\end{cases}
$$

A-statistical convergence coincides with statistical convergence.
A weight function is a real continuous function ρ on \mathbb{R} s.t. $\lim _{|x| \rightarrow \infty} \rho(x)=\infty, \rho(x) \geq 1$ for all $x \in \mathbb{R}$.

The weighted space of real-valued functions f (denoted as $B_{\rho}(\mathbb{R})$) is defined on \mathbb{R} with the property $|f(x)| \leq M_{f} \rho(x)$ for all $x \in \mathbb{R}$, where M_{f} is a constant depending on the function f. We also consider the weighted subspace $C_{\rho}(\mathbb{R})$ of $B_{\rho}(\mathbb{R})$ given by

$$
C_{\rho}(\mathbb{R}):=\left\{f \in B_{\rho}(\mathbb{R}): f \text { continuous on } \mathbb{R}\right\}
$$

$B_{\rho}(\mathbb{R})$ and $C_{\rho}(\mathbb{R})$ are Banach spaces with the norm $\|\cdot\|_{\rho}$, where $\|f\|_{\rho}:=\sup _{x \in \mathbb{R}} \frac{|f(x)|}{\rho(x)}$.
We next present a Bohman-Korovkin type theorem ([9, Theorem 3]) as follows.

Theorem 3.1. Let $A=\left(a_{j n}\right)_{j, n}$ be a non-negative regular summability matrix and let $\left(L_{n}\right)_{n}$ be a sequence of positive linear operators from $C_{\rho_{1}}(\mathbb{R})$ into $B_{\rho_{2}}(\mathbb{R})$, where ρ_{1} and ρ_{2} satisfy

$$
\lim _{|x| \rightarrow \infty} \frac{\rho_{1}(x)}{\rho_{2}(x)}=0
$$

Then

$$
s t_{A}-\lim _{n}\left\|L_{n} f-f\right\|_{\rho_{2}}=0 \quad \text { for all } \quad f \in C_{\rho_{1}}(\mathbb{R})
$$

if and only if

$$
s t_{A}-\lim _{n}\left\|L_{n} F_{v}-F_{v}\right\|_{\rho_{1}}=0, \quad v=0,1,2,
$$

where $F_{v}(x)=\frac{x^{v} \rho_{1}(x)}{1+x^{2}}, v=0,1,2$.
We next consider a sequence $\left(q_{n}\right)_{n}, q_{n} \in(0,1)$, such that

$$
\begin{equation*}
s t-\lim _{n} q_{n}=1 \tag{3.1}
\end{equation*}
$$

Theorem 3.2. Let $\left(q_{n}\right)_{n}$ be a sequence satisfying (3.1). Then for all $f \in C_{\rho_{0}}\left(\mathbb{R}_{+}\right)$, we have

$$
s t-\lim _{n}\left\|M_{n, q}(f ; \cdot)-f\right\|_{\rho_{\alpha}}=0, \quad \alpha>0 .
$$

Proof. It is clear that

$$
\begin{equation*}
s t-\lim _{n}\left\|M_{n, q_{n}}\left(e_{0} ; \cdot\right)-e_{0}\right\|_{\rho_{0}}=0 . \tag{3.2}
\end{equation*}
$$

Based on equation (2.5), we have

$$
\begin{aligned}
\frac{\left|M_{n, q_{n}}\left(e_{1}, x\right)-e_{1}(x)\right|}{1+x^{2}} & \leq\left\|e_{0}\right\| \frac{1}{q_{n}^{2}[n-1]_{q_{n}}} \\
& \leq \frac{1}{[n-1]_{q_{n}}}
\end{aligned}
$$

Since $s t-\lim _{n} q_{n}=1$, we get $s t-\lim _{n} \frac{1}{[n-1]_{q_{n}}}=0$ and thus

$$
\begin{equation*}
s t-\lim _{n}\left\|M_{n, q_{n}}\left(e_{1} ; \cdot\right)-e_{1}\right\|_{\rho_{0}}=0 \tag{3.3}
\end{equation*}
$$

By using (2.7), we have

$$
\begin{aligned}
\frac{\left|M_{n, q_{n}}\left(e_{2}, x\right)-e_{2}(x)\right|}{1+x^{2}} & \leq\left\|e_{0}\right\|\left(\frac{1}{[n-1]_{q_{n}}}+\frac{1}{[n-1]_{q_{n}}[n-2]_{q_{n}}}\right) \\
& \leq \frac{1}{[n-1]_{q_{n}}}+\frac{1}{[n-2]_{q_{n}}^{2}} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
s t-\lim _{n}\left\|K_{n, q_{n}}\left(e_{2} ; \cdot\right)-e_{2}\right\|_{\rho_{0}}=0 \tag{3.4}
\end{equation*}
$$

Finally, using (3.2), (3.3) and (3.4), the proof follows from Theorem 3.1 by choosing $A=C_{1}$, the Cesàro matrix of order one and $\rho_{1}(x)=1+x^{2}, \rho_{2}(x)=1+x^{2+\alpha}, x \in \mathbb{R}_{+}, \alpha>0$.

4. Order of Approximation

We now recall the concept of modulus of continuity. The modulus of continuity of $f(x) \in$ $C[0, a]$, denoted by $\omega(f, \delta)$, is defined by

$$
\begin{equation*}
\omega(f, \delta)=\sup _{|x-y| \leq \delta ; x, y \in[0, a]}|f(x)-f(y)| . \tag{4.1}
\end{equation*}
$$

The modulus of continuity possesses the following properties (see [9]):

$$
\begin{equation*}
\omega(f, \lambda \delta) \leq(1+\lambda) \omega(f, \delta) \tag{4.2}
\end{equation*}
$$

and

$$
\omega(f, n \delta) \leq n \omega(f, \delta), \quad n \in \mathbb{N}
$$

Theorem 4.1. Let $\left(q_{n}\right)_{n}$ be a sequence satisfying (3.1). Then

$$
\begin{equation*}
\left|M_{n, q}(f ; x)-f\right| \leq 2 \omega\left(f, \sqrt{ } \delta_{n}\right) \tag{4.3}
\end{equation*}
$$

for all $f \in C[0,1]$, where

$$
\begin{equation*}
\delta_{n}=M_{n, q}\left((q t-x)^{2} ; x\right) \tag{4.4}
\end{equation*}
$$

Proof. By the linearity and monotonicity of $M_{n, q}$, we get

$$
\begin{aligned}
\left|M_{n, q}(f ; x)-f\right| & \leq M_{n, q}(|f(t)-f(x)| ; x) \\
& =\sum_{k=0}^{\infty} m_{n, k, q}(x) \int_{0}^{1} b_{n, k, q}(t)|f(q t)-f(x)| d_{q} t .
\end{aligned}
$$

Also

$$
\begin{equation*}
|f(q t)-f(x)| \leq\left(1+\frac{(q t-x)^{2}}{\delta^{2}}\right) \omega(f, \delta) \tag{4.5}
\end{equation*}
$$

By using (4.5), we obtain

$$
\begin{aligned}
\left|M_{n, q}(f ; x)-f\right| & \leq \sum_{k=0}^{\infty} m_{n, k, q}(x) \int_{0}^{1} b_{n, k, q}(t)\left(1+\frac{(q t-x)^{2}}{\delta^{2}}\right) \omega(f, \delta) d_{q} t \\
& =\left(M_{n, q}\left(e_{0} ; x\right)+\frac{1}{\delta^{2}} M_{n, q}\left((q t-x)^{2} ; x\right)\right) \omega(f, \delta)
\end{aligned}
$$

and

$$
\begin{aligned}
M_{n, q}\left((q t-x)^{2} ; x\right)= & q^{2} M_{n, q}\left(e_{2} ; x\right)+x^{2} M_{n, q}\left(e_{0} ; x\right)-2 q x M_{n, q}\left(e_{1} ; x\right) \\
\leq & (1-q)^{2} x^{2}+\frac{(1+q)^{2}}{q} \frac{\left(1-q^{n-1} x\right)}{[n-1]} x \\
& +\frac{(1+q)}{q^{2}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1][n-2]} \\
& +2 x q^{2}\left(\frac{\left(1+q^{n-2}\right)}{[n+1]}\right)-2 q^{n-1}(1-q) x^{3} .
\end{aligned}
$$

By (3.1) and the above equation, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty, q_{n} \rightarrow 1} M_{n, q}\left((q t-x)^{2} ; x\right)=0 \tag{4.6}
\end{equation*}
$$

So, letting $\delta_{n}=M_{n, q}\left((q t-x)^{2} ; x\right)$ and taking $\delta=\sqrt{ } \delta_{n}$, we finally obtain

$$
\left|M_{n, q}(f ; x)-f\right| \leq 2 \omega\left(f, \sqrt{ } \delta_{n}\right)
$$

As usual, a function $f \in \operatorname{Lip}_{M}(\alpha),(M>0$ and $0<\alpha \leq 1)$, if the inequality

$$
\begin{equation*}
|f(t)-f(x)| \leq M|t-x|^{\alpha} \tag{4.7}
\end{equation*}
$$

for all $t, x \in[0,1]$.
Theorem 4.2. For all $f \in \operatorname{Lip}_{M}(\alpha)$ and $x \in[0,1]$, we have

$$
\begin{equation*}
\left|M_{n, q}(f ; x)-f\right| \leq M \delta_{n}^{\alpha / 2} \tag{4.8}
\end{equation*}
$$

where $\delta_{n}=M_{n, q}\left(\psi_{2} ; x\right)$.
Proof. Using inequality 4.7 and Hölder's inequality with $p=\frac{2}{\alpha}, q=\frac{2}{2-\alpha}$, we get

$$
\begin{aligned}
\left|M_{n, q}(f ; x)-f\right| & \leq M_{n, q}(|f(t)-f(x)| ; x) \\
& \leq M M_{n, q}\left(|t-x|^{\alpha} ; x\right) \\
& \leq M M_{n, q}\left(|t-x|^{2} ; x\right)^{\alpha / 2} .
\end{aligned}
$$

Taking $\delta_{n}=M_{n, q}\left(\psi_{2} ; x\right)$, we get

$$
\left|M_{n, q}(f ; x)-f\right| \leq M \delta_{n}^{\alpha / 2} .
$$

Theorem 4.3. For all $f \in C[0,1]$ and $f(1)=0$, we have

$$
\begin{equation*}
\left|A_{n, k, q}(f)\right| \leq A_{n, k, q}(|f|) \leq \omega\left(f, q^{n}\right)\left(1+q^{-n}\right), \quad(0 \leq k \leq n) . \tag{4.9}
\end{equation*}
$$

Proof. Clearly

$$
\begin{aligned}
|f(q t)| & =|f(q t)-f(1)| \\
& \leq \omega\left(f, q^{n}(1-q t)\right) \\
& \leq \omega\left(f, q^{n}\right)\left(1+\frac{(1-q t)}{q^{n}}\right) .
\end{aligned}
$$

Thus by using Lemma 2.1, we get

$$
\begin{aligned}
\left|A_{n, k, q}(f)\right| & \leq A_{n, k, q}(|f|) \\
& =\int_{0}^{1} b_{n, k, q}(t)|f(q t)| d_{q} t \\
& \leq \omega\left(f, q^{n}\right) \int_{0}^{1} b_{n, k, q}(t)\left(1+\frac{(1-q t)}{q^{n}}\right) d_{q} t \\
& =\omega\left(f, q^{n}\right)\left(\left(1+\frac{1}{q^{n}}\right) \int_{0}^{1} b_{n, k, q}(t) d_{q} t-\frac{1}{q^{n}} \int_{0}^{1} b_{n, k, q}(t)(q t) d_{q} t\right) \\
& =\omega\left(f, q^{n}\right)\left(\left(1+\frac{1}{q^{n}}\right)-\frac{1}{q^{n-1}} \frac{[k+1]}{[k+n+1]}\right) \\
& \leq \omega\left(f, q^{n}\right)\left(1+q^{-n}\right) .
\end{aligned}
$$

References

[1] G.G. LORENTZ, Bernstein Polynomials, Mathematical Expositions, University of Toronto Press, Toronto, 8 (1953).
[2] O. DOGRU AND V. GUPTA, Korovkin-type approximation properties of bivariate q-Meyer-Konig and Zeller operators, Calcolo, 43(1) (2006), 51-63.
[3] T. TRIF, Meyer-Konig and Zeller operators based on q integers, Revue d'Analysis Numerique et de Theorie de l' Approximation, 29(2) (2000), 221-229.
[4] V. GUPTA, On new types of Meyer Konig and Zeller operators, J. Inequal. Pure and Appl. Math., 3(4) (2002), Art. 57.
[5] U. ABEL, M. IVAN AND V. GUPTA, On the rate of convergence of a Durrmeyer variant of Meyer Konig and Zeller operators, Archives Inequal. Appl., (2003), 1-9.
[6] H. WANG, Properties of convergence for q-Meyer Konig and Zeller operators, J. Math. Anal. Appl., in press.
[7] A. ALTIN, O. DOGRU And M.A. OZARSLAN, Rate of convergence of Meyer-Konig and Zeller operators based on q integer, WSEAS Transactions on Mathematics, 4(4) (2005), 313-318.
[8] V. GUPTA AND H. SHARMA, Statistical approximation by q integrated Meyer-Konig-Zeller and Kantrovich operators, Creative Mathematics and Informatics, in press.
[9] O. DUMAN AND C.O. RHAN, Statistical approximation by positve linear operators, Studia Math., 161(2) (2006), 187-197.
[10] T. ERNST, The history of q-calculus and a new method, Department of Mathematics, Uppsala University, 16 U.U.D.M. Report, (2000).
[11] V. GUPTA AND W. HEPING, The rate of convergence of q-Durrmeyer operators for $0<q<1$, Math. Meth. Appl. Sci., (2008).
[12] V. KAC And P. CHEUNG, Quantum Calculus, Universitext, Springer-Verlag, NewYork, (2002).

[^0]: The author would like to thank Dr Vijay Gupta, NSIT, New Delhi for his valuable suggestions and remarks during the preparation of this work.

 094-09

