

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 4, Article 96, 2005

A NOTE ON THE ABSOLUTE RIESZ SUMMABILITY FACTORS

L. LEINDLER

BOLYAI INSTITUTE, UNIVERSITY OF SZEGED ARADI VÉRTANÚK TERE 1 H-6720 SZEGED, HUNGARY leindler@math.u-szeged.hu

Received 01 April, 2005; accepted 12 August, 2005 Communicated by S.S. Dragomir

ABSTRACT. A crucial assumption of a previous theorem of the author is omitted without changing the consequence. This is achieved by proving a new (?) estimation on the absolute value of the terms of a real sequence by means of the sums of the differences of the terms.

Key words and phrases: Infinite Series, First and second differences, Riesz summability.

2000 Mathematics Subject Classification. 40A05, 40D15, 40F05.

1. INTRODUCTION

In [4] we proved a theorem on absolute Riesz summability. Our paper was initiated by a theorem of H. Bor [2] (see also [3]). Now we do not intend to recall these theorems, the interested readers are referred to [4]. The aim of the present note is to show that the crucial condition of our proof, $\lambda_n \to 0$, can be deduced from two other conditions of the theorem.

In order to provide the new theorem we require some notions and notations.

A positive sequence $\{a_n\}$ is said to be *quasi increasing* if there exists a constant $K = K(\{a_k\}) \ge 1$ such that

holds for all $n \ge m$.

The series $\sum_{n=1}^{\infty} a_n$ with partial sums s_n is said to be summable $|\overline{N}, p_n|_k, k \ge 1$, if

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |t_n - t_{n-1}|^k < \infty,$$

ISSN (electronic): 1443-5756

^{© 2005} Victoria University. All rights reserved.

This research was partially supported by the Hungarian National Foundation for Scientific Research under Grant No. T042462 and TS44782.

⁰⁹⁸⁻⁰⁵

where $\{p_n\}$ is a sequence of positive numbers such that

$$P_n := \sum_{\nu=0}^n p_\nu \to \infty,$$

and

$$t_n := \frac{1}{P_n} \sum_{\nu=0}^n p_\nu \, s_\nu$$

2. **Result**

As we have written above, the new theorem to be presented here deviates from our previous result merely that an assumption, $\lambda_n \rightarrow 0$, does not appear among the conditions.

The new theorem reads as follows.

Theorem 2.1. Let $\{\lambda_n\}$ be a sequence of real numbers satisfying the condition

(2.1)
$$\sum_{n=1}^{\infty} \frac{1}{n} |\lambda_n| < \infty.$$

Suppose that there exists a positive quasi increasing sequence $\{X_n\}$ such that

(2.2)
$$\sum_{n=1}^{\infty} X_n |\Delta \lambda_n| < \infty, \qquad (\Delta \lambda_n := \lambda_n - \lambda_{n+1}),$$

(2.3)
$$X_m^* := \sum_{n=1}^m \frac{1}{n} |t_n|^k = O(X_m),$$

(2.4)
$$\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = O(X_m)$$

and

(2.5)
$$\sum_{n=1}^{\infty} n X_n^* |\Delta(|\Delta \lambda_n|)| < \infty$$

hold. Then the series $\sum a_n \lambda_n$ is summable $|\overline{N}, p_n|_k, k \ge 1$.

It is clear that if we can verify first that the conditions (2.1) and (2.2) imply that $\lambda_n \to 0$, then the proof given in [4] is acceptable now, too. We shall follow this way.

3. LEMMAS

We need the following lemmas for the proof our statement.

Lemma 3.1 ([1, 2.2.2. p. 72]). If $\{\mu_n\}$ is a positive, monotone increasing and tending to infinity sequence, then the convergence of the series $\sum u_n \mu_n^{-1}$ implies the estimate

(3.1)
$$\sum_{k=1}^{n} u_k = o(\mu_n).$$

This lemma is the famous Kronecker lemma.

Lemma 3.2. Let $\{\gamma_n\}$ be a sequence of real numbers and denote

$$\Gamma_n := \sum_{k=1}^n \gamma_k \quad and \quad R_n := \sum_{k=n}^\infty |\Delta \gamma_k|.$$

If $\Gamma_n = o(n)$ then there exists a natural number n_0 such that (3.2) $|\gamma_n| < 2R_n$

for all $n \ge n_0$. Naturally $R_1 < \infty$ is assumed, otherwise (3.2) is a triviality. However then $\Gamma_n = o(n)$ is not only sufficient but also necessary to (3.2).

Remark 3.3. It is clear that if $\gamma_n \to 0$ then $|\gamma_n| \leq R_n$ is trivial, but not if $\gamma_n \neq 0$, see e.g. $\gamma_n = c \neq 0$ or $\gamma_n = 2 - \frac{1}{n}$. Perhaps (3.2) is known, but unfortunately I have not encountered it in any paper. I presume that (3.2) is not very known, namely recently two papers used it without the assumption $\Gamma_n = o(n)$, or its consequences to be given next.

4. COROLLARIES

Lemma 3.2 implies the following usable consequences.

Corollary 4.1. Let $\{\rho_n\}$ be a sequence of real numbers. If $\rho_n = o(n)$ then

(4.1)
$$|\Delta \rho_n| \le 2 \sum_{k=n}^{\infty} |\Delta^2 \rho_k|, \quad (\Delta^2 \rho_k = \Delta(\Delta \rho_k)).$$

holds if n is large enough.

Corollary 4.2. Let $\alpha \ge 0$ and $\{\rho_n\}$ be as in Corollary 4.1. If

(4.2)
$$\sum_{k=1} k^{\alpha} |\Delta^2 \rho_k| < \infty, \quad (\rho_n = o(n)),$$

then

$$(4.3) |\Delta \rho_n| = o(n^{-\alpha}).$$

In my view Lemma 3.2 and these corollaries are of independent interest.

5. **Proofs**

Proof of Lemma 3.2. Let us assume that (3.2) does not hold for any n_0 . Then there exists an increasing sequence $\{\nu_n\}$ of the natural numbers such that

$$(5.1) 2R_{\nu_n} < |\gamma_{\nu_n}|.$$

Let $m = \nu_n$, and be fixed. Then for any k > m

$$2R_m < |\gamma_m| = \left|\sum_{i=m}^{k-1} \Delta \gamma_i + \gamma_k\right| \le R_m + |\gamma_k|,$$

whence

 $(5.2) R_m < |\gamma_k|$

holds.

Now let us choose n such that

 $(5.3) (n-m)R_m > 2|\Gamma_m|.$

It is easy to verify that for all k > m the terms γ_k have the same sign, that is, $\gamma_k \cdot \gamma_{k+1} > 0$. Namely if γ_k and γ_{k+1} have different sign then, by (5.2), $|\Delta \gamma_k| > 2R_m$. But this contradicts the fact that $R_m \ge R_k \ge |\Delta \gamma_k|$.

Thus, if n > m then

$$\Gamma_n = \Gamma_m + \sum_{k=m+1}^n \gamma_k,$$

and by invoking inequalities (5.2) and (5.3) we obtain that

$$|\Gamma_n| \ge \sum_{k=m+1}^n |\gamma_k| - |\Gamma_m| \ge \frac{1}{2}(n-m)R_m.$$

Since the last inequality opposes the assumption $\Gamma_n = o(n)$, thus (3.2) is proved. To verify the necessity of the condition $\Gamma_n = o(n)$ it suffices to observe that $R_1 < \infty$ implies $R_n \to 0$, thus, by (3.2),

$$\frac{1}{n}\sum_{k=1}^{n}|\gamma_{k}|\to 0$$

clearly holds.

Proof of Corollary 4.1. Applying Lemma 3.2 with $\gamma_n := \Delta \rho_n$, we promptly get the statement of Corollary 4.1.

Proof of Corollary 4.2. In view of (4.2) it is plain that

$$\sum_{k=n}^{\infty} |\Delta^2 \rho_k| = o(n^{-\alpha}),$$

whence (4.3) follows by (4.1).

Proof of Theorem 2.1. It is clearly sufficient to verify that the conditions (2.1) and (2.2) imply that

$$\lambda_n \to 0,$$

namely with this additional condition the assertion of Theorem 2.1 had been proved in [4].

Now we prove (5.4). In view of Lemma 3.1 we know that $\sum_{k=1}^{n} |\lambda_k| = o(n)$, thus the assumptions of Lemma 3.2 are satisfied with $\gamma_n := \lambda_n$. Furthermore the condition (2.2) visibly implies that

(5.5)
$$\sum_{k=n}^{\infty} |\Delta \lambda_k| = o(1)$$

thus (3.2), by (5.5), proves (5.4). The proof is complete.

REFERENCES

- G. ALEXITS, Convergence Problems of Orthogonal Series. Pergamon Press 1961, ix+350 pp. (Orig. German ed. Berlin 1960.)
- [2] H. BOR, An application of almost increasing and δ-quasi-monotone sequences, J. Inequal. Pure and Appl. Math., 1(2) (2000), Art. 18. [ONLINE: http://jipam.vu.edu.au/article.phd? sid=112]

- [3] H. BOR, Corrigendum on the paper "An application of almost increasing and δ-quasi-monotone sequences", J. Inequal. Pure and Appl. Math., 3(1) (2002), Art. 16. [ONLINE: http://jipam. vu.edu.au/article.phd?sid=168]
- [4] L. LEINDLER, On the absolute Riesz summability factors, *J. Inequal. Pure and Appl. Math.*, **5**(2) (2004), Art. 29. [ONLINE: http://jipam.vu.edu.au/article.phd?sid=376]