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ABSTRACT. Let n points be arbitrarily placed inB(D), a disk inR2 having diameterD. Denote
by lij the Euclidean distance between pointi andj. In this paper, we show

n∑
i=1

(
min
j 6=i

l2ij

)
≤ D2

0.3972
.

We then extend the result toR3.
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1. I NTRODUCTION

To estimate upper bounds on the maximum number of simultaneously successful wireless
transmissions and the maximum achievable per-node end-to-end throughput under the general
network scenario, Arpacioglu and Haas [1] introduced the following interesting inequalities.
For the sake of clarity in presentation, we use the notationargminj∈J{Sj} to denote the index
of the smallest point in the set{Sj} (j ∈ J). If there are several smallest elements, we take the
first one.

Theorem 1.1([1]). Let B(D) be a disk inR2 having diameterD. Let n points be arbitrarily
placed inB(D). Suppose each point is indexed by a distinct integer between1 andn. Let lij be
the Euclidean distance between pointsi andj. Define themth closest point to pointi, aim, and
the Euclidean distance between pointi and themth closest point to pointi, uim, as follows:

ai1 := argmin
j∈{1,2,...,n},

j 6=i

{lij}, 1 ≤ i ≤ n,

aim := argmin
j∈{1,2,...,n},

j /∈{i}∪{aik}
m−1
k=1

{lij}, 1 ≤ i ≤ n, 2 ≤ m ≤ n− 1,
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uim := liaim
, 1 ≤ i ≤ n, 1 ≤ m ≤ n− 1.

Then

(1.1)
n∑

i=1

u2
im ≤ mD2

c2

, 1 ≤ m ≤ n− 1,

where

c2 :=
2

3
−
√

3

2π
≈ 0.3910.

We observed [2] that the interpoint distance sum inequality (1.1) can be simply yet signifi-
cantly strengthened.

Proposition 1.2. DefineB(D), D, n, lij, aim, uim, c2 as in Theorem 1.1. Then
n∑

i=1

u2
im ≤ mD2

c2

, 1 ≤ m < c2n,(1.2)

n∑
i=1

u2
im ≤ nD2, c2n < m ≤ n− 1.(1.3)

The proof follows from (1.1) and the fact thatuim ≤ D.
As a direct application, we improved [2] the upper bounds on the maximum number of simul-

taneously successful wireless transmissions and the maximum achievable per-node end-to-end
throughput under the same general network scenario as in Arpacioglu and Haas [1].

2. M AIN RESULT

In this section, we show that the interpoint distance sum inequality (1.1) whenm = 1 can be
further improved.

Theorem 2.1.DefineB(D), D, n, lij, aim, uim, c2 as in Theorem 1.1. Then
n∑

i=1

u2
i1 ≤

D2

0.3972
.

Proof. The casen = 2 is trivial to verify sincem = 1 anduim ≤ D. So we assumen ≥ 3. The
proof is based on that of Theorem 1.1 [1]. Denote the disk of diameterx and centeri by Bi(x).
Define the following sets of disks

Rm := {Bi(uim) : 1 ≤ i ≤ n}, 1 ≤ m ≤ n− 1.

First consider the disks inR1. As shown in [1], all disks inR1 are non-overlapping, i.e., the
distance between the centers of any two disks is smaller than the sum of the radii of the two
disks.

Denote byA(X) the area of a regionX. We try to find a lower bound onfim := A(B(D) ∩
Bi(uim))/A(Bi(uim)) for every1 ≤ i ≤ n and1 ≤ m ≤ n − 1. Pick any pointS from the
boundary ofB(D) and consider the overlap ratio

fS
im :=

A(B(D) ∩BS(uim))

A(BS(uim))
, 1 ≤ i ≤ n, 1 ≤ m ≤ n− 1.

Using Figure 2.1, one can obtain the geometrical computation formula:fS
im = f(y)|y=

uim
D

,
where

(2.1) f(y) :=
1

π

(
1− 2

y2

)
arccos

(y

2

)
+

1

y2
− 1

π

√
1

y2
− 1

4
.
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Figure 2.1: Computation of the overlap ratio betweenB(D) andBs(uim).

Actually f(y) is a decreasing function ofy. We havefS
im ≥ f(1) due touim ≤ D. Also

fim ≥ fS
im. Settingc2 := f(1), we obtain the following lower bound onfim for every1 ≤ i ≤ n

and1 ≤ m ≤ n− 1,

fim ≥ c2, wherec2 =
2

3
−
√

3

2π
≈ 0.3910.

Therefore the area of the parts of the disks inRm that lie inB(D) is at leastc2A(B(D)). Hence,
for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

(2.2) A(Bi(uim) ∩B(D)) ≥ c2A(Bi(uim)).

For a given valuem, adding then inequalities in (2.2), we obtain

(2.3)
n∑

i=1

A(Bi(uim) ∩B(D)) ≥ c2

n∑
i=1

A(Bi(uim)), ∀ 1 ≤ m ≤ n− 1.

Since all disks inR1 are non-overlapping, we have

(2.4)
n∑

i=1

A(Bi(uim) ∩B(D)) ≤ A(B(D)).

Inequalities (2.3) and (2.4) imply

A(B(D)) ≥ c2

n∑
i=1

A(Bi(uim)).

Notice thatA(B(D)) = πD2/4 andA(Bi(ui1)) = πu2
i1/4. Therefore,

(2.5)
n∑

i=1

u2
i1 ≤

D2

c2

.

Also, it is easy to see thatf(y), defined in (2.1), is a concave function. Thenf(y) has a linear
underestimation, denoted by

l(y) := c2 + k − ky,
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Figure 2.2: Variations off(y) andl(y).
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Figure 2.3: Variation off(y)− l(y).

where

k :=
f(0)− f(1)

1− 0
= lim

y→0
f(y)− f(1) = 0.5− c2 ≈ 0.1090.

Figure 2.2 shows the variation off(y) andl(y), respectively. Figure 2.3 shows the variation
of f(y)− l(y) with respect toy.

Now we have
fim ≥ fS

im = f
(uim

D

)
≥ c2 + k − k

uim

D
.

Therefore, for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

(2.6) A(Bi(uim) ∩B(D)) ≥ (c2 + k)A(Bi(uim))− k
uim

D
A(Bi(uim)).

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 74, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


INTERPOINTDISTANCE SUM INEQUALITY 5

Adding all then inequalities in (2.6) for a givenm, we obtain

n∑
i=1

A(Bi(uim) ∩B(D))

≥ (c2 + k)
n∑

i=1

A(Bi(uim))− k

D

n∑
i=1

uimA(Bi(uim)), ∀1 ≤ m ≤ n− 1.

Using (2.4) and the factsA(B(D)) = πD2/4 andA(Bi(ui1)) = πu2
i1/4, we obtain

(2.7) D2 ≥ (c2 + k)
n∑

i=1

u2
i1 −

k

D

n∑
i=1

u3
i1.

Now consider the following optimization problem (n ≥ 3):

max
n∑

i=1

u3
i1(2.8)

s.t.
n∑

i=1

u2
i1 ≤

D2

c2

(2.9)

0 ≤ ui1 ≤ D, i = 1, . . . , n.(2.10)

The objective function (2.8) is strictly convex and the feasible region defined by (2.9) – (2.10)
is also convex. Sincen ≥ 3 and2 < 1

c2
< 3, the inequality (2.9) holds at any of the optimal

solutions. Therefore the optimal solutions of (2.8) – (2.10) must occur at the vertices of the set{
(ui1) :

n∑
i=1

u2
i1 =

D2

c2

, 0 ≤ ui1 ≤ D, i = 1, . . . , n

}
.

Any (ui1) with two components lying strictly between0 andD cannot be a vertex. Therefore

every optimal solution of (2.8) – (2.10) has
⌊

1
c2

⌋
components with the valueD, one component

with the value

√
1
c2
−
⌊

1
c2

⌋
D and the others are zeros, wherebxc is the largest integer less than

or equal tox. Then the optimal objective value is⌊
1

c2

⌋
D3 +

(
1

c2

−
⌊

1

c2

⌋) 3
2

D3.

In other words, we have proved for validui1 that
n∑

i=1

u3
i1 ≤

⌊
1

c2

⌋
D3 +

(
1

c2

−
⌊

1

c2

⌋) 3
2

D3.

Now (2.7) becomes

(2.11) D2 ≥ c2

n∑
i=1

u2
i1 + k

(
n∑

i=1

u2
i1 −

(⌊
1

c2

⌋
+

(
1

c2

−
⌊

1

c2

⌋) 3
2

)
D2

)
.

Then we have

n∑
i=1

u2
i1 ≤

D2

(
1 + k

(⌊
1
c2

⌋
+
(

1
c2
−
⌊

1
c2

⌋) 3
2

))
c2

(
1 + k 1

c2

) .
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Comparing with (2.5), we actually obtain a newc+
2 :

(2.12) c+
2 =

c2

(
1 + k 1

c2

)
1 + k

(⌊
1
c2

⌋
+
(

1
c2
−
⌊

1
c2

⌋) 3
2

) ≈ 0.3957

such that
n∑

i=1

u2
i1 ≤

D2

c+
2

.

Iteratively repeating the same approach, we obtain a sequence{c(i)} (i = 1, 2, . . . ), where
c(0) = c2, c(1) = c+

2 and

(2.13) c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 3
2

) .

Clearly, we can conclude thatc(i) < 1
2

for all i since the denominator above is greater than
1. Secondly, we prove thatc(i) > 1

3
for all i by mathematical induction. We have shown that

c(0) > 1
3

andc(1) > 1
3
. Now assumec(i) > 1

3
. Since⌊

1

c(i)

⌋
+

(
1

c(i)
−
⌊

1

c(i)

⌋) 3
2

≤
⌊

1

c(i)

⌋
+

(
1

c(i)
−
⌊

1

c(i)

⌋)
=

1

c(i)
,

we have

c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 3
2

) ≥ 0.5

1 + k
c(i)

>
0.5

1 + 3k
>

1

3
.

To sum up, we obtain1
3

< c(i) < 1
2
, which implies that

⌊
1

c(i)

⌋
= 2. Therefore, the iterative

formula ofc(i+1) (2.13) becomes

c(i+1) =
0.5

1 + k
(
2 +

(
1

c(i)
− 2
) 3

2

) .

It is easy to verify that the sequence{c(i)} is monotone increasing with a limit value0.3972. �

3. EXTENSION

Theorem 3.1. Let B(D) be a sphere inR3 having diameterD. Let n points be arbitrarily
placed inB(D). lij, aim, uim are similarly defined as in Theorem 1.1. Then

n∑
i=1

u3
i1 ≤

D3

0.3168
,(3.1)

n∑
i=1

u3
im ≤ mD3

c3

, 2 ≤ m < c3n,(3.2)

n∑
i=1

u3
im ≤ nD3, c3n < m ≤ n− 1,(3.3)

wherec3 = 0.3125.
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Proof. To begin with, we prove the first inequality (3.1). The casen = 2 is trivial sincem = 1
anduim ≤ D. So we assume thatn ≥ 3. The proof is based on that of Theorem 1.1 [1]. Denote
the sphere of diameterx and centeri by Bi(x). Define the following sets of spheres

Rm := {Bi(uim) : 1 ≤ i ≤ n}, 1 ≤ m ≤ n− 1.

First consider the spheres inR1. As shown in [1], all spheres inR1 are non-overlapping, i.e.,
the distance between the centers of any two spheres is smaller than the sum of the radii of the
two spheres.

Denote byA(X) the volume of a regionX. We try to find a lower bound onfim := V (B(D)∩
Bi(uim))/V (Bi(uim)) for every1 ≤ i ≤ n and1 ≤ m ≤ n − 1. Pick any pointS from the
boundary ofB(D) and consider the overlap ratio

(3.4) fS
im :=

V (B(D) ∩BS(uim))

V (BS(uim))
, 1 ≤ i ≤ n, 1 ≤ m ≤ n− 1.

Using a3-dimensional version of Figure 2.1, one can obtain the geometrical computation
formula:fS

im = f(y)|y=
uim
D

, where

f(y) :=
1

2
− 3y

16
.

Actually f(y) is a decreasing function ofy. We havefS
im ≥ f(1) due touim ≤ D. Also

fim ≥ fS
im. Settingc3 := f(1), we obtain the following lower bound onfim for every1 ≤ i ≤ n

and1 ≤ m ≤ n− 1,

fim ≥ c3, where c3 =
5

16
= 0.3125.

Therefore the area of the parts of the disks inRm that lie inB(D) is at leastc3A(B(D)). Hence,
for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

(3.5) V (Bi(uim) ∩B(D)) ≥ c3V (Bi(uim)).

For a given valuem, adding then inequalities in (3.5), we obtain

(3.6)
n∑

i=1

V (Bi(uim) ∩B(D)) ≥ c3

n∑
i=1

V (Bi(uim)), ∀1 ≤ m ≤ n− 1.

Since all spheres inR1 are non-overlapping, we have

(3.7)
n∑

i=1

V (Bi(uim) ∩B(D)) ≤ V (B(D)).

Inequalities (3.6) and (3.7) imply

V (B(D)) ≥ c3

n∑
i=1

V (Bi(uim)).

Notice thatV (B(D)) = πD3/6 andV (Bi(ui1)) = πu3
i1/6. Therefore,

(3.8)
n∑

i=1

u3
i1 ≤

D3

c3

.

Definingk = 3
16

= 0.1875, we have

fim ≥ fS
im = f

(uim

D

)
≥ c3 + k − k

uim

D
.
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Therefore, for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

(3.9) V (Bi(uim) ∩B(D)) ≥ (c3 + k)V (Bi(uim))− k
uim

D
V (Bi(uim)).

Adding then inequalities in (3.9) for a givenm, we obtain

(3.10)
n∑

i=1

V (Bi(uim) ∩B(D))

≥ (c3 + k)
n∑

i=1

V (Bi(uim))− k

D

n∑
i=1

uimV (Bi(uim)), ∀1 ≤ m ≤ n− 1.

Using (3.7) and the factsV (B(D)) = πD3/6 andV (Bi(ui1)) = πu3
i1/6, we have

(3.11) D3 ≥ (c3 + k)
n∑

i=1

u3
i1 −

k

D

n∑
i=1

u4
i1.

Now consider the following optimization problems (n ≥ 3):

max
n∑

i=1

u4
i1(3.12)

s.t.
n∑

i=1

u3
i1 ≤

D3

c3

(3.13)

0 ≤ ui1 ≤ D, i = 1, . . . , n.(3.14)

The objective function (3.12) is strictly convex and the feasible region defined by (3.13) – (3.14)
is also convex. Sincen ≥ 3 and2 < 1

c3
< 3, the inequality (3.13) holds at any of the optimal

solutions. Therefore the optimal solutions of (3.12) – (3.14) must occur at vertices of the set{
(ui1) :

n∑
i=1

u3
i1 =

D3

c3

, 0 ≤ ui1 ≤ D, i = 1, . . . , n

}
.

Any (ui1) with two components lying strictly between0 andD cannot be a vertex. Therefore

every optimal solution of (3.12) – (3.14) has
⌊

1
c3

⌋
components with the valueD, one component

with the value

√
1
c3
−
⌊

1
c3

⌋
D and the others are zeros, wherebxc is the largest integer less than

or equal tox. Then the optimal objective value is⌊
1

c3

⌋
D4 +

(
1

c3

−
⌊

1

c3

⌋) 4
3

D4.

In other words, we have proved for validui1 that

n∑
i=1

u4
i1 ≤

⌊
1

c3

⌋
D4 +

(
1

c3

−
⌊

1

c3

⌋) 4
3

D4.

Now (3.11) becomes

(3.15) D3 ≥ c3

n∑
i=1

u3
i1 + k

(
n∑

i=1

u3
i1 −

(⌊
1

c3

⌋
+

(
1

c3

−
⌊

1

c3

⌋) 4
3

)
D3

)
.
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Then we have

n∑
i=1

u3
i1 ≤

D3

(
1 + k

(⌊
1
c3

⌋
+
(

1
c3
−
⌊

1
c3

⌋) 4
3

))
c3(1 + k 1

c3
)

.

Comparing with (3.8), we actually obtain a newc+
3 :

(3.16) c+
3 =

c3

(
1 + k 1

c3

)
1 + k

(⌊
1
c3

⌋
+
(

1
c3
−
⌊

1
c3

⌋) 4
3

) ≈ 0.3156

such that
n∑

i=1

u3
i1 ≤

D3

c+
3

.

Iteratively repeating the same approach, we obtain a sequence{c(i)} (i = 1, 2, . . . ), where
c(0) = c3, c(1) = c+

3 and

(3.17) c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 4
3

) .

First we conclude thatc(i) < 1
3

for all i. We prove this by mathematical induction. We have
c(0) = 0.3125 < 1

3
. Now assume thatc(i) < 1

3
, which also implies

⌊
1

c(i)

⌋
≥ 3. Then based on

(3.17), we have

c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 4
3

)
≤ 0.5

1 + k
⌊

1
c(i)

⌋ ≤ 0.5

1 + 3k
<

1

3
.

Secondly, we prove

c(i) >
1

4

for all i by mathematical induction. We have shownc(0) > 1
4
. Now assumec(i) > 1

4
. Since⌊

1

c(i)

⌋
+

(
1

c(i)
−
⌊

1

c(i)

⌋) 4
3

≤
⌊

1

c(i)

⌋
+

(
1

c(i)
−
⌊

1

c(i)

⌋)
=

1

c(i)
,

we have

c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 4
3

) ≥ 0.5

1 + k
c(i)

>
0.5

1 + 4k
>

1

4
.

To sum up, we obtain1
4

< c(i) < 1
3
, which implies that

⌊
1

c(i)

⌋
= 3. Therefore, the iterative

formula (2.13) ofc(i+1) becomes

c(i+1) =
0.5

1 + k
(
2 +

(
1

c(i)
− 3
) 4

3

) .

It is easy to verify that the sequence{c(i)} is monotone increasing with a limit value0.3168.
Next, consider the spheres inRm for every2 ≤ m ≤ n − 1. In this case, there can be

overlaps between some pairs of spheres inRm. However, as shown in [1], any arbitrarily chosen
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point within B(D) can belong to at mostm overlapping spheres fromRm. Then for every
2 ≤ m ≤ n− 1, we have

n∑
i=1

V (Bi(uim) ∩B(D)) ≤ mV (B(D)).

It follows that

mD3 ≥ c3

n∑
i=1

u3
i1.

The last inequality (3.3) directly follows from the factuim ≤ D. �
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