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Abstract

In this paper by using an almost increasing sequence a general theorem on

¢ — | C, |, summability factors, which generalizes some known results, has

been proved under weaker conditions.
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Let (¢,,) be a sequence of complex numbers anddlet,, be a given infinite

series with partial sums,,). We denote by % andt? then-th Cesaro means of

ordera, with o > —1, of the sequences;,) and(na,,), respectively, i.e.,

o 1 . a—1
(1.1) o= A ; Ao ls,
and
1 n
1.2 A p— Acl
( ) tn Ag ; n—vvav’
where

(1.3) Ay =0(n%), a>-1, Aj=1 and A% =0 for n>0.

The series)_ a,, is said to beC, a|, summable fok > 1 anda > —1, if
(see [])

o.0] oo 1
(1.4) St tos —oaf =Y - 2" < 0.
n=1 n=1

and it is said to béC', a; 5| , summable fok > 1, a > —1 andj > 0, if (see

[°D)

x o0
(1.5) Zn6k+k_1 ‘Uff — aﬁfl‘k = Zn’gk_l |tg|k < 00.
n=1 n=1
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The seriesy  a,, is said to bep—|C, a|, summable fo > 1 anda > —1, if
(see [])

(1.6) S0k fpata]F < oo,
n=1

In the special case when, = n'~+ (resp.y, = n’t'~%) p—|C, a|, sSumma-
bility is the same a&’, o, (resp.|C, a; B|x) summability.

Bor [3] has proved the following theorem for—|C, 1|, summability factors
of infinite series.

Theorem 1.1.Let(X,,) be a positive non-decreasing sequence an@)\g} be
a sequence such that

(1.7) |IAn] X, =O(1) as n— oo

and

(1.8) D X, [APA|=0(1) as n— .
v=1

If there exists ar > 0 such that the sequence‘* |y, |") is non-increasing
and
(1.9) D v eut]" = O(X,) as n— oo,

v=1

then the seried " a,\, is o—|C, 1|, summable fok > 1.
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The aim of this paper is to generalize Theorérhunder weaker conditions
for o—|C, a|;, summability. For this we need the concept of almost increasing
sequences. A positive sequen@eg) is said to be almost increasing if there
exists a positive increasing sequengeand two positive constantd and B
such thatdc, < b, < Bec, (see []). Obviously every increasing sequence
is an almost increasing sequence but the converse need not be true as can be
seen from the example, = ne(-Y". So we are weakening the hypotheses
of the theorem by replacing the increasing sequence with an almost increasing

sequence. A Study on Almost Increasing
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Now, we shall prove the following:

Theorem 2.1. Let (X,,) be an almost increasing sequence and the sequence
(A,) such that conditions1(7) — (1.8) of Theoreml.1 are satisfied. If there
exists are > 0 such that the sequen¢e** |, |*) is non-increasing and if the
sequencéw?), defined by (se€’])

| £ a=1

(2.1) we

max [t2], 0<a<1
1<v<n

satisfies the condition

> W ea))* = O(X,) as m — oo,

n=1

(2.2)

then the serie$ | a, A\, is o—|C, o/, summable fok > 1, 0 < o« < 1 and

ko +¢e > 1.
We need the following lemmas for the proof of our theorem.

Lemma 2.2.([4]). If 0 < a < 1andl < v < n, then

(2.3)
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Lemma 2.3. ([2]). If (X,,) is an almost increasing sequence and the conditions
(1.7) and (1.8) of Theoreni..1 are satisfied, then

@4 3 X, A0 = 0()

and

(2'5) me |A)‘m| = O<1>7 m — 0. A Study on Almost Increasing
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2.1

Let (7)) be then—th (C, «), with 0 < a < 1, mean of the sequenc¢ea, \,,).

Then, by (.2), we have

:—ZA SUAy Ay

Using Abel’s transformation, we get

T AQZA)\ ZAn ppap—l——ZA 2V,
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Now, whenk > 1, applying Holder’s inequality with indicek andk’, where
1+ L1 =1 wegetthat

m+1 .
Z n~* ‘SOnTai!l‘
n=2
m+1 n—1 k
_ a\ — k a, o
< St {5 a0 |
n=2 v=1
mA1 nt o A Study on Almost Increasing
=0(1) Z n~Fn-ok |<,0n {Z Uak |A)\ |} {Z |A/\v’} Sequences
"T;Q k 1 - |80n v=1 Huseyin Bor
12 e wd) 1and D
n= w;1 Title Page
m m+ ne k
—om Y tugtian 3 et Contene
v=t =t o «“ »»
m m 1
e a €e— k
= 0() Y v @ AN vl Y < >
vt " Zjl I Go Back
=0 3wt an o e [ Close
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m—1

(1 X 1@ AN X, +O1min X
=1
—1

= 0(1) Z |A2),] X, + 01 Z]AAU+1\XU+1+O()

v=1 v=1
=0(1) as m — o0,

by virtue of the hypotheses of Theoréii and Lemma2.3.

AN | X

Again, since\,| = O(1/X,,) = O(1), by (1.7), we have that

> 7 eaTi *

- i 0l Pl Ll

— o) fj Al
1>mZA|A|Z (Wt o)t + O A, rZ
1>mz AN X, + O(1) An| X = O(1) as

n=1

by virtue of the hypotheses of Theoréiri and Lemma2.3.

n~F (W |ea )

m — 00,
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Therefore, we get that

m

> 0t eIy,

n=1

k

=0(1) as m — oo,

This completes the proof of the theorem.
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1. If we take(X,,) as a positive non-decreasing sequeneer- 1 andy,, =
n'~% in Theorem2.1, then we get Theorerh. 1.

2. If we take(X,,) as a positive non-decreasing sequemnce; 1 andy,, =
n'~% in Theorem2.1, then we get a result due to Mazhat for |C, 1]
summability factors of infinite series.

3. If we takee = 1 andyp,, = n'"* (resp.e = 1 andy, = n’t1-%), then we
get a new result related t@', |, (resp.|C, «; 5|,) summability factors.
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