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ABSTRACT. Letn points be arbitrarily placed i (D), a disk inR? having diameteD. Denote
by /;; the Euclidean distance between paiaind;. In this paper, we show

n D2
Z min lf- < —.
g#i 0.3972

=1
We then extend the result R?.
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1. INTRODUCTION

To estimate upper bounds on the maximum number of simultaneously successful wireless
transmissions and the maximum achievable per-node end-to-end throughput under the general
network scenario, Arpacioglu and Haas [1] introduced the following interesting inequalities.
For the sake of clarity in presentation, we use the notatigmin,. ;{S;} to denote the index
of the smallest point in the s¢t;} (j € J). If there are several smallest elements, we take the
first one.

Theorem 1.1([1]). Let B(D) be a disk inR? having diameterD. Letn points be arbitrarily
placed inB(D). Suppose each point is indexed by a distinct integer betweenn. Let/;; be
the Euclidean distance between poingndj. Define thenth closest point to point, a;,,, and
the Euclidean distance between pairind themth closest point to point, u;,,, as follows:
an = argmin {l;}, 1<i<n,
je{1,2,..., n},
J#i
Qi = argmin {l;}, 1<i<n,2<m<n-—1,
j€{1,2,...,n},
je{itu{a

095-09


mailto:dearyxia@gmail.com
mailto:liuhongying@buaa.edu.cn
http://www.ams.org/msc/

2 YONG XIA AND HONG-YING LIU

Ui, = lig;,, 1<t1<n, 1<m<n-—1

Then
(1.1) Yoz, < 1<m<n-1,
i=1 €2
where Y
2 3
= — — — =~ 0.3910.
@ 3 2w

We observed [2] that the interpoint distance sum inequality (1.1) can be simply yet signifi-
cantly strengthened.

Proposition 1.2. DefineB(D), D, n, lij, Gin, Wim, ¢2 @S in Theorern 1]1. Then

(1.2) Zufm < = , 1 <m <cn,
i=1 €2

(1.3) Zufm <nD? cmn<m<n-—1.
i=1

The proof follows from|[(1.]l) and the fact thag,, < D.

As a direct application, we improved [2] the upper bounds on the maximum number of simul-
taneously successful wireless transmissions and the maximum achievable per-node end-to-end
throughput under the same general network scenario as in Arpacioglu and Haas [1].

2. MAIN RESULT

In this section, we show that the interpoint distance sum inequility (1.1) whernl can be
further improved.

Theorem 2.1.DefineB(D), D, n, l;j, Gim, Wim, ¢2 @S in Theorerh 1|1. Then

n

2
> < g
1 =0.3972

1=

Proof. The caser = 2 is trivial to verify sincem = 1 andu;,, < D. So we assume > 3. The
proof is based on that of Theor¢m[1.1 [1]. Denote the disk of diameted centef by B;(z).
Define the following sets of disks

Ry, ={Bij(ujm):1<i<n}, 1<m<n-—1.

First consider the disks i®;. As shown in[[1], all disks inR; are non-overlapping, i.e., the
distance between the centers of any two disks is smaller than the sum of the radii of the two
disks.

Denote byA(X) the area of a regioX. We try to find a lower bound offi,,, := A(B(D) N
Bi(uim))/A(B;(uin,)) for everyl < i < nandl < m < n — 1. Pick any pointS from the
boundary ofB(D) and consider the overlap ratio

A(B(D) N Bs(uin)) .
S = , 1<i<n, 1<m<n—1.
" ABs () SrEm s

Using Figur, one can obtain the geometrical computation fornfijla= f(y)|,_=

where

(2.2) f(y) ::% (1—%) arccos (%) —i—%—%@/%—i
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Figure 2.1: Computation of the overlap ratio betweB(D) and B; (w;, ).

Actually f(y) is a decreasing function of. We havefs; > f(1) due tou;, < D. Also

im =

fim > f5.. Settinge, := f(1), we obtain the following lower bound ofy,, for everyl <i <n
andl § m<n-—1,

2
fim > ca, Wherecy = - — ﬁ ~ 0.3910.
3 2T

Therefore the area of the parts of the disk®jpthat lie in B(D) is at least, A(B(D)). Hence,
foreveryl <i<mnandl <m<n-—1,

For a given valuen, adding then inequalities in[(2.R), we obtain

(2.3) ZA i (Wim) >CQZA i (Wim)) Vi<m<n-1.
Since all dISkS ik, are non-overlapping, we have
(2.4) zya (i) 1 B(D)) < A(B(D)).

Inequalities[(2.3) an.4) |mply
A(B(D)) = ¢ Y A(Bi(uim)).

=1
Notice thatA(B(D)) = #D?/4 and A(B;(u;1)) = wu? /4. Therefore,

n

(2.5) Z%sg

=1

Also, it is easy to see thai(y), defined in[(2.]L), is a concave function. Théfy) has a linear
underestimation, denoted by

l(y) =c+ k— ky?
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Figure 2.2: Variations off (y) and(y).
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Figure 2.3: Variation off (y) — I(y).

where 0 |
k= % = lim f(y) — f(1) = 0.5 — ¢ ~ 0.1090.
_ y—
Figure2.2 shows the variation ¢fy) andl(y), respectively. Figurg 2.3 shows the variation
of f(y) — I(y) with respect tay.
Now we have

fin = fi = £ (55) 2 o+ b — B2

D D
Therefore, forevery <: <nandl <m <n —1,
(2.6) A(Bi(uim) N B(D)) = (c2 + k)A(Bi(uim)) — k’ugn A(B;(tim)).
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Adding all then inequalities in[(2.) for a givem, we obtain

ZA :(uim) N B(D))

n

Z<C2+k)ZA< (Uim) __Zu”” i(Uim)), V1<m<n-—1.

=1

Using (2.4) and the factd(B(D)) = 7#D?/4 and A(B;(u;1)) = wu3 /4, we obtain

n k n
2 2 3
(2.7) D* > (c2 + k) ;uil ) ;uzl

Now consider the following optimization problem & 3):

(2.8) maxz ug
i=1
(2.9) s.t. uf < —
i=1 €2

The objective functiorn(2]8) is strictly convex and the feasible region defingd By (4.9) 4 (2.10)
is also convex. Since > 3 and2 < Ci < 3, the mequallty) holds at any of the optimal
solutions. Therefore the optimal solutions [of {2.8) — (2.10) must occur at the vertices of the set

D2
{(ull)Zui:—, OSU“ SD,Z:L,?’L}
C

i=1 2
Any (u;;) with two components lying strictly betwed&nand D cannot be a vertex. Therefore
every optimal solution 08) +(2.10) h%%J components with the valuB, one component

with the value é - Léj D and the others are zeros, wherg is the largest integer less than

or equal tor. Then the optimal objective value is

oG-l

In other words, we have proved for valig, that

i—1 Cfg Cg Cfg

s (e (1] ([
(2.11) Dz@;uﬂ+k<;uﬂ (LQJ*(CQ LQD)D)

Then we have

> Ui <
i=1 Ca (1 + ké)
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Comparing with[(2.5), we actually obtain a negv

Co (1 + k’é)
(2.12) = — ~ 0.3957

ver([E]+ (- 2)))
iilufl < f—;

lteratively repeating the same approach, we obtain a sequefitk (i = 1,2,...), where
9 = ¢y, ¢V =¢f and

such that

(2.13) ) = 05

Tk () - DY)

Clearly, we can conclude that’ < % for all i since the denominator above is greater than
1. Secondly, we prove that?) > % for all 7 by mathematical induction. We have shown that
¢® > Landc® > 1. Nowassume® > 1. Since

1 1 1 <1 1 1 _1
|t @ @) Sla| o @)~ @

0.5 L 05 05 1
1+k<LC}i>j+(C(+)_u+)J)%>—1+c% 143k 3

Njw

we have

D)

To sum up, we obtaid < ¢ < 1, which implies that 5| = 2. Therefore, the iterative
formula of ‘1 (2.13) becomes

) _ 0.5
— —
1+k(2+(c(%,—2)2>

Itis easy to verify that the sequenf€? } is monotone increasing with a limit val0e3972. [0

3. EXTENSION

Theorem 3.1. Let B(D) be a sphere irR? having diameterD. Letn points be arbitrarily
placed inB(D). l;;, aim, u:, are similarly defined as in Theorgm [L.1. Then

n

3.1 EA ——

(3:1) £ = 03168

(3.2) Zuf’m < m , 2<m<c3n,
i=1 €3

(3.3) Zuf’m <nD? ecgn<m<n-—I1,
i=1

wherecs = 0.3125.
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Proof. To begin with, we prove the first inequalify (8.1). The case 2 is trivial sincem = 1
andu;,, < D. So we assume that> 3. The proof is based on that of Theorem| 111 [1]. Denote
the sphere of diameterand centei by B;(z). Define the following sets of spheres

Ry, ={Bi(ujm):1<i<n}, 1<m<n-—1.

First consider the spheres ity. As shown in[[1], all spheres ik, are non-overlapping, i.e.,
the distance between the centers of any two spheres is smaller than the sum of the radii of the
two spheres.

Denote byA(X) the volume of aregiorX. We try to find alower bound of,,, :== V(B(D)N
Bi(uim))/V (Bi(uiy)) for everyl < i < nandl < m < n — 1. Pick any pointS from the
boundary ofB(D) and consider the overlap ratio

s . V(B(D)N Bs(uwim))
(3.4) = s (u;» :

Using a3-dimensional version of Figufe 2.1, one can obtain the geometrical computation
formula: /7, = f(y)|,— un , where

1<i<n, 1<m<n—1.

1 3y
Actually f(y) is a decreasing function of. We havefs; > f(1) due tou;,, < D. Also
fim = fi.. Settinges := f(1), we obtain the following lower bound ofy,, for everyl <i <n

and1l § m <n-1,
)
fim > c3, where c¢3= 6= 0.3125.

Therefore the area of the parts of the disk&jpthat lie in B(D) is at leasts A(B(D)). Hence,
foreveryl <i<mnandl <m<n-1,

(3.9) V(Bi(uim) N B(D)) = 3V (Bi(uim)).

For a given valuen, adding the: inequalities in[(3.p), we obtain
(3.6) Zv i (tim) >CSZV i(wim)), V1<m<n-—1
Since all spheres iR; are non-overlapping, we have
(3.7) Z V(B;(uim) N B(D)) < V(B(D)).
Inequalities[(3.6) an.?) |mply

VIBID) = e 3 V(Bi(un).

i=1

Notice thatV (B(D)) = nD?/6 andV (B;(u;1)) = mu, /6. Therefore,

3.8 § o< .
( ) — Up > Cs
Definingk = = = 0.1875, we have
Uim Uim
fzm_ 1m—f< D ) ZCg—i-k’—k D .
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Therefore, forevery <i: <nandl <m <n —1,

(3.9) V(Bi(tim) N B(D)) > (c5 + k)V(Bi(uim)) — k“g” V(Bi(uin)).

Adding then inequalities in[(3.P) for a givem, we obtain
(3.10) Z V(B;(uim) N B(D))

> (c3+ k) ZV i(Wim)) __Zu“” i(Uim)), V1<m<n-—1.

Using (3.7) and the factg (B(D)) = #D?/6 andV (B;(u;1)) = wus, /6, we have

n k n
(3.11) D? > (cg,+k)2u§’1 — EZufl.
=1 =1
Now consider the following optimization problems ¢ 3):
(3.12) maxz ug,
=1
n D3
(3.13) S.t. uj < —
i=1 s

The objective functior{ (3.12) is strictly convex and the feasible region defingd by (3[13) }- (3.14)
is also convex. Since > 3 and2 < — < 3, the inequality|(3.13) holds at any of the optimal
solutions. Therefore the optimal solutlons@ 12) - (B. 1;5 must occur at vertices of the set

{(uﬂ):Zug’l:—, OguilgD,izl,...,n}.
¢

i=1 3

Any (u;;) with two components lying strictly betweénand D cannot be a vertex. Therefore
every optimal solution of (3.12) + (3.L4) h%%J components with the valuB, one component

with the value, /é - ﬁJ D and the others are zeros, wherg is the largest integer less than
or equal tor. Then the optimal objective value is

oG-l

In other words, we have proved for valig, that

g ujy < { JD4 ( {1J) D*.
i1 C3 C3 C3
Now (3.11) becomes

(3.15) D3> @,gu;ﬁ +k <Z:; ud — (ESJ + (é — Ll—gD%) D3> .
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Then we have

n D3<1+k(ci +(=— |2 3))

(oY)
i=1 he C3(1+ké)

Comparing with[(3.8), we actually obtain a ney

C3 (1 +k%>
4
k(2] (- [2)))
iuf’l < D—f
i=1 €3

lteratively repeating the same approach, we obtain a sequefitg (i = 1,2,...), where
9 =¢3, V) =¢f and

(3.16) o =

such that

0.5 ‘
4k () + (G - 1))

First we conclude that®) < % for all . We prove this by mathematical induction. We have
¢® =0.3125 < 3. Now assume that”) < 1, which also implies| 75| > 3. Then based on

(3.17), we have

(3.17) D =

0.5
4
Lk (L) + (- 1))
0.5 0.5
<

1
STtk|L] S1+3k 3

D)

Secondly, we prove

. 1
(l)>_
“ 71

for all i by mathematical induction. We have shodfi > 1. Now assume” > 1. Since

1 1 L | I I B A

@ | T\ o) S| T\ @) T @

. 0.5 0.5 0.5

Y = 1 1 1 3 Z1 P 14+ 4k
1+k<L >J+(c<i>_tc<_i>J)3> T

(i

we have

>1
1

To sum up, we obtaif < ¢ < z, which implies thatl i; | = 3. Therefore, the iterative

formula [2.18) ofc"t)) becomes

. 0.5
i) =

4
3

1+k(2+(6(—i>—3) )

It is easy to verify that the sequeng€?” } is monotone increasing with a limit valie3168.
Next, consider the spheres i, for every2 < m < n — 1. In this case, there can be
overlaps between some pairs of sphereg,jn However, as shown in[1], any arbitrarily chosen
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point within B(D) can belong to at most: overlapping spheres from,,,. Then for every
2<m<n-1,we have

D V(Bi(uin) N B(D)) < mV(B(D))

It follows that .
mD? > c3 Z ug) .

=1
The last inequality| (3]3) directly follows from the fag,, < D. O
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