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ABSTRACT. A crucial assumption of a previous theorem of the author is omitted without chang-
ing the consequence. This is achieved by proving a new (?) estimation on the absolute value of
the terms of a real sequence by means of the sums of the differences of the terms.
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1. I NTRODUCTION

In [4] we proved a theorem on absolute Riesz summability. Our paper was initiated by a
theorem of H. Bor [2] (see also [3]). Now we do not intend to recall these theorems, the
interested readers are referred to [4]. The aim of the present note is to show that the crucial
condition of our proof,λn → 0, can be deduced from two other conditions of the theorem.

In order to provide the new theorem we require some notions and notations.
A positive sequence{an} is said to bequasi increasingif there exists a constantK =

K({ak}) ≥ 1 such that

(1.1) K an ≥ am

holds for alln ≥ m.
The series

∑∞
n=1 an with partial sumssn is said to be summable|N, pn|k, k ≥ 1, if

∞∑
n=1

(
Pn

pn

)k−1

|tn − tn−1|k < ∞,
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where{pn} is a sequence of positive numbers such that

Pn :=
n∑

ν=0

pν →∞,

and

tn :=
1

Pn

n∑
ν=0

pν sν .

2. RESULT

As we have written above, the new theorem to be presented here deviates from our previous
result merely that an assumption,λn → 0, does not appear among the conditions.

The new theorem reads as follows.

Theorem 2.1.Let{λn} be a sequence of real numbers satisfying the condition

(2.1)
∞∑

n=1

1

n
|λn| < ∞.

Suppose that there exists a positive quasi increasing sequence{Xn} such that

(2.2)
∞∑

n=1

Xn|∆ λn| < ∞, (∆ λn := λn − λn+1),

(2.3) X∗
m :=

m∑
n=1

1

n
|tn|k = O(Xm),

(2.4)
m∑

n=1

pn

Pn

|tn|k = O(Xm)

and

(2.5)
∞∑

n=1

n X∗
n|∆(|∆ λn|)| < ∞

hold. Then the series
∑

an λn is summable|N, pn|k, k ≥ 1.

It is clear that if we can verify first that the conditions (2.1) and (2.2) imply thatλn → 0, then
the proof given in [4] is acceptable now, too. We shall follow this way.

3. L EMMAS

We need the following lemmas for the proof our statement.

Lemma 3.1([1, 2.2.2. p. 72]). If {µn} is a positive, monotone increasing and tending to infinity
sequence, then the convergence of the series

∑
un µ−1

n implies the estimate

(3.1)
n∑

k=1

uk = o(µn).

This lemma is the famous Kronecker lemma.
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Lemma 3.2. Let{γn} be a sequence of real numbers and denote

Γn :=
n∑

k=1

γk and Rn :=
∞∑

k=n

|∆ γk|.

If Γn = o(n) then there exists a natural numbern0 such that

(3.2) |γn| ≤ 2Rn

for all n ≥ n0. Naturally R1 < ∞ is assumed, otherwise (3.2) is a triviality. However then
Γn = o(n) is not only sufficient but also necessary to (3.2).

Remark 3.3. It is clear that ifγn → 0 then |γn| ≤ Rn is trivial, but not if γn 6→ 0, see e.g.
γn = c 6= 0 or γn = 2− 1

n
. Perhaps (3.2) is known, but unfortunately I have not encountered it

in any paper. I presume that (3.2) is not very known, namely recently two papers used it without
the assumptionΓn = o(n), or its consequences to be given next.

4. COROLLARIES

Lemma 3.2 implies the following usable consequences.

Corollary 4.1. Let{ρn} be a sequence of real numbers. Ifρn = o(n) then

(4.1) |∆ ρn| ≤ 2
∞∑

k=n

|∆2 ρk|, (∆2 ρk = ∆(∆ ρk)).

holds ifn is large enough.

Corollary 4.2. Letα ≥ 0 and{ρn} be as in Corollary 4.1. If

(4.2)
∞∑

k=1

kα|∆2 ρk| < ∞, (ρn = o(n)),

then

(4.3) |∆ ρn| = o(n−α).

In my view Lemma 3.2 and these corollaries are of independent interest.

5. PROOFS

Proof of Lemma 3.2.Let us assume that (3.2) does not hold for anyn0. Then there exists an
increasing sequence{νn} of the natural numbers such that

(5.1) 2Rνn < |γνn|.
Let m = νn, and be fixed. Then for anyk > m

2Rm < |γm| =

∣∣∣∣∣
k−1∑
i=m

∆ γi + γk

∣∣∣∣∣ ≤ Rm + |γk|,

whence

(5.2) Rm < |γk|
holds.

Now let us choosen such that

(5.3) (n−m)Rm > 2|Γm|.
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It is easy to verify that for allk > m the termsγk have the same sign, that is,γk · γk+1 > 0.
Namely ifγk andγk+1 have different sign then, by (5.2),|∆ γk| > 2Rm. But this contradicts the
fact thatRm ≥ Rk ≥ |∆ γk|.

Thus, ifn > m then

Γn = Γm +
n∑

k=m+1

γk,

and by invoking inequalities (5.2) and (5.3) we obtain that

|Γn| ≥
n∑

k=m+1

|γk| − |Γm| ≥
1

2
(n−m)Rm.

Since the last inequality opposes the assumptionΓn = o(n), thus (3.2) is proved. To verify the
necessity of the conditionΓn = o(n) it suffices to observe thatR1 < ∞ impliesRn → 0, thus,
by (3.2),

1

n

n∑
k=1

|γk| → 0

clearly holds. �

Proof of Corollary 4.1.Applying Lemma 3.2 withγn := ∆ ρn, we promptly get the statement
of Corollary 4.1. �

Proof of Corollary 4.2.In view of (4.2) it is plain that
∞∑

k=n

|∆2 ρk| = o(n−α),

whence (4.3) follows by (4.1). �

Proof of Theorem 2.1.It is clearly sufficient to verify that the conditions (2.1) and (2.2) imply
that

(5.4) λn → 0,

namely with this additional condition the assertion of Theorem 2.1 had been proved in [4].
Now we prove (5.4). In view of Lemma 3.1 we know that

∑n
k=1 |λk| = o(n), thus the

assumptions of Lemma 3.2 are satisfied withγn := λn. Furthermore the condition (2.2) visibly
implies that

(5.5)
∞∑

k=n

|∆ λk| = o(1),

thus (3.2), by (5.5), proves (5.4).
The proof is complete. �
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